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ABSTRACT

Context. As most of the modern astronomical sky surveys produce data faster than humans can analyse it, machine learning (ML)
has become a central tool in astronomy. Modern ML methods can be characterised as highly resistant to some experimental errors.
However, small changes in the data over long angular distances or long periods of time, which cannot be easily detected by statistical
methods, can be detrimental to these methods.

Aims. We develop a new strategy to cope with this problem, using ML methods in an innovative way to identify these potentially
detrimental features.

Methods. We introduce and discuss the notion of drifting features, related with small changes in the properties as measured in the
data features. We use the identification techniques of RR Lyrae variable objects (RRLs) in the VVV based on an earlier work and
introduce a method for detecting drifting features. For the VVV, each sky observation zone is called a tile. Our method forces the
classifier to learn from the sources (mostly stellar ‘point sources’) which tile the source originated from and to select the features that
are most relevant to the task of finding candidate drifting features.

Results. We show that this method can efficiently identify a reduced set of features that contains useful information about the tile
of origin of the sources. For our particular example of detecting RRLs in the VVV, we find that drifting features are mostly related
to colour indices. On the other hand, we show that even if we have a clear set of drifting features in our problem, they are mostly
insensitive to the identification of RRLs.

Conclusions. Drifting features can be efficiently identified using ML methods. However, in our example removing drifting features

does not improve the identification of RRLs.
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1. Introduction

Most of the modern astronomical sky surveys are characterised by
fast-paced data ingestion, data intensive science cases, or auto-
matic reduction pipelines (e.g., Feigelson & Babu 2012), which
often lie on the verge of technological developments and analy-
sis capabilities. This unprecedented availability of observations
challenges the traditional approaches for data analysis, leading to
a shift in the paradigm for knowledge discovery (Bell et al. 2009),
which has notably become dominated by machine learning (ML)
techniques (Ball & Brunner 2010). Despite the difficult mathe-
matical and statistical foundations, a complex terminology driven
by the confluence of several sciences, and the arduous interpreta-
tion of the results, the training of intelligent agents has become
an everyday practice in astronomy. The accessibility of easy-to-
use free software resources mostly written for R (Team R Core
2000) or Python (Van Rossum & Drake 2003) languages was fun-
damental to this step.

In most cases, ML methods can be separated into two basic
steps. First, raw data are converted into a set of useful features
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that are relevant to the task at hand (e.g., periods or intensi-
ties), and then these features are fed to a classifier or a statistical
method (see e.g., Mitchell 1997).

Machine learning methods have a number of limitations. For
instance, they are highly susceptible to errors produced by the
limitations of the datasets (Cai & Zhu 2015). The results can also
be hampered by the role of the features, which is not fully under-
stood (Duboue 2020) or by the biases introduced by improp-
erly defined experiments (Domingos 2012). These facts are well
known and have not been ignored in the astronomical commu-
nity (Luo et al. 2020).

Here, we are interested in the role of some sources of noise
that are present in commonly used features in astronomical
research as well as their impact on the results of ML methods
in this context. We use data from the synoptic survey Vista Vari-
ables in Via Lactea (VVV; Minniti et al. 2010), observed with
the VISTA telescope (Sutherland et al. 2015), which pursues,
among its main objectives, the production of a three-dimensional
map of a large part of the Galactic centre (bulge) of the Milky
Way and a fraction of the internal Galactic disk. The VVV
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data are presented in units called ‘tiles’, which are rectangular
areas of the sky surveyed over time. For each tile, the VVV
data reduction pipeline (Emerson et al. 2004) provides a pre-
processed image and a database of files with the positions, mag-
nitudes, and colour indices of the light sources present in the
image, which comprises the ‘photometric catalogue’. These cat-
alogues are the main subject of this study.

The images are subject to two noise sources, namely exper-
imental errors and observation conditions. The derived cata-
logues are also affected since the noise permeates all the survey
information, which is composed of a set of features or observ-
ables. Atmospheric conditions, moon phases, maintenance of the
camera and telescope, or modifications to the software, among
many factors, can influence the observation or recording of the
data. As a consequence, the derived measurements that are used
as features for an ML analysis can also be prone, to different
extents, to these errors and conditions.

Random measurement errors are present in all experimen-
tal or observational science. They are unavoidable, but each
error typically affects only a single observation or a reduced set
of observations; in particular, wide-field survey images can be
affected by issues such as weather, astronomical conditions, and
software updates. Machine learning methods can efficiently cope
with these kinds of errors. For a large survey such as the VVV,
observational conditions can change slightly (but not randomly)
over long periods of time or for different regions in the sky. This
problem is more difficult for ML methods. In many situations we
want to train an intelligent agent using a well-known portion of
the survey and then use it to predict other less-known zones when
searching for a given astronomical phenomenon. Given the ML
methodology, the agent will work efficiently on training data but
will probably fail to generalise to other zones due to this slight
change in observational conditions. Due to the diverse nature of
the features extracted from the data (intensity, periods, colours,
etc.), they will possibly reflect this effect in different proportions.
It is thus interesting to ask whether it is possible to automatically
detect which of the extracted features are more sensitive to these
changes in observational conditions. Hereafter, we refer to the
features in a dataset that are sensitive to observational conditions
as ‘drifting features’. We aim at evaluating their influence over a
large-scale ML experiment.

As a working example, we focus on the problem of detecting
RR Lyrae variable objects (RRLs) in VVV data. That is, we train
classifiers using data from some VVV tiles and evaluate how
they conduct the task of identifying RRLs on other tiles.

Drifting features should be consistent within a limited zone
of the sky (for instance, one tile or two consecutive tiles) but
should show slight changes, almost undetectable by most sim-
ple statistics, between tiles that are separated from one another!.
Those changes could potentially alter the capabilities of the
classifier. To detect these features and their effect on automatic
classification, we once again propose using ML methods. If we
confront an ML method with the task of discriminating data from
two tiles, it will be forced to learn the differences between the
tiles that are present in the features. We can then use feature
selection methods (Guyon et al. 2002) to evaluate the impor-
tance of each feature for this classifier that discriminates tiles

! 'Whether two consecutive tiles or, in general, two regions on the sky

are similar depends on the survey strategy. For example, regions that are
repeatedly observed in quick succession in a survey or that share impor-
tant observational parameters, such as the exposure time, could show
this property even if they have long angular distances. The opposite is
also valid: Regions that are close at angular distances can be observed
under very diverse conditions.
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and to mark highly relevant features as candidate drifting fea-
tures. In other words, we propose learning a separate task (the
tile of origin of a source), not because it is unknown or diffi-
cult but as a method for detecting which are the features that are
most useful to this task: the features that contain information that
changes with the tile of origin.

This work is divided into the following sections: In Sect. 2
we explain our experimental setup (data, feature extraction,
model selection, etc.). In Sect. 3 we introduce our procedure for
the identification of drifting features, and in Sect. 4 we eval-
uate the effect of these features on the task of RRL identifi-
cation. Finally, in Sect. 5 we discuss our results and draw our
conclusions.

2. Experimental setup
2.1. Data

One of the main objectives of the VVV is the creation of a
three-dimensional map of the bulge and the Galactic centre
(Minniti et al. 2010) for which the search for variable stars in
general, and RRLs in particular, is important due to their use as
standard candles (Bailey 1902). To this end, the survey relies on
data from the VISTA Infrared Camera (VIRCAM), mounted on
Visible and Infrared Survey Telescope for Astronomy (VISTA)
of the European Southern Observatory (ESO; Sutherland et al.
2015), which at the time of its construction was the largest near-
infrared camera, with 16 non-contiguous 2k x 2k detectors. To
complete a contiguous tile, VIRCAM simultaneously exposes its
detectors six times with a suitable offset. Each of the exposures
is called a ‘pawprint’, and the combination of the six overlap-
ping pawprints is a tile. For this reason each pixel is observed
in at least two pawprints and the edges are shared with the
observations of the adjacent tiles. The survey observation plan
was organised in two stages: During the first year the tile was
observed in five astronomical filters, Z, Y, J, H, and Ks, separated
by a few hours; then, in subsequent years, it was re-observed
using the Ks band for variability studies. Only some tiles were
observed in multi-band after the first year. The dataset used in
this work is the one presented in Cabral et al. (2020), which con-
sists of 62 features extracted with feets (Cabral et al. 2018)
from light curves that were reconstructed from the photomet-
ric catalogues provided by the Cambridge Astronomical Survey
Unit (CASU).

From the original dataset we selected eight tiles located
at different zones of the bulge, as shown in Fig. 1. For each
tile we extracted all the RRLs plus a uniform sample of 2000
unclassified, unsaturated, and non-faint sources (average magni-
tude between 12 and 16.5). From these selections, sources with
invalid values were removed, leaving the final dataset for this
work, described in Table 1.

We chose to use a reduced dataset with around 2000 sources
for each tile in order to dramatically decrease the computational
burden of our experiments. As shown in Cabral et al. (2020), the
use of a reduced dataset can lead to optimistic estimations of
the accuracy of the detections, but our main objective is to find
and characterise the features that best represent the differences
between the tiles and not the accuracy of the detection of the
RRLs.

2.2. Error measures

We faced two different binary classification problems in this
work. First, we tried to separate sources between two tiles; this
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Table 1. Total number of sources, RRL and sample, taken in each tile
used in this work.

Tile Total RRL Sample
b206 407720 47 2047
b214 376822 35 2034
b216 334773 43 2043
b261 735838 253 2252
b277 831323 430 2429
b278 857887 437 2436
b360 1029149 679 2669
b396 729671 15 2015

was done in order to construct a tile classifier (TC) that allows
the relevance of the features to be assessed. As stated in the Intro-
duction, we used the TC as an auxiliary method that allows us
to detect which features are candidate drifting features. Then,
we built a source classifier (SC) that seeks to discriminate RRL
sources from unknown sources. In the first problem both classes
are nearly balanced in all cases. On the other hand, as discussed
in Cabral et al. (2020), the identification of a few variable stars
within a large set of unknown sources is usually a highly imbal-
anced problem that generates several inconveniences, such as
those discussed in the recent work by Hosenie et al. (2020), and
requires specific error measures.

In the RRL detection problem (SC), we define RRL sam-
ples as the positive class and the other sources as the negative
class. In the tile identification problem (TC), both classes (the
two tiles) are equivalent, so we arbitrarily call one of them pos-
itive and the other negative. All positive samples (in this case,
either a source or a tile) that are correctly identified by the clas-
sifier are called true positives (TP); otherwise, if they are missed
by the classifier they are called false negatives (FN). Negative
samples that are wrongly classified are called false positives
(FP), and those that are correctly identified are called true nega-
tives (TN). Using a combination of these four outcomes, we can
define two complementary performance measures, called ‘preci-
sion’ and ‘recall’, which are adequate to deal with unbalanced
problems. The precision is defined as TP/(TP + FP). It mea-
sures, for example, the fraction of real RRLs detected over all
those retrieved by the classifier. The recall, on the other hand, is

used in this work with red borders.

defined as TP/(T P + FN). It measures, in the same example, the
fraction of all RRLs that are detected by the classifier.

Many classifiers can change their decision outputs by adjust-
ing the probability threshold that considers an observation to be
positive or negative. A high threshold increases the precision and
decreases the recall since fewer cases are classified as positive,
while a low threshold generates the opposite effect. To evaluate
precision and recall together, we consider the precision-recall
curves (PR), where we plot a set of pairs of values correspond-
ing to different thresholds. A curve that approaches the top-right
corner is, in general, considered to represent a better classifier.

For balanced classification problems it is common to
find more traditional metrics in the literature. As such,
for the tile identification problem we also use ‘accuracy’,
(TP+TN)/(TP+FP+TN+ FN), and the ‘area under the
receiver operating characteristic curve’ (ROC-AUC) measures.
The ROC curve is equivalent in concept to the precision-recall
curve described above, and the area under it is a global measure
of the performance of the classifier. The only difference between
the two curves is that an ROC curve that approaches the top-left
corner represents a better classifier.

2.3. Model selection

For the TC problem we evaluated four classifiers with diverse
foundations — support vector machine (SVM) with a linear ker-
nel (Vapnik 2013), SVM with a radial basis function (RBF) ker-
nel, K-nearest neighbours (KNN; Mitchell 1997), and random
forest (RF; Breiman 2001) — all implementations from the Scikit-
Learn Python package (Pedregosa et al. 2011).

To determine the best hyper-parameters for every model, we
executed a grid search of all possible combinations of values
for each hyper-parameter over a fixed list. We used a five k-fold
setup on a dataset with tiles b278 and b261, using precision as
a performance measure. These tiles were chosen because they
are not extreme in terms of their location or their balance, unlike
b396 or b220.

With this setup, we selected the following hyper-parameter
values:

SVM-linear: C = 100.

SVM-RBF: C = 100 and y = 0.003.

KNN: K = 56 with a Manhattan metric; also, the importance of
the neighbour class was not weighted by distance.
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RF: We created 500 decision trees with information gain as a
metric; the maximum number of random selected features for
each tree is 0.5 the total number of features, and the minimum
number of observations in each leaf is five.

Using the optimal values for the hyper-parameters, we com-
pared the four models on the same dataset using a ten-fold cross-
validation setup. Table 2 shows the corresponding results using
the default threshold (0.5) for all models. For all three metrics
considered (precision, recall, and AUC), the SVM-linear classi-
fier clearly outperformed all the other classifiers. More impor-
tantly, Fig. 2 shows the corresponding ROC and precision-recall
curves, which show that SVM-linear also outperforms the other
methods for all possible thresholds. Given these results, we
selected SVM-linear as the classifier for the tile identification
problem. For the SC problem, Cabral et al. (2020) already deter-
mined that RF is the classifier with the best performance for our
dataset and general experimental setup.

2.4. Feature selection

Feature selection (Guyon & Elisseeff 2003) is the process of
extracting some subsets of features from the entire set in order to
optimise the classification performance and/or the computational
complexity of the problem. We chose for this work the ‘recur-
sive feature elimination’ (RFE) algorithm (Guyon et al. 2002).
The method is widely adopted and is characterised by its good
performance and simplicity. As a backward selection method,
RFE starts with all the features and sequentially eliminates the
unimportant features using a recursive process.

The RFE algorithm is integrated with a classification
method, which provides, at each step of the recursion, the impor-
tance score of the features. It iteratively executes the underlying
classifier and extracts the score for each variable; then the vari-
able (or group of variables) with a worse performance (according
to the score) is eliminated.

The method typically ends when the desired (fixed) number
of features to select is reached. Another possibility is to monitor
a performance metric for the subsets (for example, the accuracy
on an independent validation set) and stop the recursion when
the metric is optimal.

In this work we relied on the RFE implementation with k-
fold Cross-Validation (RFECV) for the stopping criteria, which
are provided by the Scikit-Learn package (Pedregosa et al.
2011). The RFECV produces k replicated experiments (k = 5 in
our work), each of which selects features over (k — 1) folds and
monitors the classification error (1 — accuracy) over the remain-
ing fold. Then it determines the number of features to select,
looking for the least average error throughout all the folds. In
the last step, RFECV produces a final selection using the entire
dataset to select the features, stopping at the previously selected
point.

It is worth mentioning that the classifier embedded in the
RFE in the feature selection stage may be different from the
eventual method in the final classification stage.

3. Finding drifting features

As we stated in the Introduction, we propose using ML methods
to detect drifting features, looking for features that are useful
for determining the tile of origin of a given source (exclusively
from features derived from the pawprint stack photometry, with-
out any other header keyword data). With this goal, in this first
experiment we considered all the sources in each tile together
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Table 2. Classification metrics of the SVM (with linear and RBF ker-
nels), RE, and KNN models on the sources of tiles b278 and b261.

Model Precision Recall AUC

SVM-Linear  0.8511 0.8511 0.9286
SVM-RBF 0.8003 0.8003 0.8680
RF 0.7707 0.7707 0.8548
KNN 0.6973 0.6973 0.7685

(RRLs and unknowns) and trained classifiers to learn the tile of
origin of each source and not its astronomic type.

We applied the RFECV method, as described in the previous
section, to 28 binary classification problems, each of which con-
sisted in separating a different pair of tiles from the set of eight
tiles in our dataset. Thus, for each SC problem (for example, sep-
arating tiles b206 and b214), we obtain from RFECYV a subset of
selected features for that problem. Each subset potentially has a
different length, as discussed above.

Figure 3 shows the number of features selected for each
problem. It is evident that there are two different behaviours. In
some cases RFE selects just a few features, as for example tile
b216 with any other except b206; on the other hand, in some
other cases the selected subset contains a high number of fea-
tures (tile b206 against b216, for example, or b396 against b277
or b278). However, the number of selected features by itself is
not relevant; what is more important for identify drifting features
is how well they separate the two tiles.

We can arbitrarily divide the problem into two categories:
‘few features’ (four or fewer selected features) and ‘high num-
ber’ (more than four selected features). Figure 4 shows ROC
curves for the 12 high-number problems as well as their relative
locations in space. The figure shows curves for three classifiers:
one trained with all the features in the dataset (‘all features’), a
second trained using only those selected by RFE (i.e. our can-
didate drifting features), and a third one trained with those not
selected by RFE (we call this the ‘stable’ subset). All the few-
features subset cases (b216-b278 for example) produce trivial
ROC curves that are saturated at the top-left corner for the three
subsets, with AUC > 0.99, which we do not show.

Analysing the results, the first observation is that, as
expected, the classifier trained with the drifting features (those
chosen via feature selection) is always very similar in perfor-
mance to the one trained with all the features. This result is a
confirmation that RFECV does its work, selecting a subset of
features that are responsible for the separation of the classes.
The second result is that the performance of the models for
the few-features problems is clearly superior to those shown in
the figure (i.e. the high-number problems). This implies that the
two behaviours shown in Fig. 3 correspond to problems that are
easy to solve — where the separation is almost perfect and can
be done with a few features — and problems that are harder —
where the tiles cannot be fully separated and RFE selects bigger
subsets.

It is interesting to note the different response of the classifiers
trained on the stable subset on the ‘easy’ and ‘hard’ problems.
In the hard problems, RFECV selects a high number of features,
which means that there are features with no considerable infor-
mation about the tile of origin of the source. After several fea-
tures are selected by RFECYV, the remaining features (the stable
subset) contain much less information about the origin and pro-
duce a classifier with low performance. For the easy problems,
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on the other hand, there are several features with a great deal of
information about the tile of origin. Using just two to four fea-
tures selected by RFECV is enough to produce an almost per-
fect classifier. The stable subset in this case contains plenty of
features with good information about the origin, and it also pro-
duces a classifier with almost perfect performance. If we take
the relative positions of each pair of tiles for the hard and easy
problems into account, no definite pattern emerges. Most prob-
lems involving neighbour tiles, such as b277, b278, and b261,
are hard, and most problems involving tiles in the bottom-right
region are easy.

Another relevant analysis for a feature selection method is
an analysis of which features are selected in each case. The
upper half of Fig. 5 shows the number of times that each feature
was selected by RFECV over the 28 TC problems, for all fea-
tures that were selected at least two times (Table A.1 shows the
list of features selected on each problem). The features related

to pseudo-colour (Cabral et al. 2020) were the most frequently
selected, appearing in at least half of the cases. Two such features
(c89_hk_color and c09_hk_color) were selected in almost
all cases. This information suggests that colour-related informa-
tion in general is the most important characteristic for distin-
guishing tiles.

The two very different behaviours of hard and easy prob-
lems will complicate the evaluation of the real influence of drift-
ing features on the TC problems because deleting only two
features versus half of the features will lead to diverse scenar-
ios. To allow for an easier and fairer comparison, we changed
the feature selection method, using RFE with a fixed number of
ten selected features.

The list of these selected features and their frequency is
shown in the bottom half of Fig. 5. Only 15 features were
selected in total over the 28 TC problems, of which the 11 most
relevant are related to colour, probably with a high dependence
on the location of the tile.

The overall performance of the classifiers trained with the
full, drifting, and stable subsets for some exemplars of easy and
hard datasets can be seen in Fig. 6. For the easy problems (bot-
tom row), we used fewer features in the stable subset, leading to
alower performance. On the opposite side, for the hard problems
(top row) we used more features in the stable subset, leading to a
clear improvement in its performance. The rest of the TC prob-
lems show the same type of result (data not shown).

Using a fixed selection of features with RFE, we obtain, in all
cases, a subset of ten features (the ‘drifting’ subset) that can dis-
criminate the tile of origin with high accuracy as well as another
subset (stable) with much less information about the tile of ori-
gin of the sources.

4. Evaluation of the influence of drifting features

In this section we evaluate the influence of the drifting subsets
selected in the previous step on the SC problems (i.e. to discrim-
inate between unknown sources and RRL variable stars).

For each pair of tiles we have three datasets, one with all the
features (‘full’), a second with only ten drifting features selected
by RFE, and finally one with the remaining features, the stable
subset. Unlike the previous problem, we now have, for the SC
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problem, two possibilities for each pair of tiles: First, we can RF classifiers and obtained three PR curves for the full, drifting,

train our classifiers in one of the tiles and searched for RRLs in  and stable classifiers.

the other, and second we can invert the tiles, training classifiers The complete results are presented in Appendix B, while a
in the second tile of the pair and looking for RRLs in the first tile. summary of some representative cases can be seen in Fig. 7.
Thus, for each of the 56 SC problems we trained corresponding A first result is that, clearly, the drifting subset shows lower per-
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most selected features by RFE
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formance in all cases. This was expected as most drifting fea-
tures are related to colour and Cabral et al. (2020) demonstrated
that colour alone cannot clearly identify RRLs. More interest-

ing, if we compare the performance of the full datasets with the
stable datasets, we can see that there is no clear advantage in
eliminating the drifting features from the datasets. Full and sta-
ble curves are very similar in all cases. Differences are small,
and there is no clear pattern indicating when eliminating drifting
features would improve the performance of the ML methods.

5. Discussion

In this work we have introduced and discussed the concept of
drifting features, in relation to the small changes in the prop-
erties measured by those features, which can potentially distort
the results of ML methods in astronomy. Using the identifica-
tion of RRLs in VVV as a working example, we have introduced
a method for detecting drifting features using an indirect ML
method. We forced a classifier to learn the tile of origin of diverse
sources and to select the features most relevant to this task as
candidate drifting features. We have shown that this method can
efficiently identify a reduced set of features that contains useful
information about the tile of origin of the sources. We have also
shown that, for our particular example of detecting RRLs in the
VVYV, drifting features are mostly related to colour. On the other
hand, we showed in Sect. 4 that even if we have a clear set of
drifting features in our problem, they are almost harmless for the
identification of RRLs.

In future work we will explore the influence of drifting fea-
tures on the detection of other types of variable sources and other
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source classifier (SC) problem examples
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Fig. 7. Precision-recall curves for the SC problems. We show results for six combinations of train-test tiles using three classifiers trained with the

full, drifting, and stable subsets of features.

large-scale ML experiments. We will also explore a different way
of setting the number of selected features by RFE, considering
all features that are relevant to the problem and not only the sub-
set that shows the best performance for some metric or a fixed-
length subset.
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Appendix B: Evaluation of the drifting features
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Fig. B.1. First 28 precision-recall curves for all combinations of train-test tiles for three different classifiers: one with all the features (full), another
only with the ten drifting features found in that combination of train-test tiles (RFE), and one using all the remaining features with the exception
of the drifting features (No-RFE).
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Fig. B.2. Last 28 precision-recall curves for all combinations of train-test tiles for three different classifiers: one with all the features (full), another
with only the ten drifting features found in that combination of train-test tiles (RFE), and one using all the remaining features with the exception
of the drifting features (No-RFE).
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