
Comment on “General Non-Markovian Dynamics
of Open Quantum Systems”

The existence of a “non-Markovian dissipationless”
regime, characterized by long lived oscillations, was
reported in Ref. [1] for a class of quantum open systems.
It is claimed this could happen in the strong coupling regime,
a surprising result that has attracted some attention.We show
that this regime exists if and only if the total Hamiltonian is
unbounded from below. This fact was not mentioned in
Ref. [1], and casts serious doubts on the usefulness of this
result. Having no ground state and no thermal state,
unbounded Hamiltonians are thermodynamically unstable
since they act as infinite sources of energy when weakly
coupled to any other system.
The calculation in Ref. [1] is correct but overlooks this

instability, whose existence can be easily shown. An
oscillator HS ¼ Ωa†a couples to an environment HE ¼
P

kωkb
†
kbk through HI ¼

P
kλkðab†k þ a†bkÞ. The total

Hamiltonian HT ¼ HS þHE þHI commutes with the
number operator N ¼ a†aþP

kb
†
kbk. Thus, an eigenstate

in the single excitation sector can be written jϕi ¼ C†j0; 0i,
obtained by applying the creation operator C† ¼ csa† þP

kckb
†
k to the vacuum j0; 0i. The equation HT jϕi ¼ Ejϕi

implies Ecs ¼ Ωcs þ
P

kλkck and Eck ¼ ωkck þ λkcs [2].
Thus E satisfies E ¼ ΩþP

kλ
2
k=ðE − ωkÞ, which for

E ¼ −jω0j ≤ 0 becomes Ωþ jω0j ¼
P

kλ
2
k=ðjω0j þ ωkÞ.

This has solutions if and only if Ωþ δΩ < 0 with
δΩ ¼ −

P
kλ

2
k=ωk. Thus, in this regime the total

Hamiltonian acquires a negative eigenvalue E < 0.
Moreover, as ½HT; C†� ¼ EC†, the states jϕni ∝
ðC†Þnj0; 0i satisfy HT jϕni ¼ −njω0jjϕni. As its eigenval-
ues extend to −∞,HT is unbounded from below if and only
if Ωþ δΩ < 0.
We now follow the argument presented in Ref. [1] to

show that the dissipationless regime at strong coupling is
precisely the regime when Ωþ δΩ < 0, and the total
Hamiltonian is unbounded. The density matrix of the
system satisfies [1,3] _ρ ¼ −i½ ~ΩðtÞa†a; ρ� þ γðtÞ½1þ ~nðtÞ�
ð2aρa† − a†aρ− ρa†aÞ þ γðtÞ ~nðtÞð2a†ρa − aa†ρ− ρaa†Þ.
Coefficients depend on the Green’s function that
satisfies _uðtÞ þ iΩuðtÞ þ R

t
0 dsηðt − sÞuðsÞ ¼ 0, where the

dissipation kernel is ηðsÞ ¼ R
∞
0 dωJðωÞ exp½−iωs�, and

the spectral density is JðωÞ ¼ P
kλ

2
kδðω − ωkÞ. The

frequency and damping rate satisfy i ~ΩðtÞ þ γðtÞ ¼
− _uðtÞ=uðtÞ while γðtÞ ~nðtÞ ¼ 1

2
_ξðtÞ þ γðtÞξðtÞ, where

ξðtÞ ¼ R
t
0 dτ

R
t
0 dsuðτÞ~νðs − τÞuðsÞ� and ~νðsÞ ¼R∞

0 dωJðωÞ exp½iωs�=½expðω=kBTÞ − 1� (T is the tempera-
ture of the environment). A dissipationless regime exists
when uðtÞ → r exp½−iω0t� at long times. In this case
ΩðtÞ → ω0 and γðtÞ ¼ γðtÞ ~nðtÞ → 0: the system evolves
unitarily with Hamiltonian ~HS ¼ ω0a†a. For uðtÞ to behave
in this way, its Laplace transform must have a purely

imaginary pole, i.e., ω0 − Ωþ iη̂ð−iω0Þ ¼ 0, where the
Laplace transform of ηðtÞ is η̂ðsÞ. The imaginary part of this
equation is Jðω0Þ ¼ 0. For spectral densities of any type
(Ohmic, sub-Ohmic, etc.) satisfying JðωÞ > 0 for allω > 0,
this condition is satisfied for ω0 < 0 [1]. With ω0 ¼ −jω0j
the real part gives Ωþ jω0j ¼

R∞
0 dωJðωÞ=ðωþ jω0jÞ,

which has solutions if and only if Ωþ δΩ < 0, with δΩ ¼
−
R
∞
0 dωJðωÞ=ω, i.e., the condition under which HT

becomes unbounded. Figure 1 shows γðtÞ and ~ΩðtÞ for
the same parameters as in Fig. 2 of Ref. [1] [where ΩðtÞ is
not shown]. We see ~ΩðtÞ approaches a negative value,
making the renormalized Hamiltonian unbounded, while
γðtÞ vanishes.
Thus, the dissipationless regime of Ref. [1] for strong

coupling exists if and only if the total Hamiltonian is
unbounded from below, and therefore thermodynamically
unstable. This raises serious doubts regarding the physical
relevance of the Hamiltonian of Ref. [1] at strong coupling,
since any residual counterrotating terms (however small)
will cause the system to tend towards a state with infinite
negative energy. An analogous (but more severe) instability
is known for the famous model where the system
Hamiltonian is HS ¼ p2=2mþ κx2=2, the environment
is HE ¼ P

kðp2
k=2mk þmkω

2
kq

2
k=2Þ, and the interaction

is HI ¼
P

k
~λkxqk. Then, the total Hamiltonian is

~HT ¼ HR þ P
k½p2

k=2mk þ ðmkω
2
kqk þ ~λkxÞ2=2mkω

2
k�.

Here, HR ¼ p2=2mþ κRx2=2 with κR ¼ κ þ δκ and δκ ¼
−
P

k
~λ2k=mkω

2
k [4]. Thus, when κR < 0, ~HT is unbounded.

In this case the model is not only thermodynamically
unstable but also dynamically unstable.

Dara P. S. McCutcheon, Juan Pablo Paz
and Augusto J. Roncaglia
Departamento de Física, FCEyN, UBA and IFIBA, Conicet
Pabellón 1, Ciudad Universitaria
1428 Buenos Aires, Argentina

Received 17 December 2013; revised manuscript received 21
October 2014; published 13 October 2015
DOI: 10.1103/PhysRevLett.115.168901
PACS numbers: 03.65.Yz, 03.65.Ta, 05.70.Ln, 42.50.Lc

[1] W.-M. Zhang, P.-Y. Lo, H.-N. Xiong, M.W.-Y. Tu, and
F. Nori, Phys. Rev. Lett. 109, 170402 (2012).

10 20

3

2

5

5 10 15 20
0.1

0.1

10 20

5

1

5 10 15 20
0.05

0.

0.05
t t

FIG. 1 (color online). Damping rate and renormalized
frequency for the dissipationless sub-Ohmic model shown in
Fig. 2 of Ref. [1].
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