
A Hierarchical Two-tier Approach to
Hyper-parameter Optimization in

Reinforcement Learning

Juan Cruz Barsce1, Jorge A. Palombarini1,2,3, and Ernesto Mart́ınez4

1 Dpto. de Ingenieŕıa en Sistemas de Información, Facultad Regional Villa Maŕıa,
UTN, Argentina

2 GISIQ, Facultad Regional Villa Maŕıa, UTN, Argentina
3 CIT Villa Maŕıa - CONICET-UNVM, Argentina

4 Instituto de Desarrollo y Diseño CONICET-UTN, Argentina,
ecmarti@santafe-conicet.gob.ar

Abstract. Optimization of hyper-parameters in reinforcement learning
(RL) algorithms is a key task, because they determine how the agent
will learn its policy by interacting with its environment, and thus what
data is gathered. In this work, an approach that uses Bayesian optimiza-
tion to perform a two-step optimization is proposed: first, categorical RL
structure hyper-parameters are taken as binary variables and optimized
with an acquisition function tailored for such variables. Then, at a lower
level of abstraction, solution-level hyper-parameters are optimized by re-
sorting to the expected improvement acquisition function, while using
the best categorical hyper-parameters found in the optimization at the
upper-level of abstraction. This two-tier approach is validated in a simu-
lated control task. Results obtained are promising and open the way for
more user-independent applications of reinforcement learning.

Keywords: reinforcement learning, hyper-parameter optimization, Bayesian
optimization, Bayesian optimization of combinatorial structures (BOCS)

1 Introduction

Generalizing from data in a machine learning algorithm involves a training pro-
cess, where such algorithm learns the model structure and parameters that best
fit the available data. Training, in turn, depends on a prior design process that
defines the hyper-parameters that constraint the conditions of data-driven learn-
ing. Setting them properly is crucial to the learning process, and can make the
difference between mediocre and state-of-art model prediction [5]. In particu-
lar, optimizing the hyper-parameters of reinforcement learning algorithms [10]
is a hard task, because data is not provided a priori, but increasingly generated
through interactions with the environment. Hence, hyper-parameters determine
which data is generated. In turn, such data determines the parameter values,
which also influences the next set of data generated, and so on and so forth.

ASAI, Simposio Argentino de Inteligencia Artificial

48JAIIO - ASAI - ISSN: 2451-7585 - Página 32



Hyper-parameters are usually manually optimized, which can be very inef-
ficient [5], or by methods such as random search [3] or Bayesian optimization
(BO) [6] [9]. The latter performs a black-box optimization of a function f , re-
sorting both to a prior distribution f ∼ P (y) and to the data available points
(X, y) in order to compute the mean and variance for unseen inputs, typically
predicted by Gaussian process (GP) regression [7], which is used to maximize
an acquisition function that is cheap to optimize globally. The most common
acquisition function is expected improvement, where the next point is decided
by considering the probability of the next maximum, pondered by the predicted
variance. The issue with random search is that the method uses very limited
information about previous queries of f . On the other hand, while Bayesian op-
timization uses information regarding past queries, it also has two limitations
similarly to random search: 1) it involves no assumption about the influence of
hyper-parameters on the information content, and 2) it is no efficient to optimize
categorical hyper-parameters such as the RL algorithm selected. In this work, an
algorithm is proposed that, by assuming a hierarchical relationship between RL
hyper-parameters, optimizes such structural hyper-parameters first, and then
uses traditional Bayesian optimization to tune the real-valued hyper-parameters
of the learning algorithm. The proposed algorithm is validated against random
search and Bayesian optimization in the classical Cart-pole environment.

2 Reinforcement learning

Reinforcement learning [10] is a sub-area of machine learning involving an au-
tonomous agent that must control an external environment while learning a
control policy that maximize the received reward from such environment. For-
mally, it can be stated as a Markov Decision Process, (S,A,R(.), P (.), γ), where
S is a set of environmental states, A is a set of actions available to the agent,
R(s) is an external function that assigns the agent a reward to state transition
caused by the agent action taken at any state s, P (s′ | s, a) is a function that
determines the probability that the agent transitions from a state s to a state s′

when the action a is taken, and finally, γ ∈ [0, 1) is a real number that discounts
the values of future rewards.

The control policy is defined as a function π(a | s), and represents the prob-
ability of taking the action a when the environment is in state s. With π(.),
the agent aims to maximize the value function for every state, defined as the
expected reward starting from a given state at time-step t and following a given
policy π thereafter. Formally such function must satisfy the Bellman equation
[10]. A crucial aspect in RL is the trade-off between exploration and exploitation,
in which the agent has to choose between taking actions that are considered to
be the best according to the current estimation of the optimal policy learned, or
taking actions that are deemed as sub-optimal but makes room for the agent to
discover better actions to exploit in the future.

Among basic RL algorithms the most commonly used are Q-Learning [11] and
SARSA [8]. Both algorithms compute the action-value function Q(s, a) according

ASAI, Simposio Argentino de Inteligencia Artificial

48JAIIO - ASAI - ISSN: 2451-7585 - Página 33



to a temporal difference between the discounted value of Q(s′, a′) of the next
state and action, and the Q-value for the current state and chosen action. The
difference between Q-Learning and SARSA is how they choose the next action
a′, where the latter selects the action based on the policy π, and thus it is an
on-policy algorithm, whereas the former selects the best estimated action a′ for
the resulting state s′, therefore it is considered as off-policy. Algorithms may
also update the Q values of past states and actions that were responsible for
reaching the current state, using a mechanism known as eligibility traces [10].

To balance exploitation and exploration in this work, the ε-greedy policy is
used, where the best action a′ is chosen with an 1− ε probability, and the other
alternative actions are chosen at random with a low probability ε. Alternatively,
the Softmax policy is used, where each action is selected based on the equation
π(a | s) = eQ(s,a)/τ/

∑
a′ e

Q(s,a′)/τ , where τ is an hyper-parameter defines the
influence of the Q values in defining the action selection probabilities.

Each of the RL algorithms and policies have their own set of hyper-parameters
that must be defined before the agent learning curve begins. Common hyper-
parameters includes a learning rate that determines the speed of the convergence
of the agent α ∈ (0, 1), an exploration rate ε ∈ (0, 1) if the policy is ε-greedy,
and a discount factor γ ∈ (0, 1) for future rewards (see [10] for a more detailed
description). If the policy used is ε-greedy, an additional hyper-parameter known
ε-decay rate can be used, that reduces the value of ε after an episode, in order
to lower the exploration rate of the agent after a given number of episodes has
been experienced.

3 Two-tier hierarchical Bayesian optimization of RL
hyper-parameters

In this work, a method that employs Bayesian optimization to perform a two-
tier optimization of both structural and solution-level hyper-parameters of an RL
agent is proposed. The objective function proposed in this work, f : Θa∪Θs → R
maps a set Θ of both structural and solution level hyper-parameters of the al-
gorithm to a real number that measures the overall performance of the learn-
ing agent, assuming an episodic task. A novel aspect of this approach is that
it combines Bayesian optimization for both categorical and real-valued hyper-
parameters. For the categorical hyper-parameters, Bayesian optimization of dis-
crete structures (BOCS) [1] was used, where the categorical hyper-parameters are
taken as binary variables and the maximum of the acquisition function is found
through simulated annealing, instead of relying on Gaussian process regression
[1]. On the other hand, the RLOpt [2] approach was used for the real-valued
hyper-parameters. As the distribution of the f function is unknown, the prior
assumption is that it follows a multivariate Normal distribution with a mean
vector µ0 and a co-variance function Σ. In order to calculate the value of f(Θ)
for Θ = Θs ∪ Θa, an RL agent is instantiated in a certain environment with
hyper-parameters Θ, and it is set to run for a certain number of episodes in
order to learn a policy to behave in such a way to maximize its received reward.

ASAI, Simposio Argentino de Inteligencia Artificial

48JAIIO - ASAI - ISSN: 2451-7585 - Página 34



Whenever the agent is assigned a new Θ vector, it resets all its prior knowledge
about the policy in order to make a fresh start, unbiased by the prior hyper-
parameter settings. The instance where an RL agent runs a certain number of
episodes under the same hyper-parameter setting is called a meta-episode.

This method involves the assumption that RL parameters are related in a
two-level hierarchy that takes into account their levels of abstraction. In such re-
lationship, algorithm hyper-parameters such as the exploration policy (e.g. Soft-
max or ε-greedy [10]) are in a higher level of abstraction than the solution-level
hyper-parameters (e.g. the temperature τ or the exploration rate ε), by the fact
that the former establishes the possible values for the latter. Following such an
assumption, in the proposed method the structural algorithm hyper-parameters
are optimized first, while using a set of prior algorithm hyper-parameters, and
storing the pairs Θ, f(Θ) of point and its corresponding f output in the initial
set D1. Once a certain number of meta-episodes are elapsed, the best structural
hyper-parameters are kept frozen and the optimization of the hyper-parameters
dependent on such algorithms is started, storing its results in the set D2. The
method for such optimization is stated in Algorithm 1.

Algorithm 1: Bayesian optimization applied to both the structural and
algorithm hyper-parameters

Input : set of prior algorithm hyper-parameters Θp
1 for structural evaluation = 1 to N do
2 Obtain Θn that optimizes αBOCS(.)→ R over the structural

hyper-parameters, with prior algorithm hyper-parameters preset as Θp
3 Query the objective function f at the point Θn = Θs ∪Θp
4 D1 ← D1 ∪ {Θn, f(Θn)}
5 Update the model

6 end
7 Initialize D2 ← {Θ+, f(Θ+)} with the best Θ+ = Θ+

s ∪Θp point and
corresponding maximum of f found

8 for hyper-parameters evaluation = 1 to M do
9 Obtain Θm = Θ+

s ∪Θa that optimizes αEI(.)→ R, with structural
hyper-parameters preset as Θ+

s

10 Query the objective function f at the point Θm = Θ+
s ∪Θa

11 Add the result f(Θ) to D2

12 Update the statistical model (e.g. Gaussian process)

13 end
14 return (arg maxΘ f,max f)

4 Computational experiments

The proposed approach is validated in a discretized version of the classic Cart-
pole control environment, which consists of an environment with a cart that

ASAI, Simposio Argentino de Inteligencia Artificial

48JAIIO - ASAI - ISSN: 2451-7585 - Página 35



moves either left or right, and it is holding a pole that can swing in both direc-
tions. The objective for the cart is to keep the pole balanced (i.e. by not letting it
in a position where it will fall to the floor), while maintaining itself within certain
limits. Each episode is terminated whether the pole position is above or below
12 degrees from the vertical position, when the cart moves beyond a distance
of 2.4 units from the center, or when 200 time-steps have elapsed. A reward
of +1 is given after every time-step when the pole is still maintaned upright,
and a reward of -200 is assigned to the agent whenever the pole has fallen. The
implementation used for the environment was the OpenAI Gym implementation
[4].

The proposed Algorithm 1 is compared against two of the most common
methods for hyper-parameter tuning: random search and Bayesian optimiza-
tion. To optimize RL hyper-parameters with the latter, the RLOpt framework
[2] is used. A total number of 30 meta-episodes were used for the three ap-
proaches, where the average reward was used to compute f on each meta-
episode. In the proposed algorithm, 10 meta-episodes were used to optimize the
discrete hyper-parameters and 20 meta-episodes were used to optimize the real-
valued hyper-parameters once the structural hyper-parameters were fixed. The
structural hyper-parameters optimized were algorithm ∈ {Q-learning,SARSA},
eligibility-traces ∈ {true, false}, policy ∈ {ε-greedy,Softmax} and ε-decay ∈
{true, false} (it only applies when ε-greedy policy is selected). On the other hand,
the algorithm hyper-parameters optimized were α ∈ (0, 1), ε ∈ (0, 1), γ ∈ (0, 1),
the number of bins that divides the cart position and speed, n-bins ∈ (5, 20),
and the number of bins used to discretize the pole angle position and its speed,
n-bins-angle ∈ (5, 20).

Results obtained are shown in Fig. 1 and Fig. 2, where the thick lines and
their nearby curves correspond to the average and the 95% confidence interval
for ten simulations with different random seeds. As can be seen, the proposed
method is consistently better at finding the average set of hyper-parameters
that reach the maximum than the other two methods that does not optimize the
structural hyper-parameters. In Fig. 2, it can be appreciated that the proposed
method starts reducing its average cumulative reward after having the very first
initial convergence where the maximum was found for the ten executions. The
average execution time was 7, 8 and 12 minutes for the random search, RLOpt,
and for the proposed optimizer, respectively.

5 Concluding remarks

In this work, a novel approach that involved the optimization of both cate-
gorical and real-valued RL hyper-parameters, assuming a hierarchical relation-
ship between them was presented. The validation in the Cart-pole environment
highlights that the proposed approach performs consistently better than the
monolithic optimization of the real-valued hyper-parameters alone. Our current
research efforts are focused on including the extension of the concept of a hierar-
chical relationship among many hyper-parameters, the optimization of complex

ASAI, Simposio Argentino de Inteligencia Artificial

48JAIIO - ASAI - ISSN: 2451-7585 - Página 36



Fig. 1. Average maximum reached by each opti-
mizer, per each meta-episode

Fig. 2. Cumulative reward per meta-episode
reached by each optimizer

computational structures such as deep neural networks, and the use of meth-
ods such as power analysis in order to determine whether the sample size of
meta-episodes must be increased, among others.

References

1. Ricardo Baptista and Matthias Poloczek, Bayesian Optimization of Combinatorial
Structures, arXiv:1806.08838 [cs, math, stat] (2018) (en).

2. Juan Cruz Barsce, Jorge A. Palombarini, and Ernesto C. Mart́ınez, Towards Au-
tonomous Reinforcement Learning: Automatic Setting of Hyper-parameters using
Bayesian Optimization, CLEI Electronic Journal 21 (2018), no. 2, 1:1–1:22 (En-
glish).

3. James Bergstra and Yoshua Bengio, Random Search for Hyper-Parameter Opti-
mization, Journal of Machine Learning Research 13 (2012), no. Feb, 281–305.

4. Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba, OpenAI Gym, (2016).

5. Frank Hutter, Jörg Lücke, and Lars Schmidt-Thieme, Beyond Manual Tuning of
Hyperparameters, KI - Künstliche Intelligenz 29 (2015), no. 4, 329–337 (en).

6. Jonas Močkus, Vytautas Tiesis, and A. Zilinskas, The application of Bayesian
methods for seeking the extremum, Towards Global Optimisation 2 (L.C.W. Dixon
and G.P. Szego, eds.), North-Holand, 1978, pp. 117–129.

7. Carl Edward Rasmussen and Christopher K. I. Williams, Gaussian processes for
machine learning, 3. print ed., Adaptive Computation and Machine Learning, MIT
Press, Cambridge, Mass., 2008 (eng).

8. G. A. Rummery and M. Niranjan, On-Line Q-Learning Using Connectionist Sys-
tems, CUED/F-INFENG/TR 166, Cambridge University Engineering Department,
1994.

9. B. Shahriari, K. Swersky, Ziyu Wang, R.P. Adams, and N. de Freitas, Taking the
Human Out of the Loop: A Review of Bayesian Optimization, Proceedings of the
IEEE 104 (2016), no. 1, 148–175.

ASAI, Simposio Argentino de Inteligencia Artificial

48JAIIO - ASAI - ISSN: 2451-7585 - Página 37



10. Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction,
2nd ed., Adaptive Computation and Machine Learning, MIT Press, Cambridge,
Mass, 2018 (English).

11. Christopher J. C. H. Watkins and Peter Dayan, Q-learning, Machine Learning 8
(1992), no. 3-4, 279–292 (en).

ASAI, Simposio Argentino de Inteligencia Artificial

48JAIIO - ASAI - ISSN: 2451-7585 - Página 38


	A Hierarchical Two-tier Approach to Hyper-parameter Optimization in Reinforcement Learning

