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Abstract We propose an extended General Relativistic for-
malism with boundary terms included, that describes the
dynamics of quantum spinor fields, which can take inter-
mediate values, named (3 + 1)-anyons. In the approach here
worked, we use an extended manifold in which the (3 + 1)-
anyon fields can be expressed as a linear combination of
bosons and fermions. We calculate the flow of these fields
with self-interactions included in a preinflationary model that
describes the birth of the universe from a null Hubble param-
eter, and we obtain the value of the cosmological parameter
at this moment due to the flux of (3 + 1)-anyons through the
3d-closed hypersurface. The spectral indices at the end of
preinflation are in very good agreement with observations.
In particular the tensor to scalar ratio obtained at the end of
preinflation is very small: r(φ∗) = 0.00336.

1 Introduction

The pure spinor formalism [1,2], has shown to be a power-
ful framework in the computation of scattering amplitudes
and the quantization of the superstring [3–6] in curved back-
grounds which can include Ramond–Ramond flux. The fact
that manifolds with no-Euclidean geometry can help uncover
new features of quantum matter makes it desirable to create
manifolds of controllable shape and to develop the capabil-
ity to add in synthetic gauge fields [7]. In the last years new
physical possibilities, beyond the standard Dirac, Majorana
and Weyl spinors, have been introduced and studied in a
Minkowsky 4d-spacetime [8] and the Lounesto’s classifica-
tion for Heisenberg spinors has been studied [9]. Once hav-
ing established the classification of second quantized spinor
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fields into regular and singular classes in the four dimen-
sional Minkowsky spacetime, an analogous second quan-
tized classification on other kind of spaces has been consid-
ered [10,11]. A generalizaton of the Lounesto’s classification
was devised and discussed in [12]. In particular, symmetric
curvature spinors with 2s indices that appear in twistors gen-
eralized Weyl curvature spinor can play an important role
in the formulation of higher spin gauge theories extending
Einstein [13] and Weyl [14,15] gravity theories.

A very important question is how to construct a non-
perturbative and covariant string formalism on a curved back-
ground which can be explained from a globally hyperbolic
non-commutative quantum spacetime. With this aim, a few
years ago was proposed unified spinor fields (USF), with
the additament of including a quantization of the spacetime
[16–20], and by taking into account also self-interactions of
quantum spinor fields. The USF theory is developed in 8
dimensions, 4 of them related to the spacetime coordinates
(xμ), and the other 4 related to the inner space (φμ), which
are compact coordinates that have spin components as canon-
ical momentums: (sμ). To describe a non-commutative and
globally hyperbolic spacetime, we consider unit vectors are
4 × 4-matrices: γ̄ α . In the theory we use the Weyl represen-
tation of the Dirac matrices, which generate the background
metric and we include the spinor information in the spacetime
structure that can describe quantum effects in a relativistic
framework [21]. An important fact in such description is that
quantum spinor fields are considered on an extended mani-
fold on which the variation of the metric tensor is nonzero,
and therefore the norma associated to vector and tensor fields
is not conserved. This is a key to can describe these fields in
a background dynamical spacetime which can be expanding
[20,21] or collapsing.

In this work we shall extend a previous work [22], in
which we have obtained the gluon field nonlinear dynam-

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09948-2&domain=pdf
mailto:mbellini@mdp.edu.ar
mailto:pabsan@mdp.edu.ar


 1137 Page 2 of 12 Eur. Phys. J. C          (2021) 81:1137 

ics by using a relativistic Ricci-flow defined on an extended
manifold that is generated by a gluon field. The aim of this
work consists to extend the manifold with connections that
can take into account simultaneously, boson and fermion
fields, in order to make possible the study of a more generic
fermion-bosons interactions in the field’s dynamics. To make
it, we shall consider the existence of a relativistic (3 + 1)-
anyon fields, which are some kind of quasi-particle that have
properties less restrictive that bosons and fermions. In gen-
eral, the operation of exchanging two identical particles can
cause a global change of phase, which does not affect the
observables. Anyones are generally classified as abelians
or non-abelians (referring to their commutative and non-
commutative behavior). Abelian anyons have been detected
and play an important role in the fractional quantum Hall
effect. The non-Abelian anyones have not been detected and
their search is an active area of investigation [23]. In some
recent works it is shown that the loop and string like excita-
tions exist for topological orders in the (3 + 1)-dimensional
spacetime, and their multi-loop/string-braiding statistics are
the key signatures for identifying (3 + 1)-dimensional topo-
logical orders [24,25].

The work is organized as follows: in Sect. 2 we describe
the classical spacetime from a quantum origin. In Sect. 3
we review the background relativistic dynamics by taking
into account the boundary conditions when we minimize the
Einstein–Hilbert action, and we obtain the relevant quantum
tensors, which we use to calculate the dynamics of the spinor
fields. In Sect. 4 we analyse the flow at a quantum level and
we normalize this flow with the parameter λ(x). In Sect. 5 we
introduce a new kind of connection ˆδ�α

βγ = b 	̂αgβγ , which

is generated by a (3 + 1)-anyon field: 	̂α ≡ αi
i B̂α+β i

i F̂α

that takes into account bosons i B̂α and fermions i F̂α . We
describe the flow of 	̂α , due to bosons and fermions and we
obtain the wave equation that describe the dynamics of the
(3 + 1)-anyons 	̂α from the extended Einstein equations and
strong interactions. In Sect. 6 we obtain the dynamic equa-
tions for the (3 + 1)-anyons in terms of boson and fermion
fields for a particular gauge, for the extended Einstein equa-
tions and strong interactions. In Sect. 7 we calculate the
time dependent cosmological parameter at the beginning of
the universe in a preinflationary model, where the Hubble
parameter is initially null, and increases until it reaches its
maximum value. Finally, in Sect. 8, we develop some final
comments.

2 Globally hyperbolic classical spacetime from a
quantum spacetime

In order to can describe a globally hyperbolic 4d-spacetime
with structure, from a quantum origin, we shall consider four

spacetime operators δ X̂α(xν) and four quantum operators
which describe the inner space: δ�̂α(φν), which are relevant
to describe quantum spinor fields. These operators can be
respectively represented by Fourier expansions

δ X̂α(xν) = 1

(2π)2

∫
d4k γ̄ α

[
bk X̂k(x

ν) + b†
k X̂

∗
k (x

ν)
]
,

(1)

δ�̂α(φν) = 1

(2π)2

∫
d4s γ̄ α

[
cs �̂s(φ

ν) + c†
s �̂∗

s (φ
ν)

]
.

(2)

Here, b†
k and bk act as creation and destruction operators of

the coordinate spacetime and c†
s and cs are respectively the

creation and destruction operators in the inner space

〈B
∣∣∣
(
bk′′ X̂k(x) γ̄ μ

) (
b†
k′′ X̂∗

k′(x) γ̄ ν
)∣∣∣ B ′〉

= (
dx γ̄ μ

) (
dx γ̄ ν

)
δ(4)

(
k − k′′) δ(4)

(
k′ − k′′) δBB′ ,

(3)

〈B
∣∣∣
(
cs′′ �̂s(φ) γ̄ μ

) (
c†
s′′ �̂s′(φ) γ̄ ν

)∣∣∣ B ′〉
= (

dφ γ̄ μ
) (

dφ γ̄ ν
)

δ(4)
(
s − s′′) δ(4)

(
s′ − s′′) δBB′ .

(4)

The generators of a globally hyperbolic spacetime are the
unit vectors 4×4-Weyl representation of the Dirac matrices:
γ̄ α , with a non-commutative structure. In the Weyl represen-
tation of an global hyperbolic spacetime γ0 commutes with
γi :

[
γ0, γi

] = 0, and therefore this representation is the best
to describe spacetime.

We shall use the Heisenberg representation for the quan-
tum states |B〉, where operators are evolving and states are
squeezed. The background representations of the 4-length dl
and the 4-angle dφ, are

dl2δBB′ = 〈B| δ X̂αδ X̂α

∣∣B ′〉 , dφ2δBB′

= 1

4
〈B|

(
δ�̂α δ�̂β

) (
γ̄ α γ̄ β

) ∣∣B ′〉 , (5)

where the first equation in (5) describes a standard inner
product

δ X̂αδ X̂α = 1

4

{
δ X̂α, δ X̂β

} {
γ̄ α, γ̄ β

}
, (6)

and the second one in (5) represents the expectation value of
a bi-vectorial product, such that

δ�̂α δ�̂β = 1

2

{
δ�̂α, δ�̂β

}
+ 1

2

[
δ�̂α, δ�̂β

]
,

γ̄μγ̄ν = 1

2

{
γ̄μ, γ̄ν

} + 1

2

[
γ̄μ, γ̄ν

]
,

γ̄ μγ̄ ν = 1

2

{
γ̄ μ, γ̄ ν

} − 1

2

[
γ̄ μ, γ̄ ν

]
. (7)
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These matrices generate the background metric and we
include the spinor information in the spacetime structure that
can describe quantum effects in a relativistic framework. The
interesting of this representation is that the structure of space-
time is included: γ̄ α γ̄β = δα

β I4×4 + 1
2

[
γ̄ α, γ̄β

]
so that they

generate a non-commutative spacetime and comply with the
transformation law

γ̄ μ = Eμ
ν γ ν, (8)

where Eμ
ν are the transformation matrices from a Minkowsky

spacetime to an arbitrary curved spacetime generated by γ̄ μ.
The components γ μ are described in the Weyl representa-
tion (quiral representation) for a Minkowsky spacetime.1 We
can use the fact that γ̄μγ̄ μ = 4 I4×4,

{
γ̄μγ̄ν

} = 2 gμν and
γ̄μγ̄ ν γ̄ μ = −2 γ̄ ν to obtain the expression

1

4

(
γ̄μγ̄ν

) (
γ̄ μγ̄ ν

)

= 1

16

({
γ̄μ, γ̄ν

} {
γ̄ μ, γ̄ ν

} − [
γ̄μ, γ̄ν

] [
γ̄ μ, γ̄ ν

])

= 1

16
(16 I4×4 − (−48) I4×4) = 4 I4×4. (9)

Each component of spin Ŝμ = s γ̄μ, is defined as the canon-
ical momentum associated to the inner coordinate �̂μ, and
therefore we can define the universal bi-vectorial invariant

1

4

〈
B

∣∣∣
(
Ŝμ�̂ν

) (
γ̄ μγ̄ ν

)∣∣∣ B
〉
= sφ I4×4 = (2πnh̄) I4×4,

(10)

with n-integer.

3 Background dynamics with boundary conditions

With the aim to describe the background dynamics of an
arbitrary system on a semi-Riemannian manifold, we shall
consider the Einstein–Hilbert action

I =
∫

d4x
√−g

[
R

2κ
+ Lm

]
, (11)

where R is the background scalar curvature, κ = 8π G and
Lm is the Lagrangian density that describes the physical fields

1 The Weyl representation of the Dirac matrices in cartesian coordinates
are

γ 0 =
(

I 0
0 −I

)
, γ 1 =

(
0 −σ 1

σ 1 0

)
,

γ 2 =
(

0 −σ 2

σ 2 0

)
, γ 3 =

(
0 −σ 3

σ 3 0

)
,

such that the Pauli matrices are

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
.

that describes the background dynamics of the system under
consideration. The varied action δI, is

δI =
∫

d4x
√−g

[
δgαβ

(
Gαβ + κTαβ

) + gαβδRαβ

] = 0,

(12)

where the background stress tensor Tαβ , is

Tαβ = 2
δLm

δgαβ
− gαβLm . (13)

The contribution gαβδRαβ takes into account the boundary
terms given by the flow δ� of the 4-vector field δWα =
δ�ε

βεg
βα − δ�α

βγ g
βγ , through the 3D-closed hypersurface.

In the case that δ� is nonzero, it alters the dynamics of the
system, because acts as a source on the background equation
of motion. We shall consider the particular case where this
flow has a quantum nature. In this case one must consider
the background contribution in (12), which is given by its
expectation value

(
gαβδRαβ

)
δBB′ =

〈
B

∣∣∣gαβ ˆδRαβ

∣∣∣ B ′〉 , (14)

where |B〉 describes a Fock space on the background
curved space time. The background dynamics on the semi-
Riemannian manifold are generated by the Levi–Civita con-
nections

{
α

β γ

}
. However, we shall consider that boundary

terms are on an extended manifold generated by the connec-
tions ˆδ�α

βγ

ˆδ�α

βγ = b 	̂αgβγ , (15)

such that 	̂α is a quantum spinor field and b is a parame-
ter to be determined by the gauge we choose to describe its
dynamics. Notice that ˆδ�α

βγ generates an extended manifold
which is not a Riemann one. The extended manifold gen-
erated by (15) describes a quantum physical reality, mean-
while the Riemann one takes into account the background
dynamics, generated by the fundamental metric tensor, with
components: gαβ , with which we describe the classical line
element (5).

3.1 Quantum Ricci tensor and related tensors

We shall use the extended version of the Palatini identity
[16,17,26] to define the variation of the Ricci tensor: δRβγ ,

123



 1137 Page 4 of 12 Eur. Phys. J. C          (2021) 81:1137 

on the extended manifold.2

ˆδRα

βγα = ˆδRβγ = 1

b

[( ˆδ�α

βα

)
‖γ −

( ˆδ�α

βγ

)
‖α

]
. (17)

The symmetric and anti-symmetric counterparts of ˆδRβγ ,
with self-interactions included, are respectively given by [22]

ˆδUμν = −
{

1

2

(
∇ν	̂μ + ∇μ	̂ν

)

+1

2

[
2b + (1 − ξ2)

] {
	̂μ, 	̂ν

}

−gμν

[
∇α 	̂α+

[
2b+

(
1−ξ2

)]
	̂α	̂α

] }
, (18)

ˆδVμν = −1

2

{(
∇ν	̂μ − ∇μ	̂ν

)

+(1 − ξ2)
[
	̂μ, 	̂ν

]}
, (19)

where ξ is the self-interaction dimensionless constant. As
was demonstrated in [22], in the case that 	̂α has 1-spin, the
quantum operator ˆδVμν give us the strength tensor: ˆδVμν ≡
1
2 Ĝμν , for 1 − ξ2 = i gs , such that gs = √

4παs , and αs is
the coupling constant of the strong force. In such case, the
eight matrices λa , are the (3 × 3) Gell–Mann matrices in the
SU (3) group representation and the components of the gluon
field strength tensor comes from a linear combination with
the Gell-Mann matrices

Ĝμν = λa

2
Ĝa

μν. (20)

Furthermore, the gluon field strength tensor, written in terms
of the gluon fields Âc

ν , is

Ĝa
μν = ∇μ Â

a
ν − ∇ν Â

a
μ + gs f abc Â

b
μ Âc

ν, (21)

where a, b, c = 1, 2, . . . , 8 enumerate the eight color
charges and f abc are structure constants.

The quantum Einstein’s tensor, will be defined by taking
into account the symmetric contribution of ˆδRμν :

Êμν = ˆδUμν − 1

2

[
gμν ˆδUμν

]

= −1

2

{(
∇ν	̂μ + ∇μ	̂ν

)

+
[
2b + (1 − ξ2)

] {
	̂μ, 	̂ν

}

+gμν

[
∇α 	̂α +

[
2b +

(
1 − ξ2

)]
	̂α	̂α

]}
. (22)

2 We define the covariant derivative of some vector field ϒ̂β :
[
ϒ̂β

]
||α

[
ϒ̂β

]
||α = ∇αϒ̂β + ˆδ�β

εαϒ̂ε − (1 − ξ2) ϒ̂β 	̂α, (16)

where ξ is the self-interaction constant, ∇αϒ̂β is the covariant derivative

on the Riemann manifold and ˆδ�β

εα is the displacement of the extended
manifold with respect to the Riemann one defined in (15).

4 Back-reaction, normalization of the relativistic flow
and dynamics

In order for describe back-reaction effects from USF, we shall
consider the flow given by

ˆδRαβ = λ(x) δ̂gαβ, (23)

where λ(x) is the called cosmological parameter, which in
general can be dependent of the coordinates, ”‖” denotes
the covariant derivative on the extended manifold with self-
interactions included, Uγ = ˆdXγ

dl are the components of
the relativistic velocities on the Riemann manifold, and the
variation of the metric tensor is3

δ̂gαβ = ĝαβ‖γ U γ . (24)

The flow through the 3D-closed hypersurface of a field
ˆδW

α = ˆδ�α

βγ g
βγ − ˆδ�ε

βεg
βα . Therefore, if we require the

minimized action equation that provides the dynamics of the
system

δgαβ
[
Gαβ + κ Tαβ

] + gαβ δRαβ

≡ 〈B| δ̂gαβ [
Gαβ + κ Tαβ

] + gαβ ˆδRαβ |B〉 = 0, (25)

with (23), we obtain the expression for the flow [22]

∇α 	̂α +
[
2b +

(
1 − ξ2

)]

	̂α	̂α = 2

3
λ(x)

[
4

(
1 − ξ2

)
− b

]

	̂α U
α. (26)

In this framework we can define the variation of the met-
ric tensor on the extended manifold with self-interactions
included

ĝβα‖γ U γ |B〉 = δgβα|B〉, (27)

and the covariant derivative of the metric tensor on the
extended manifold with self-interactions, is

ĝβα‖ν = ∇νgβα − b
(
gβν	̂α + 	̂βgαν

)
+ 2

(
1 − ξ2

)
	̂ν gαβ,

(28)

where we must consider the fact that the tensor metric is com-
patible with the Levi–Civita connections, so that its covari-
ant derivative becomes zero: ∇νgβα = 0. Therefore, the
dynamics of the background system with boundary condi-
tions included (25), will be given by the expression

δgαβ
[
Gαβ − λ (x) gαβ + κ Tαβ

] = 0. (29)

3 We shall consider variations of arbitrary covariant tensors �̂αβ..μ as

ˆδ�αβ..μ = �̂αβ..μ‖ε Û ε .
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Then, the redefined background Einstein equations with the
boundary terms assimilated, take the form

Gαβ − λ (x) gαβ = −κ Tαβ. (30)

It is important to notice that the Eq. (30) can be interpreted
in two possible forms. The boundary terms with λ(x) in (30)
can be assimilated to the Einstein tensor, or the stress tensor.
Therefore, the boundary additional terms in the Einstein’s
equations should be considered of as geometrical sources, or
terms of physical nature.

4.1 Boundary terms as geometrical sources

In this case the redefined Einstein’s tensor is given by

Ḡαβ = Gαβ − λ(x) gαβ, (31)

and the geometric dynamics is given by the equations

∇β Gαβ = gαβ ∂λ(x)

∂xβ
, (32)

and ∇β T αβ = 0. Therefore, in this case the right hand in the
Eq. (32) must be considered of a geometric nature.

4.2 Boundary terms as physical sources and relativistic
velocities Uα

In this case the redefined stress tensor is given by

T̄αβ = Tαβ − 1

κ
λ(x) gαβ, (33)

and the dynamics for the physical fields is given by the equa-
tions

∇β T αβ = 1

κ
gαβ ∂λ(x)

∂xβ
, (34)

where Tαβ is given by (13) and the geometric dynamics being
given by the equation ∇β Gαβ = 0. This means that the flux
due to the boundary terms in the minimized action will be the
source for the dynamics of the physical fields. In this work
we shall consider that the sources are of physical nature. In
this sense, one can enclose with a closed 3D-hypersurface
an arbitrary region of the background Riemann spacetime,
through of which there is a flow of the 	̂α-field [see the Eq.
(26)], which alters the background Riemannian dynamics of
relativistic system. This mechanism is viewed through the
spacetime-dependent cosmological parameter λ(x), that is
included in the background Einstein equations (30).

In order to describe the background relativistic velocities
we can assume a stress tensor that describe a perfect fluid

T αβ = (P + ρ) Uα Uβ − P gαβ, (35)

where P is the background pressure and ρ is the background
energy density of the system. Hence, from (35) and (34), we

obtain that the background velocities can be described by

(P + ρ)
[
Uβ∇β U

α +Uα∇βU
β
]

+ (P + ρ),β Uα Uβ − P,β gαβ = 1

κ
gαβ λ,β, (36)

The Eq. (36) provides the geodesic equation for a perfect
fluid with arbitrary P and ρ, when the flux along the 3d-
hypersurface is given by

δ� = λ(x) 〈B| gαβ δ̂gαβ |B〉 , (37)

such that P/ρ = ω is not necessarily constant.

4.3 Fourier expansions, quantum spinor fields and
normalized flow

The spinor fields with spin s, can be represented in a Fourier
expansion, as the variation of the flow ˆδ� with respect to the

inner coordinates:4 	̂α = ˆδ�
ˆδ�α

	̂α

(
xβ |�α

) = i s

h̄(2π)4

∫
d4k γ̄α

[
As,k �̂k,s(x

β) e
i
h̄ S←→

←→
�

−B†
s,k �̂∗

k,s(x
β) e

− i
h̄ S←→

←→
�

]
, (39)

and therefore the flow ˆδ� in (26), will be given by

ˆδ� (
xβ |�α

) = −2 λ(x) Mp
[
4

(
1 − ξ2

) − b
]
i

h̄(2π)4

∫
d4k

1

4

×
(
Ŝμ Uμ

) [
As,k �̂k,s(x

β)e
i
h̄ S←→

←→
�

−B†
s,k �̂∗

k,s(x
β)e

− i
h̄ S←→

←→
�

]
. (40)

For massive and massless fields we respectively must require

Uμ Uμ = 1, Uμ Uμ = 0. (41)

In order to avoid quantum divergences, we shall require that
the expectation value of the flux on the background metric to
be given by the parameter λ(x):

〈B| ˆδ� |B〉 = −λ(x) I4×4 G
−1/2, (42)

where in natural units G−1/2 ≡ Mp � 1.2×1019 GeV. If we
require the following normalization condition for the varied
metric on the extended manifold

〈B| gαβ δ̂gαβ |B〉 = − 〈B| gαβ δ̂g
αβ |B〉 = −I4×4 Mp, (43)

4 We use the fact that

δ

ˆδ�α

(
S←→

←→
�

)
= (

2gαβI4×4 − γ̄αγ̄β

)
Ŝβ = γ̄α s, (38)

where s I4×4 = 1
4 Ŝβ γ̄ β .

123
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we obtain the following expectation value

〈B|Uμ 	̂μ |B〉 = I4×4 Mp

2
[
4(1 − ξ2) − b

] , (44)

and hence the expectation value for the inner productUμ Ŝμ,
due to massive fields, results to be

〈B|Uμ Ŝμ |B〉 = 4 i h̄ I4×4

2
[
4(1 − ξ2) − b

] , (45)

with 4(1 − ξ2) = b.

5 Connections with (3+ 1)-anyons

In this work we are interested to describe the quantum dynam-
ics of quantum spinor fields with arbitrary spin in a relativis-
tic context, which we shall call (3 + 1)-anyon, with 4 com-
ponents 	̂α , given by a superposition of bosons i B̂α , and
fermions i F̂α:

	̂α = αi
i B̂α + β i

i F̂α, (46)

where we denote respectively by i B̂α and i F̂α , the i-boson
and i-fermion fields with spins Bi and Fi . Here, αi and β i are
respectively the i-boson and i-fermion coupling constants.
Because we are considering massive charged (3+1)-anyons
with a spin s = A h̄, due to the invariant (10), the opera-

tors e
± i

h̄ S←→
←→
�

applied on the background state |B〉, will be
invariant under φ = (2n/A) π -rotations (n integer):

e
± i

h̄ S←→
←→
� |B〉 = e± i A φ |B〉, (47)

where we remember that we have adopted the Heisenberg
representation for these states, such that the operators are
evolving and states are squeezed. Because we are considering
(3 + 1)-anyons given by a linear combination (46), the spin
A will be given by the spin of bosons Bi , and fermions Fi
that compose the (3 + 1)-anyon. Those bosons and fermions
will describe respectively the following spinor algebra

〈
B

∣∣∣
[
i B̂μ(x, φ), j B̂ν(x′, φ′)

]∣∣∣ B
〉

= Bi B j δi j

2h̄2

[
γ̄μ, γ̄ν

] √
η

g
δ(4)

(
x − x′) δ(4)

(
φ − φ′) ,

(48)〈
B

∣∣∣
{
i F̂μ(x, φ), j F̂ν(x′, φ′)

}∣∣∣ B
〉

= Fi Fj δ
i j

2h̄2

{
γ̄μ, γ̄ν

}
I4×4

√
η

g

× δ(4)
(
x − x′) δ(4)

(
φ − φ′) , (49)

such that bosons and fermions will be invariant respec-
tively under φ = (2n/Bi ) π -rotations (n integer), and

φ = (2n/Fi ) π -rotations, for Bi = 0, h̄, 2 h̄, . . . and Fi =
h̄/2, 3h̄/2, . . .:

e
± i

h̄ S
(Bi )←−→

←→
� |B〉 = e± i Bi φ |B〉,

e
± i

h̄ S
(Fi )←−→

←→
� |B〉 = e± i Fi φ |B〉. (50)

Their Fourier’s representations for bosons and fermions will
be

i B̂α

(
xβ |�α

) = i Bi
h̄(2π)4

∫
d4k γ̄α

×
[
A(Bi )
s,k

[
�̂(Bi )

]
k,s

(xβ) e
i
h̄ S

(Bi )←−→
←→
�

−
[
B(Bi )

]†

s,k

[
�̂(Bi )

]∗
k,s

(xβ) e
− i

h̄ S
(Bi )←−→

←→
�

]
,

(51)

i F̂α

(
xβ |�α

) = i Fi
h̄(2π)4

∫
d4k γ̄α

×
[
A(Fi )
s,k

[
�̂(Fi )

]
k,s

(xβ) e
i
h̄ S

(Fi )←−→
←→
�

−
[
B(Fi )

]†

s,k

[
�̂(Fi )

]∗
k,s

(xβ) e
− i

h̄ S
(Fi )←−→

←→
�

]
.

(52)

Therefore, for the connections (46), we obtain

δ̂gβα = −b

{[
gβν

(
αi

i B̂α + βi
i F̂α

)

+
(
αi

i B̂β + βi
i F̂β

)
gαν

]
+ 2

(
1 − ξ2

)

×
(
αi

i B̂ν + βi
i F̂ν

)
gαβ

}
U ν. (53)

With the particular connections (46), results to be the follow-
ing equation for the flow

β i
(
∇α i F̂α

)
+ αi

(
∇α i B̂α

)
+ βi β

i [
2b + (

1 − ξ2)] i F̂α i F̂α

= 2

3
λ(x)

[
4

(
1 − ξ2) − b

]
Uα

[
β i

i F̂α + αi
i B̂α

]
. (54)

for i F̂α i F̂α = 1
2gαβ

{
i F̂α, i F̂β

}
. Notice that the right hand

of (54) is the flow that crosses the 3D-hypersurface:

ˆδ� = −2 λ(x)
[
4

(
1 − ξ2

)
− b

]
Uα

[
β i

i F̂α + αi
i B̂α

]
.

(55)

The Eq. (54) can be rewritten as two equations, one for
fermions and the another for bosons:

∇α i F̂α + βi

[
2b +

(
1 − ξ2

)]
i F̂α i F̂α

= 2

3
λ(x)

[
4

(
1 − ξ2

)
− b

]
Uα i F̂α, (56)
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∇α i B̂α = 2

3
λ(x)

[
4

(
1 − ξ2

)
− b

]
Uα i B̂α. (57)

We shall consider massless bosons, so that 〈B|Uα i B̂α |B〉 =
0. Therefore from the Eq. (44), we obtain that the contribution
to the flow’s expectation value must be given only by the
fermion fields and massive bosons

〈B| ˆδ� |B〉 = −2 λ(x)
[
4

(
1 − ξ2

)
− b

]

×〈B|Uα

[
αi

i B̂α + β i
i F̂α

]
|B〉

= −λ(x) Mp I4×4. (58)

The Eq. (58) means that

〈B|Uα

[
αi

i B̂α + β i
i F̂α

]
|B〉 = Mp I4×4

2
[
4(1 − ξ2) − b

] , (59)

so that the expectation value of the flux is independent of the
choice for the parameters b and ξ .

Furthermore, using the fact that ˆδUμν is symmetric and
ˆδVμν is antisymmetric, the Eqs. (18) and (19), with (54)

included, take the form

ˆδUμν = −
{

1

2

[
∇ν

(
αi

i B̂μ + βi
i F̂μ

)

+∇μ

(
αi

i B̂ν + βi
i F̂ν

) ]

+βiβ j

2

[
2b + (1 − ξ2)

] {
i F̂μ, j F̂ν

}

− gμν

2

3b
λ(x)

[
4

(
1 − ξ2

)
− b

]

×Uα

[
β i

i F̂α + αi
i B̂α

] }
, (60)

ˆδVμν = −1

2

{[
∇ν

(
αi

i B̂μ + βi
i F̂μ

)

−∇μ

(
αi

i B̂ν + βi
i F̂ν

) ]

+(1 − ξ2) αi α j

[
i B̂μ, j B̂ν

] }
, (61)

and the Einstein tensor (22), is

Êμν = −1

2

{[
∇ν

(
αi

i B̂μ + βi
i F̂μ

)

+∇μ

(
αi

i B̂ν + βi
i F̂ν

) ]
+ βiβ j

×
[
2b + (1 − ξ2)

] {
i F̂μ, j F̂ν

}

+ 2

3b
gμν λ(x)

[
4

(
1 − ξ2

)
− b

]

×Uα

(
αi

i B̂α + β i
i F̂α

) }
. (62)

The field equations on the extended manifold are given by(
Êμν

)
‖α = 0,

(
δV̂μν

)
‖α = 0. (63)

These equations can be expanded in terms of the covariant
derivatives on the Riemann manifold

∇μ Ê
μν −

(
1 − ξ2

) {
Êμν, 	̂μ

}
+ b 	̂μ Êμν

+ b 	̂ν gαμ Ê
αμ = 0, (64)

∇μδV̂μν −
(

1 − ξ2
) [

δV̂μν, 	̂μ

]
+ b 	̂μ δV̂μν = 0, (65)

with (46). The Eq. (64) are the extended Einstein’s equations
and describe the gravitational dynamics of (3 + 1)-anyon
fields that have a global fermionic behavior, on the extended
manifold. On the other hand, the Eq. (65) can describe the
dynamics of (3 + 1)-anyon fields subject to strong interac-
tions that have a global bosonic behavior. This dynamics was
studied for 1-spin solitary gluon fields in a previous work
[22], but without considering the coupling of fermion fields
(quark fields) with the boson (gluon field) in the dynamics.

When we consider the Eqs. (64) with (83), we obtain the
dynamic equations for the fields from the extended Einstein’s
equations

�	̂ν = −∇μ∇ν	̂μ − [
2b + (1 − ξ2)

]
β iβ j∇μ

×
{
i F̂μ, j F̂ν

}
− b 	̂μ

[
∇ν	̂μ + ∇μ	̂ν

]

−∇ν
[
∇α	̂α + [

2b + (1 − ξ2)
]
βi β

j
(
i F̂α j F̂

α
)]

+ (
1−ξ2) {[

∇ν	̂μ+∇μ	̂ν
]
, 	̂μ

}

+ b
[
2b + (1 − ξ2)

]
β iβ j 	̂μ

×
{
i F̂μ, j F̂ν

}
+ (

1 − ξ2) [
2b + (1 − ξ2)

]
βi β

j

×
{{

i F̂μ, j F̂ν
}

, 	̂μ

}

+ (
1 − ξ2) [ {

∇α	̂α, 	̂ν
}

+ [
2b + (1 − ξ2)

]
βi β

j

{(
i F̂α j F̂α

)
, 	̂ν

} ]
− 7b 	̂ν

[
∇α	̂α

+ [
2b + (1 − ξ2)

]
βi β

j
(
i F̂α j F̂α

)]
, (66)

where we remember that 	̂ν = αi
i B̂ν + β i

i F̂ν . Further-
more, for the Eq. (65), we obtain

�	̂ν = ∇μ∇ν	̂μ + (1 − ξ2) αiα j∇μ

[
i B̂μ, j B̂ν

]

+b 	̂μ

[
∇ν	̂μ − ∇μ	̂ν

]
+ b (1 − ξ2) αiα j 	̂μ

×
[
i B̂μ, j B̂ν

]
+ (1 − ξ2) 	̂μ

[
∇ν	̂μ − ∇μ	̂ν

]
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−
(

1−ξ2
) [

∇ν	̂μ−∇μ	̂ν
]

	̂μ+b (1 − ξ2) αiα j

×
[
	̂μ,

[
i B̂μ, j B̂ν

]]
. (67)

The Eq. (66) describes the motion of (3 + 1)-anyons with
fractional spin (or effective fermion fields), meanwhile the
Eq. (26) is for (3 + 1)-anyons with integer spin (or effec-
tive boson fields). In both cases these fields can be a linear
combination of bosons with fermions.

6 (3+ 1)-anyon dynamics for the particular gauge
(1− ξ2) = −2b

In the following we shall consider the particular gauge (1 −
ξ2) = −2b, in order to simplify the expression (66).

6.1 (3 + 1)-anyon dynamics with global fermionic
behavior from the Einstein’s equations, for
(1 − ξ2) = −2b

In that case we obtain that (66) takes the form

�	̂ν = −∇μ∇ν	̂μ − 3 b 	̂μ

[
∇ν	̂μ + ∇μ	̂ν

]

+6∇ν
[
λ(x)

(
Uα	̂α

)]

−2 b
[
∇ν	̂μ + ∇μ	̂ν

]
	̂μ

−33 b λ(x) 	̂ν
(
Uα	̂α

)
. (68)

Using the fact that, in absence of torsion (we remember that
we are considering the Ricci tensor as the contraction of the
contravariant index with the last covariant index: Rμ

βαμ =
Rαβ ), we obtain that

∇μ∇α 	̂μ = Rμ
βμα 	̂μ

	̂β + ∇α∇μ 	̂μ = −Rβα 	̂β + ∇α∇μ 	̂μ. (69)

Therefore, the Eq. (68) results

�	̂ν = gνα
[
Rβα 	̂β + 6∇α

(
λ(x)Uμ	̂μ

)]

−3 b 	̂μ

[
∇ν	̂μ + ∇μ	̂ν

]

+6∇ν
[
λ(x)

(
Uα	̂α

)]
− 2 b

[
∇ν	̂μ + ∇μ	̂ν

]

	̂μ − 33 b λ(x) 	̂ν
(
Uα	̂α

)
, (70)

that are valid on a curved spacetime.

6.2 (3 + 1)-anyon dynamics with global bosonic behavior
for Strong interactions, for (1 − ξ2) = −2b

The Eq. (67) can be simplified without loss of generality by
using the particular gauge (1 − ξ2) = −2b, and we obtain

�	̂ν = ∇μ∇ν	̂μ − 2 b αiα j∇μ

[
i B̂μ, j B̂ν

]

+b 	̂μ

[
∇ν	̂μ − ∇μ	̂ν

]
− 2 b2 αiα j

×	̂μ

[
i B̂μ, j B̂ν

]
− 2b 	̂μ

[
∇ν	̂μ − ∇μ	̂ν

]

+2b
[
∇ν	̂μ − ∇μ	̂ν

]
	̂μ − 2 b2 αiα j

×
[
	̂μ,

[
i B̂μ, j B̂ν

]]
. (71)

Using the expression (69), we obtain

�	̂ν = −gνα
[
Rβα 	̂β + 6∇α

(
λ(x)Uμ	̂μ

)]

−2 b αiα j∇μ

[
i B̂μ, j B̂ν

]

+b 	̂μ

[
∇ν	̂μ − ∇μ	̂ν

]

−2 b2 αiα j 	̂μ

[
i B̂μ, j B̂ν

]

−2b 	̂μ

[
∇ν	̂μ − ∇μ	̂ν

]

+2b
[
∇ν	̂μ − ∇μ	̂ν

]
	̂μ

−2 b2 αiα j
[
	̂μ,

[
i B̂μ, j B̂ν

]]
, (72)

which are valid for an arbitrary curved spacetime.

7 Preinflation and the birth of the universe

To illustrate the formalism, we can consider an recently intro-
duced model [27] that describes the birth of the universe. In
that model the global expansion of the universe is driven by
a single (and minimally coupled to gravity) scalar field φ,
in the Lagrangian Lm = − [ 1

2g
αβφ,αφ,β − V (φ)

]
, of the

action (11). In this work we shall consider natural units, so
that c = h̄ = 1. In order to describe the background dynamics
with a variable time scale, we shall consider the line element
[28]

dl2 = e−2
∫

γ (t) dtdt2 − a2
0 e2

∫
H(t)dt δi j dx

i dx j , (73)

such that H(t) is the Hubble parameter on the background
metric and γ (t) describes the time scale of the background
metric. This should be the case in an emergent accelerated
universe in which the time scale can be considered variable
with the expansion. The Weyl representation of the Dirac
matrices for this metric are

γ̄ 0 = γ 0 e− ∫
γ (t) dt , γ̄ i = γ i e

∫
H(t)dt . (74)
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7.1 Einstein equations and background dynamics

The dynamics of the scalar field φ is given by

φ̈ + [
3 H + γ

]
φ̇ + δϒ̄

δφ
= 0, (75)

where the redefined potential with back-reaction contribu-
tions due to the flow of (3 + 1)-anyons 	̂μ = αi

i B̂μ +
β i

i F̂μ, given by the Eq. (58), is

ϒ̄(φ) =
[
V (φ) e−2

∫
γ (t) dt + b 〈B| ˆδ� |B〉

(8π G)

]

= V̄ (φ) + b 〈B| ˆδ� |B〉
(8π G)

, (76)

where we know from the Eq. (58) that the flow of (3 + 1)-
anyons through the closed 3d-hypersurface is the responsible
for the cosmological parameter: b 〈B| ˆδ� |B〉 = −λ(t). For
the particular gauge (1 − ξ2) = −2b, we must require [see
Eq. (59)]:

〈B|Uμ

[
αi

i B̂μ + β i
i F̂μ

]
|B〉 = −M2

p I4×4

18
. (77)

The term 3H φ̇ is due to the expansion of the universe, but
the term γ φ̇, with γ (t) < 0 describes a nontrivial time scale.
When γ > 0, it represents a friction parameter that produces
(only when γ > 3H ), the reheating of the universe. However,
in our case, parameter γ (t) is negative, and cannot be phys-
ically interpreted as a friction one, but as one that describes
the energy that the quantum fields delivers to the universe, to
fuel its initial expansion.

The background Einstein equations, are

3 H2 = 8π G

[
φ̇2

2
+ ϒ̄(φ)

]
= 8π G ρ,

(78)

−
(

3 H2 + 2Ḣ + 2γ H
)

= 8π G

[
φ̇2

2
− ϒ̄(φ)

]
= 8π G P.

(79)

such that P and ρ are respectively the pressure and the energy
density on the action (11)

P e2
∫

γ (t) dt δi j = −T̄ i
j , ρ e2

∫
γ (t) dt = T̄ 0

0, (80)

and the diagonal components of the stress tensor for a per-
fect fluid are T̄μ

ν = diag(ρ̄,−P̄,−P̄,−P̄). Therefore, the
effective equation of state

ω = P̄/ρ̄ =
φ̇2

2 − ϒ̄(φ)

φ̇2

2 + ϒ̄(φ)
. (81)

In order to describe an emergent universe which starts from
a null Hubble parameter to reach its maximum value at the

end of preinflation, we shall propose a Hubble parameter H ,
which is related with the parameter γ by

3 H [φ(τ)] + γ [φ(τ)] = ε H0, (82)

where H0 is constant and ε is a parameter to be determined.
Using the Einstein Eqs. (78) and (79), we obtain that

6 H2 + 2
[
φ̇ H ′ + ε H0 − 3 H2

]
− 16π G ϒ̄ [φ(t)] = 0.

(83)

One of the problems of inflationary models is that initially,
the scalar field can take trans Planckian values. In order to
avoid this kind of problems we shall consider a scalar field
which is zero when the universe is created, and increases
with time. To obtain the dynamics of the system we shall
work in the opposite way to what is usually done, i.e., for a
given dynamics of the scalar field φ(t), we shall look for the
solution of the potential ϒ̄(φ) by using the dynamical Eqs.
(75), (78) and (79) with the constriction (82). Because we are
aimed to describe the birth of the universe, we must consider
that the Hubble parameter is initially null: H(t = 0) = 0.
In other words, the theory must be able to explain how the
universe began to expand from an initial state of stillness.
For the choice φ(t) = N φ0

[
1 − e−H0 t

]
, we obtain that

φ̇ = H0 (N φ0 − φ) and φ̈ = −H2
0 (N φ0 − φ), and from

the Eq. (83) we obtain that the effective potential is

ϒ̄ [φ(t)] = H2
0

8π G

[
1

2(N + 1)

(
φ(t)

φ0

)2

− N

N + 1

(
φ(t)

φ0

)

+N

]
. (84)

Here, N is a dimensionless natural number that give us the
scale of the energy for different epochs in the evolution of
the universe. Furthermore, from the equation of motion (75),
we obtain that

− H2
0 (N φ0 − φ) + 3 ε H2

0 (N φ0 − φ) + δϒ̄

δ φ
= 0, (85)

where φ0 is asymptotic maximum value for φ(t), which is an
increasing function of t and always takes sub-Planck values:
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0 ≤ φ(τ) < N φ0 < Mp, and V̄ (φ) is5

V̄ [φ(τ)] = H2
0

8π G

[
1

2(N + 1)

(
φ(t)

φ0

)2

− N

N + 1

(
φ(t)

φ0

)
+ [6N (N + 1) − 1]

6(N + 1)

]
, (89)

where the potentials ϒ̄(φ) and V̄ (φ) are related by the expres-
sion

ϒ̄(φ) = V̄ (φ) + 1

48 π G

δ2V̄

δ φ2 . (90)

In our model we shall chose ε = 2+N
1+N . Therefore, the cosmo-

logical parameter during preinflation, results to be constant
λ0 = 1

8 π G
δ2 V̄
δ φ2 :

λ0 = H2
0

6(N + 1)
, (91)

for φ2
0 = 1

8 π G and b = 1
Mp

. Notice that λ0 > 0 corresponds
to a positive flow of (3 + 1)-anyons is due to back-reaction
effects:

b 〈B| ˆδ� |B〉 = λ0. (92)

Because λ0 is a constant, the background geodesic dynamics
described by (36) is given by

2 ρ (1 + ω)∇0U
0 + ∂ (ρ (1 + ω))

∂x0 U 0 + ∂P

∂x0 U 0 = 0, (93)

with ω given by (81). In the model here worked for preinfla-
tion ω � −1, and ω̇ < 0 along the evolution of this emergent
stage of the universe. For a co-moving observer we must set
Ui = 0, so that the solution of the Eq. (93), results

U 0 = e
1
2

∫ [
2γ [ρ(1+ω)]−ρ̇

ρ(1+ω)

]
dt

. (94)

We must remember that we are considering natural unities
c = h̄ = 1. In the Fig. 1 we have plotted U0(t) for G = 1,
N = 9 and H0 = 0.0005G−1/2. At the beginning 0 <

U0 < 1, which means that the physical time dτ = U0(t) dt
is running slowly than in a non-inertial frame with U0 = 1.
However, after some Planckian times, U0 accelerates and

5 The particular solutions for the Hubble parameter and the function
γ [φ(t)] that comply with the dynamic Eqs. (83) and (85), are

H [φ(t)] = H0

[(
φ(t)

φ0

)
− 1

2N

(
φ(t)

φ0

)2
]

. (86)

γ [φ(t)] = H0

[
2 + N

1 + N
− 3

[(
φ(t)

φ0

)
− 1

2 N

(
φ(t)

φ0

)2
]]

, (87)

and the relevant slow-roll parameters are [29]

ε(φ) = 1

16 π G

(
ϒ̄ ′

ϒ̄

)2

, η(φ) = − 1

8 π G

(
ϒ̄ ′′

ϒ̄

)
. (88)

U0 > 1, so that the physical time runs faster than in a non-
inertial frame. On the other hand γ , which is given by the Eq.
(82), is positive at the beginning, but decreasing. Therefore
it rapidly becomes negative and reach its minimum value at
the end of preinflation.

7.2 Inflaton field fluctuations and spectral indices

The dynamics for the scalar fluctuations δϕ = ϕ − 〈ϕ〉 =
ϕ − φ(t), is given by

¨δϕ + [
3 H + γ

] ˙δϕ

−a−2
0 e−2

∫
[H+γ ] dt ∇2δϕ + δ2ϒ̄

δφ2 δϕ = 0, (95)

where the effects of boundary conditions in the action are
taking into account in the potential ϒ̄ given by (88). During
preinflation

[
3 H + γ

]
> 0. At the beginning γ > 0 and

H � 0, but as the universe evolves the Hubble parameter
increases Ḣ > 0, and γ < 0 with γ̇ < 0, but always in a
such manner that

[
3 H + γ

]
> 0.

The scalar spectral index that characterizes the spectrum
of δϕ, is ns(φ) = 1 − 6ε(φ) + 2η(φ). Furthermore, the
tensor index is given by nt (φ) = −2ε(φ) and can be defined
the tensor to scalar index: r(φ) = −8 nt (φ) = 16 ε(φ). In
particular, at the end of preinflation, when φ(t) ≡ φ∗ =
N

8 π G , the values for the relevant spectral indices are:

1 − ns(φ∗) = 0.04, nt (φ∗) = −0.0004, r(φ∗)
= 0.00336, (96)

that agree with observational values [30].

8 Final comments

We have shown that boundary terms in General Relativity
can be really important. In particular, we have introduced
a quantum spinor field named (3 + 1)-anyon, with a flow
that is quantum in nature and is a superposition of boson and
fermions: 	̂α = αi

i B̂α+β i
i F̂α . The relativistic flow mod-

ifies the background dynamics through the Einstein equations
[see Eq. (30)]. We have required that the expectation value
of the flow on the Riemannian background be the opposite
value of the cosmological parameter [see Eq. (42)], which
imposed the following constriction for trace of the varied
tensor metric:

〈B| gαβ δ̂gαβ |B〉 = −Mp I4×4.

That expression is very important because avoid divergences
for the metric fluctuations.

To illustrate the formalism, we have calculated the cos-
mological parameter in an emergent preinflationary universe
which begins its expansion with a null Hubble parameter
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Fig. 1 Plot of the covariant relativistic velocity U0(t), for C = 1,
G = 1, N = 9, and H0 = 0.0005G−1/2. Notice that U0 < 1 during
the first stages of preinflation, but later increases and exceeds the unit

that increases with time, but after some Planck times, when
φ(t∗) = N φ0, H reaches its maximum. On the other hand
γ (t) becomes negative until reach its minimum value at
φ∗ = N φ0, when the Hubble parameter takes the maxi-
mum value: H∗ � N

2 H0. In the model here worked, the
flow due to (3 + 1)-anyon spinor fields results to be constant
and positive [see Eqs. (91) and (92)]. Because these fields
are self-interacting, back-reaction effects could have been
responsible for the primordial expansion of the universe. In
the Fig. 2 are plotted the indices 1−ns(φ), nt (φ) and r(φ), for
G = 1, N = 9 and H0 = 0.0005G−1/2 and φ0 � 0.2 G−1/2.
The inflaton field value where the Hubble parameter reaches
its maximum value: φ∗ � 1.8G−1/2 that corresponds to the
maximum: H∗ � 0.00225G−1/2 � 0.2745 × 1017 GeV.
During preinflation, the scale factor increases as (for e =
2.718)

a(t) =
(a0

e

)
e

N
2 H0 t+e−2H0 t

,

that describes a super exponential expansion of the universe
from an initial value a(t = 0) = a0. We have adjusted
the value of N in order to obtain the ns-value according
with observation [30]. Notice that at the end of preinflation,
when φ → φ∗, it is obtained that 1 − ns(φ∗) � 0.04, and
|r(φ∗)| � |nt (φ∗)| < 0.01 [see Eq. (96)]. Furthermore, the
negative parameter γ (t) along this model of preinflation can-
not be physically interpreted as a friction one, but as one that
describes the energy that the flow of 	̂α delivers to the uni-
verse. However, it would be interesting to study a model in
which γ , takes initially negative values to later be positive.
A model like this could be appropriate to describe the tran-
sition between the preinflation and fresh inflationary [31]
stages. However, this issue go beyond the scope of this work.
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