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Intercellular interactions in the nervous system are mediated by

two types of dedicated structural arrangements: electrical and

chemical synapses. Several characteristics distinguish these

two mechanisms of communication, such as speed, reliability

and the fact that electrical synapses are, potentially,

bidirectional. Given these properties, electrical synapses can

subserve, in addition to synchrony, three main interrelated

network functions: signal amplification, noise reduction and/or

coincidence detection. Specific network motifs in sensory and

motor systems of invertebrates and vertebrates illustrate how

signal transmission through electrical junctions contributes to a

complex processing of information.
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Introduction
Intercellular communication in the nervous system is

mediated by two types of dedicated structural arrange-

ments: electrical and chemical synapses. It is well docu-

mented that electrical synapses play a major role during

development of the nervous system and that this inter-

cellular communication, although to a smaller degree,

persists in the adult nervous systems of invertebrates

and vertebrates [1–3,4��,5,6]. Growing amount of data

has established that electrical synapses play definite

circuit functions in adult networks. This review focuses

on specific network configurations at which electrical

synapses play substantial physiological roles.

Structural properties of electrical synapses
While chemical synapses are asymmetric (pre and post-

synaptic terminals have different components and
www.sciencedirect.com 
roles), electrical synapses exhibit a symmetric structure.

Each one of the interconnected cells presents ionic

channels that are aligned to channels in the other cell,

forming a pathway for direct flow of current and small

molecules (<1 kDa) from one cell to the other [7]. This

intercellular communication is not particular of the

nervous system as it is also present in the vast majority

of animal tissues, and receives the generic name of gap

junctions (GJs).

GJs play highly similar physiological roles in invertebrates

and vertebrates and, consistently, bear highly similar

structural characteristics. However, no homology was

found between the proteins forming GJs in these two

subphyla [8]. GJs are formed by innexins in the inverte-

brates [9] and by connexins in the vertebrates [10].

Twenty-five innexins have been identified in C. elegans
[11], twenty one in leeches [12�] and nine in Drosophila
[13]; four innexins were found in the nervous system of

locust [14], and six in crabs [15]. In mammals twenty

connexins have been characterized [16].

Innexin and connexin proteins exhibit four membrane-

spanning regions. In vertebrates the three-dimensional

structure of GJs has been extensively studied and the

reports indicate that each hemichannel is a hexameric

polypeptide [7]. A recent structural analysis performed in

C. elegans found that each hemichannel in this nematode is

an octameric polypeptide [17�]. It remains to be estab-

lished if this is a particular case or a general property of

invertebrate GJs.

Functional properties of electrical synapses
Several characteristics distinguish electrical and chemical

synapses: (i) the delay between pre and postsynaptic

signals is significantly shorter in electrical synapses; (ii)

electrical synapses are more reliable than stochastic

chemical synapse [18]; and (iii) electrical synapses are

potentially symmetrical, where pre and postsynaptic sites

are interchangeable, depending on which is the emitter

(presynaptic) and which is the receiver (postsynaptic) at

any instant.

GJs are considered and modeled as electrical resistors

[19,20] and thus it is expected that transmission through

electrical synapses is reproduced consistently upon repet-

itive stimulation. Because GJs are usually located at

neuronal processes [21–23,24��], signal transmission is

subjected to the characteristic low-pass filter imposed

by their cable properties [25–28]. In turn, the amplitude
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100 Microcircuit computation and evolution
of the postsynaptic response is heavily dependent on the

frequency components of the presynaptic signal.

In addition, the amplitude and dynamics of the transmit-

ted signal is strongly influenced by the presence of

voltage-activated conductances in the membrane associ-

ated with GJs [29�,30�,31].

Although potentially symmetrically bidirectional (ohmic),

electrical synapses can also rectify: the conductance of GJs

depends on the polarity of the transjunctional potential

[the difference between the membrane potential (Vm) at

each side of the GJ] [32]. This implies that, close to their

resting potential, transmission of depolarizing or hyperpo-

larizing signals is transmitted better in one direction (e.g.

cell A ) cell B) than in the other (cell B ) cell A) [33,34].

Rectification can be an intrinsic property of GJs, but it

also can result from the differential intrinsic properties of

the interconnected neurons [35��] or from coexistence of

electrical and chemical synapses linking pairs of neurons

[36,37].

Electrical synapses in the context of
functional networks
In addition to fast transmission and synchronization, most

recent research has taught us that electrical synapses can

subserve three main interrelated network functions: sig-

nal amplification, noise reduction and/or coincidence

detection. The following are examples where these func-

tions are achieved in the context of sensory and motor

networks.

Electrical synapses in sensory systems
Sensory systems are organized to maximize sensitivity

and acuity. Lateral inhibition has been described as an

important network mechanism, mediated mostly by

chemical synapses, for increasing acuity [38,39], while

lateral excitation has been proposed as a mechanism for

increasing sensitivity. GJs are a common feature of lateral

excitatory networks.

The connection between primary auditory afferents and

the Mauthner cells, that command the startle reflex in

teleosts, is mediated by electrical and chemical synapses

(Figure 1a). The electrical connection shows a higher

conduction in the antidromic than in the orthodromic

direction, due to the asymmetry of input resistances

between the coupled cells and the properties of the

heterotypic junctions [35��]. It is proposed that upon

stimulation of one auditory terminal, depolarization of

the Mauthner cell can exert a fast retrograde depolariza-

tion of other afferents through the electrical synapses,

amplifying the input to the command neuron.

A classical example of lateral excitation is found in the

mechanosensory activation of the crayfish lateral giant
Current Opinion in Neurobiology 2016, 41:99–105 
neurons that command the tailflip escape response. The

sensory neurons are interconnected by ohmic electrical

synapses and are linked to the command neuron by

rectifying electrical synapses (higher conductance when

Vmafferents > Vmcommand) (Figure 1b). This network was

proposed as a mechanism to amplify the response within a

restricted window of time, as inputs to a few afferents can

instantaneously spread to others and increase the re-

sponse of the command neuron [21,40,41]. An equivalent

mechanism has been recently described in C. elegans
[42,43] and in the mesencephalic nucleus of mammals

[30�].

In the visual system of blowflies, a set of motion-sensitive

(tangential) cells of the lobula plate process information

in separate retinotopically arranged columns, and project

to higher brain centers. Because neighbor tangential cells

are electrically coupled (Figure 1c), each cell exhibits a

broader receptive field than expected from the anatomy

and connectivity of their respective dendritic trees

[44,45]. Physiological and modeling studies indicate that

this connectivity pattern confers the tangential cell pop-

ulation the capability of generating a linear integration of

visual inputs [46] and the spread of signals through the

electrical synapses exert a key role in this function [47].

The vertebrate retina is another classical example where

lateral excitation between different types of neurons

subserves amplification and improves signal-to-noise ra-

tio. Photoreceptors are relatively noisy elements and their

electrical coupling promotes a decrease of uncorrelated

noise and a relative amplification of correlated visual

signals, at the expense of certain degree of blurring

[48]. Electrical synapses are not limited to the receptor

layer but are vastly expressed among different neurons in

the retina [49,50,51��].

In the olfactory system of insects, peripheral receptor

neurons reach the antennal lobe, where they contact

projection neurons that transmit excitatory signals to

higher centers. Peripheral receptor neurons, expressing

a specific odorant receptor, make chemical synapse with

projection neurons in discrete regions of the antennal lobe

called glomeruli. Projection neurons innervating the same

glomerulus (‘sister projection neurons’) are linked by

ohmic electrical synapses that provide for signal amplifi-

cation [52] (Figure 1d).

In addition, projection neurons receive inputs from excit-

atory and inhibitory local interneurons that span across

several glomeruli (Figure 1d). Excitatory interneurons

and projection neurons are bidirectionally connected

combining electrical and chemical synapse [52,53]. This

horizontal pathway is interpreted as a mechanism to

amplify and speed up odor detection at low odorant

levels, at the expense of specificity. Additional interglo-

meruli interactions are mediated by a subset of inhibitory
www.sciencedirect.com
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Schematic representations that highlight the role of electrical synapses in sensory systems. (a) Terminals from auditory neurons are connected to

the Mauthner neuron in the goldfish brain through chemical and ohmic electrical synapses that allow bidirectional interactions; the size of the

arrows indicate that the junctions exhibit a larger conductance in the antidromic direction [35��]. (b) Mechanosensory terminals are connected to

lateral giant interneurons in the terminal ganglion of the crayfish nervous system through rectifying electrical synapses. In addition the

mechanosensory neurons are interconnected by ohmic electrical synapses. (c) Tangential neurons extend their dendritic tree in the lobula plate of

blowfly brains and are interconnected by ohmic electrical synapses located at their axons. (d) Specific odor receptor neurons contact projection

neurons in specific glomeruli (represented as the rectangles delimited by pointed lines). Projection neurons innervating the same glomerulus are

interconnected by ohmic electrical synapses. In addition, excitatory interneurons span several glomeruli and are connected to projection neurons

by electrical and chemical synapses.
projection neurons that connect to uniglomerular projec-

tion neurons by chemical and electrical synapses, intro-

ducing another layer of horizontal interactions [54�].

The olfactory systems of vertebrates present several

homologies with those of insects. Mitral cells (analogous

to projection neurons) in the olfactory bulb receive inputs

from receptor neurons and project the processed infor-

mation to higher brain regions. Odor-specific mitral cells

project to the same glomerulus, and are interconnected by

electrical and chemical synapses that grant their syn-

chronic firing [22,55]. Studies performed in zebrafish

show that inhibitory interneurons in the olfactory bulb
www.sciencedirect.com 
are linked to mitral cells by electrical and chemical

synapses modulating their activity in a bidirectional fash-

ion. These synaptic interactions boost responses to weak

stimuli and attenuate responses to strong stimuli. Boost-

ing of weak inputs depends on electrical coupling, where-

as attenuation of strong inputs is probably caused by

chemical transmission [56��]. These network actions

equalize the mean population response of mitral cells

favoring a concentration-invariant identification of odors.

Electrical synapses in motor control
Motor behaviors are controlled by hierarchical systems.

Higher levels determine global aspects of behaviors while
Current Opinion in Neurobiology 2016, 41:99–105



102 Microcircuit computation and evolution

Figure 2
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Schematic representations that highlight the role of electrical synapses

in motor systems. (a). In C. elegans interneurons AVA and AVE

(summarized as Ai) control MN A that produces backward movement,

and interneurons PVC and AVB (summarized as Bi) control MN B that

produces forward movement. Interneurons and MN are linked by

chemical and electrical synapses. Interneurons are also interconnected

by mixed synapses and MNs are interconnected by electrical

synapses. (b) In the midbody ganglion of leeches the NS neuron is

linked to MNs by rectifying electrical synapses and MNs produce

chemically-mediated inhibitory responses (polysynaptic) onto NS. MNs

are linked among themselves by relatively ohmic electrical synapses.

Note that most of the symbols are denoted in Figure 1.
premotor networks at the lowest level are organized into

distinct modules that configure sets of movements

[57,58]. Studies at the premotor level established that

electrical synapses subserve a variety of distinct func-

tions.

In several invertebrate systems motoneurons (MNs) are

interconnected by electrical synapses [15,59–61]. A simi-

lar picture was confirmed in the vertebrates [62]. Electri-

cal coupling among MNs that innervate synergistic

muscles [1] can be simply interpreted: synchronic activa-

tion of MNs can grant a more precise coactivation of

muscles. However, electrical synapses could be expressed

among MNs that do not (always) fire in synchrony [36,37].

A particular example in the leech nervous system is the

bilateral pair of electrically coupled MNs that control the

activity of the pair of heart tubes. In line with the asym-

metric activity of the heart tubes, these MNs receive

asynchronic rhythmic input [63]. Experimental and

modeling work suggests that the electrical synapses influ-

ence both the intersegmental delay and the side-to-side

phase difference throughout their rhythmic activity [64].

In several invertebrate systems it was observed that MNs

are not mere output units of the central nervous system

but form active part of networks that control rhythmic

motor behaviors. Classical and extensively discussed

examples are the pyloric rhythm of the crab digestive

system and the leech swimming where MNs form part of

the oscillatory networks and are linked to other units in

the circuit by chemical and electrical synapses [65,66].

More recently a similar picture was uncovered in the

zebrafish, where MNs are electrically coupled to excit-

atory interneurons that are part of the swimming motor

pattern [67�].

Swimming in molluscs is controlled by a set of four

interneurons linked by reciprocal inhibitory chemical

synapse and ohmic electrical synapses [68,69].

C. elegans exhibits rhythmic undulatory forward and back-

ward locomotion. The direction of movement is deter-

mined by interactions between specific forward and

backward motor circuits. Backward premotor neurons

are linked to specific backward MNs by chemical and

electrical synapses; a similar connectivity was found for

the forward circuit (Figure 2a). In spite of the apparent

symmetry, a series of studies determined that electrical

synapses in the backward network, but not in the forward

one, play a key role in regulating forward movement [70].

GJs function as shunts that decrease the excitability of the

premotor neurons that control backward MNs, establish-

ing a bias for a higher forward output.

As mentioned earlier, MNs can be electrically coupled,

promoting co-activity of different muscles. However,
Current Opinion in Neurobiology 2016, 41:99–105 
muscle groups that function synergistically in one behav-

ior could act out of phase in another, and therefore

coupling requires a fast control mechanism. A circuitry

was described in the nervous system of the leech where
www.sciencedirect.com
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non-synergistic MNs are widely coupled by ohmic elec-

trical synapses. The mechanism is centered on a pair of

premotor nonspiking (NS) neurons that are linked to

every excitatory MN by chemical and rectifying electrical

synapses (Figure 2b): activation of MNs evokes a hyper-

polarizing response in NS mediated by chemical synapse;

the electrical synapses are active when VmNS < VmMN. As

a consequence of this network the MN–MN interactions

are counteracted [36,37]. For example, activation of MN-

a shown in Figure 2b will cause a direct excitatory signal

onto MN-b through the ohmic electrical synapses that

link them, and an inhibitory signal via NS. Depolarization

spreads from the MN to NS through the rectifying

electrical synapses but the chemically mediated inhibi-

tion prevails, and therefore the effective signal transmit-

ted to the other MNs via NS is inhibitory. The two

opposite signals cancel each other and no net change

in VmMN-b is observed, masking the electrical coupling

between the MNs. In general terms the network was

proposed to function as a recurrent inhibitory network

[71��] and it was found effective when the nervous system

displays a rhythmic motor pattern compatible with crawl-

ing [72].

Conclusions
Electrical synapses are fast means of communication that

blur the cellular boundaries, generating fast and reliable

routes of communication between neurons that are indi-

vidual processing units. The sensory and motor networks

described here illustrate circuitry motifs in which electri-

cal synapses provide, mostly, means of amplification. But

as described in the C. elegans and leech nervous systems,

given particular network configurations, it can serve as a

fast and reliable inhibitory mechanism. The level of GJs

expression can be modulated in different physiological

conditions, but while present in a circuitry, exerts a

variety of robust effects.
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