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Abstract
In this contribution we further study the classical disordered p = 2 spherical model with Hamiltonian dynam-

ics, or in integrable systems terms, the Neumann model, in the infinite size limit. We summarise the asymptotic
results that some of us presented in a recent publication, and we deepen the analysis of the pre-asymptotic
dynamics. We also discuss the possible description of the asymptotic steady state with a Generalised Gibbs
Ensemble.
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1 Introduction
Interest in the dynamics of quantum systems in perfect isolation has been re-boosted by the large activity

in cold atom experiments [1] and, in parallel, the exact solution of one-dimensional models [2, 3, 4]. A huge
amount of work has been performed in the quantum context and a host of results are now available for a variety
of low-dimensional, mostly integrable, models. In particular, quantum quench protocols have been intensively
used. Typically, these consist in following the dynamics of a state prepared with some prescription and evolved
with a Hamiltonian of which it is not an eigenstate.

Questions on the equilibration, or not, of these systems are among the most prominent ones addressed
in theoretical and experimental studies. Whether an equilibrium, or an equilibrium-like, description of the
asymptotic dynamics of isolated systems exists, is a question that strictly makes sense in the limit of an infinite
number of degrees of freedom only.

Very similar issues can be addressed in the classical, and not necessarily low-dimensional, context. Therefore,
we very recently initiated a line of research aiming at clarifying the evolution of classical interacting isolated
systems in the thermodynamic limit [5, 7]. The latter condition is fundamental for our purposes since we wish
to analyse the possible thermal properties of the long-term behaviour of the systems after sudden changes in
their parameters, the classical equivalent of a quantum quench

Focusing on such thermodynamic limit, two classes of systems have been distinguished: integrable and non-
integrable. While for the former, no canonical equilibrium is expected because of the infinitely many integrals of
motion, for the latter, interactions are expected to be sufficiently efficient to lead them to standard equilibration.
These issues have been and still are actively studied in the context of quantum isolated systems, see e.g. [2, 3, 4]
for reviews, but, surprisingly enough, they have not been equally addressed in the realm of classical mechanics.

In the context of classical disordered models, we have checked that there is equilibration of interacting
disordered systems, by studying the quenched dynamics of the isolated p ≥ 3-spin disordered model [5] (excluding
glassy features for quenches to the so-called threshold [6]). In a subsequent publication, we started the study of
the p = 2 case [7], a model that, as we explain below, is integrable and therefore not expected to equilibrate to
the conventional Gibbs-Boltzmann measure.

Our intention in [7] was to analyse the dynamics of a classical integrable system that is not simply mappable
to an ensemble of independent harmonic oscillators. We were especially interested in the limit of an infinite
number of degrees of freedom, N → ∞. We wished to establish whether the long-term dynamics approach a
steady state that could be described with a Generalised Gibbs Ensemble, a classical version of the ensembles
used to characterise the asymptotic states of integrable quantum systems [2, 3, 4, 8, 9]. With this aim, we needed
to fully understand the dynamics of the classical model in the long-times limit.

The model that we choose to study is very well-known in the field of disordered systems and it goes under the
name of p = 2 spherical model [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. In the Hamiltonian version that
we will study here, it is a well-known integrable model, that was proposed by Neumann in the 19th century [23]
and studied by several authors [24, 25, 26] more recently. In Ref. [7] we studied its dynamics in great detail.
In particular, we elucidated the dynamic phase diagram for quenches from initial configurations drawn from a
canonical equilibrium measure at an inverse temperature T ′, after quenches that we specify below. This choice of
initial conditions corresponds to taking the system in equilibrium with a bath at the chosen initial temperature,
T ′, at times t < 0, and then suddenly switching off the coupling at t = 0. If no change in the Hamiltonian is
done, the dynamics remains in equilibrium at T ′. If, instead, a change in the Hamiltonian is operated at t > 0,
the system is subject to a sudden quench and the subsequent dynamics are out of equilibrium.

In [7] we did not, though, present a detailed study of the way in which the asymptotic states are reached.
We fill this gap here investigating the pre-asymptotic dynamics of the model for N →∞. We will elucidate the
pre-asymptotic behaviour and distinguish it from the one of the dissipative problem that is not able to equilibrate
for certain choices of parameters either, but for different reasons.

The article is organised as follows. In Sec. 2 we recall the definition of the model and we give some more
details on the quench performed. Section 3 is devoted to the study of the pre-asymptotic dynamics. Finally, in
Sec. 5 we present our conclusions and some discussion of lines for further research.

2 The model
In this Section we briefly present the definition of the model, the initial conditions that we choose, and the

kind of quench that we perform. A more detailed summary of the behaviour of the model in canonical equilibrium
and its relaxational dynamics driven by the coupling to a thermal bath can be found in [7].
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2.1 The Hamiltonian
The potential energy of the p = 2 spin model is the one of a system with two-spin interactions mediated by

quenched random couplings Jij :

Hpot[{si}] = −1
2

N∑
i6=j

Jijsisj . (1)

The exchanges Jij are independent identically distributed random variables drawn from a Gaussian probability
distribution function with average and variance

[Jij ] = 0 , [J2
ij ] = J2

N
, (2)

respectively. All couplings are symmetric under the exchange of their indices, Jij = Jji, and the parameter J
characterises the width of the Gaussian distribution. We use continuous “spin” variables, −∞ ≤ si ≤ ∞ with
i = 1, . . . , N , globally forced to satisfy (on average) a spherical constraint,

∑N

i=1 s
2
i = N , with N the total

number of spins [10], that is imposed by a term

Hconstr[{si}, z] = z

2

(
N∑
i=1

s2
i −N

)
(3)

added to the Hamiltonian. z is a Lagrange multiplier that depends on the system’s configuration. The spins
thus defined do not have intrinsic dynamics. In statistical physics applications their temporal evolution is given
by the coupling to a thermal bath, via a Langevin equation [10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22] or a Monte
Carlo rule [15, 16].

The model is endowed with conservative dynamics by changing the “spin” interpretation into a “particle”
one [5, 7]. In this way, one defines a kinetic energy [27, 28, 29]

Hkin[{ṡi}] = m

2

N∑
i=1

(ṡi)2 , (4)

that is added to the potential and constraint terms to yield the total energy of the Hamiltonian spherical p = 2-
spin model

Hsyst = Hkin +Hpot +Hconstr . (5)
The model represents now a particle constrained to move on an N -dimensional hyper-sphere with radius

√
N .

Its position is given by the N -dimensional vector ~s = (s1, . . . , sN ) and its velocity by another N -dimensional
vector ~̇s = (ṡ1, . . . , ṡN ) . The N coordinates si are globally constrained to lie, as a vector, on a hypersphere
with radius

√
N . The velocity vector ~̇s is, on average, perpendicular to ~s, due to the spherical constraint. The

parameter m is the mass of the particle.

2.2 The dynamic equations
The N equations of motion for the isolated system are

ms̈i(t) + z(t)si(t) =
∑
j(6=i)

Jijsj(t) , (6)

where the Lagrange multiplier needs to be time-dependent to enforce the spherical constraint all along the
evolution.

Equation (6) yields an identity between the energy density and the Lagrange multiplier. Its product with
si(t2) and the limit t2 → t−1 imply

lim
t′→t−

m∂t2C(t, t′) + z(t) = −2epot(t) . (7)

The first term can be rewritten as m limt′→t− ∂t2C(t, t′) = −m limt′→t−
∑N

i=1 ṡi(t)ṡi(t
′) = −m

∑N

i=1(ṡi(t))2,
and one has

z(t) = −2epot(t) + 2ekin(t) . (8)
The Lagrange multiplier takes the form of an action density, as a difference between kinetic and potential energy
densities. Using now the conservation of the total energy, ef = epot(t) + ekin(t), one obtains

z(t) = 2ef − 4epot(t) = −2ef + 4ekin(t) . (9)
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2.3 The initial conditions
The initial condition will be taken to be {s0

i , ṡ
0
i } ≡ {si(0), ṡi(0)} and chosen in ways that we specify below.

We will be interested in using equilibrium initial states drawn from a Gibbs-Boltzmann measure at different
temperatures T ′.

2.4 The quench
The quench is performed in such a way that J0

ij 7→ Jij = J/J0 J
0
ij instantaneously. This means that each

interaction strength is rescaled by a parameter J/J0 so quickly that neither the position not the velocity of the
particle are changed. It is not hard to prove that under these conditions energy is either injected (J/J0 < 1) or
extracted (J/J0 > 1) from the system.

3 Dynamics of the infinite size system
In this paper we will only discuss the dynamics in the N → ∞ limit. Several methods can be applied to

derive, in this limit, exact integro-differential equations for only three observables, the Lagrange multiplier, the
self-correlation and the linear response, that fully characterise the collective dynamics of the system. The long
times limit will only be taken next. The relevant order of limits is, therefore,

lim
t→∞

lim
N→∞

. (10)

3.1 Correlations, linear response and Lagrange multiplier
The self correlation and linear response are defined as

Cab(t, t′) = 1
N

N∑
i=1

[〈sai (t)sbi (t′)〉i.c.] , (11)

Cab(t, 0) = 1
N

N∑
i=1

[〈sai (t)sbi (0)〉i.c.] , (12)

Rab(t, t′) = 1
N

N∑
i=1

δ[〈sai 〉
(h)
i.c.]

δhb(t′)

∣∣∣∣∣
h=0

, (13)

where the averages 〈. . . 〉i.c. are taken over the probability distribution of the initial conditions. The a and b
indices run over replica indices, since we will use this method to enforce the initial conditions. The infinitesimal
perturbation h is linearly coupled to the spin, H 7→ H − h

∑
i
si. The upper-script (h) indicates that the

configuration is measured after having applied the field h. Because of causality, the linear response is non-zero
only for t > t′. The dynamics is causal and, in consequence, the linear response is proportional to a Heaviside
theta function θ(t− t′).

In the N → ∞ limit, the choice of the interaction matrix Jij is irrelevant in the sense that any one will be
a typical one and the dynamics will be statistically the same. Still, in the calculation that we use to derive the
Schwinger-Dyson equations an average over quenched randomness is taken. The square brackets denote here
and everywhere in the paper this average.

The Lagrange multiplier z(t) is fixed by the condition Caa(t, t) = 1 and we have already explained that it
equals twice the difference between kinetic and potential energy densities.

3.2 Dynamic equations
In the N → ∞ limit exact causal Schwinger-Dyson equations for the conservative dynamics for initial

conditions drawn from the Gibbs-Boltzmann probability measure with Hamiltonian H0 and inverse temperatrue
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β′ are derived. They determine the evolution of the time-delayed self-correlation and linear response

[m∂2
t − z(t)]R(t, tw) =

∫
dt′ Σ(t, t′)R(t′, tw) + δ(t− tw) , (14)

[m∂2
t − z(t)]C(t, tw) =

∫
dt′
[
Σ(t, t′)C(t′, tw) +D(t, t′)R(tw, t′)

]
(15)

+β′J0

J

n∑
a=1

Da(t, 0)Ca(tw, 0) , (16)

[m∂2
t − z(t)]Ca(t, 0) =

∫
dt′ Σ(t, t′)Ca(t′, 0) + β′J0

J

n∑
a=1

Db(t, 0)Qab , (17)

where the replica indices are a = 1, . . . , n → 0 since we have used the replica method to deal with e−β
′H0 and

fix the overlap replica matrix Qab [30, 31, 32]. The two kernels are the self-energy Σ and the vertex D and for
the p = 2 potential they take the forms

D(t, tw) = J2 C(t, tw) , (18)
Da(t, 0) = J2 Ca(t, 0) , (19)
Σ(t, tw) = J2 R(t, tw) . (20)

The causality of the linear response, and hence of the self-energy that is proportional to the linear response,
imposed the upper limit of the integrals to be either t′ or t. The lower limit is always the initial time that we
call t = 0. The equation for the Lagrange multiplier can be written as

z(t) = −m∂2
tC(t, t′)|t′→t− + 2J2

∫
dt′′ R(t, t′′)C(t, t′′) + JJ0

T ′

∑
a

(Ca(t, 0))2 . (21)

3.3 Initial conditions
We have chosen to work with initial conditions drawn from the canonical equilibrium probability distribution

built with the Hamiltonian H0, with the p = 2 form, and variance of the coupling strengths proportional to
J2

0 . The canonical equilibrium properties of the model [10] are such that there is a phase transition at Tc = J0
between a disordered paramagnetic phase at high temperature and an ordered phase at low temperature. In the
replica formalism the two phases are distinguished by the structure of the replica matrix Qab [10]:

Disordered initial conditions T ′ > J0 Qab = δab .
Ordered initial conditions T ′ < J0 Qab = (1− qin)δab + qin .

with qin the Edwards-Anderson parameter that is equal to

qin = 1− T ′/J0 . (22)

This model is particularly simple since it is solved by a replica symmetric Ansatz. The two cases listed above
are encoded by the second form if one simply keeps in mind that the T ′ > Tc corresponds to setting qin = 0.

The Lagrange multiplier varies with temperature in the disordered phase while it gets fixed to the highest
eigenvalue of the interaction matrix at low temperature:

Disordered initial conditions T ′ > J0 z = T ′ + J2
0/T

′ .
Ordered initial conditions T ′ < J0 z = 2J0 .
Equilibrium below Tc corresponds to the condensation of the system in the direction of the largest eigenvector

of the random matrix [10]; for this reason we will refer to this case as the condensed one.

3.4 Replica structure in the course of time
Although we change the Hamiltonian from H0 to H at the initial time t = 0, the dynamic equations keep

the initial replica structure. There will be two kinds of correlations with the initial condition

C1(t, 0) ≡ Ca=1 b=1(t, 0) and Cb 6=1(t, 0) ≡ Ca=1 b 6=1(t, 0) , (23)

where we singled out the replica labeled one and we shortened the notation to keep only one subscript. The
interpretation of the correlations C1(t, t′) and Cb 6=1(t, t′) is similar to the one of real replicas. The former is the
self-correlation between one replica {si}(t′) and the same one further evolved until a later time t, {si}(t). For
this reason, C1(t, t′) 7→ C(t, t′). The latter is the correlation between replica labeled b, let us say {σi}(t′), at
time t′ and the singled out replica one evolved until time t and represented by {si}(t). It turns out that only
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Cb(t, 0), the correlation with replica b evaluated at the initial time, intervenes in the other equations. This is
the only correlation between different replicas that appears in the calculations.

The border conditions on the correlation functions then are

C1(t, 0) = C(t, 0) implying C1(0, 0) = C(0, 0) = 1 ,
Cb 6=1(0, 0) = Q1,2 implying Cb 6=1(0, 0) = qin .

(24)

3.5 Equal time values
The equal-time conditions are

C(t, t) = 1 , R(t, t) = 0 , (25)
∂tC(t, t′)|t′→t− = ∂tC(t, t′)|t′→t+ = 0 , (26)
∂tCb 6=1(t, t′)|t′→t− = ∂tCb 6=1(t, t′)|t′→t+ = 0 , (27)

∂tCb6=1(t, 0)|t→0+ = 0 , ∂tR(t, t′)|t′→t− = 1
m
, (28)

for all times t, t′ larger than or equal to 0+, when the dynamics start.

3.6 The final set of equations
The set of equations that fully determine the evolution of the system from an initial condition in canonical

Boltzmann equilibrium at any temperature T ′ are(
m∂2

t + z(t)
)
R(t, t′) = δ(t− t′) + J2

∫ t

t′
dt′′R(t, t′′)R(t′′, t′) , (29)

(
m∂2

t + z(t)
)
C(t, t′) = J2

∫ t

0
dt′′R(t, t′′)C(t′′, t′) + J2

∫ t′

0
dt′′R(t′, t′′)C(t, t′′)

+JJ0

T ′
[C(t, 0)C(t′, 0)− Cb6=1(t, 0)Cb 6=1(t′, 0)] , (30)(

m∂2
t + z(t)

)
Cb 6=1(t, 0) = J2

∫ t

0
dt′′R(t, t′′)Cb 6=1(t′′, 0) + JJ0

T ′
[qinC(t, 0) + (1− 2qin)Cb 6=1(t, 0)] , (31)

z(t) = −m∂2
tC(t, t′)

∣∣
t′→t−

+ 2J2
∫ t

0
dt′′R(t, t′′)C(t, t′′) + JJ0

T ′
[C2(t, 0)− C2

b 6=1(t, 0)] .(32)

High and low temperature initial states are distinguished by qin = 0 for T ′ > J0, and qin = 1 − T ′/J0 for
T ′ < J0, respectively. The equation for C(t, 0) is just the one for C(t, t′) evaluated at t′ = 0 so we do not write
it explicitly.

3.7 Asymptotic analysis
We have shown in [7] that the dynamics approach an asymptotic limit such that z(t) reaches a constant

z(t)→ zf and R(t, t′) a stationary function of the two times, R(t− t′). In this limit the response equation can
be Fourier transformed and Eq. (29) determines its frequency dependence

R̂(ω) = 1
2J2

[
−mω2 + zf ±m

√
(ω2
− − ω2)(ω2

+ − ω2)
]

(33)

with
mω2
± = zf ± 2J (34)

(note the unusual choice of sign for the imaginary part that we adopted in [7]). The numerical solution of the
full dynamical equations show that the relevant sign is the minus one. R̂(ω), and also R(t), are independent of
the initial temperature for T ′ < Tc = J while they depend on temperature through zf for T ′ > Tc = J .

In terms of the physical parameters, R̂(ω) is real for | −mω2 + zf | > 2J . In two of the dynamical phases
that we identified in Ref. [7], zf = 2J , and this implies that the lower characteristic frequency vanishes ω− = 0
and the imaginary part of the linear response is gapless.
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Figure 1: The dynamic phase diagram.

3.8 Phase diagram
The phase diagram in Fig. 1 has three phases that are distinguished by the asymptotic value of the Lagrange

multiplier, zf , the static susceptibility, χst = R̂(ω = 0), the long-time limits of the delayed self-overlap,

q ≡ lim
t−t′→∞

lim
t′→∞

C(t, t′) , (35)

and the overlap with the initial condition,
q0 ≡ lim

t→∞
C(t, 0) . (36)

The first four columns in Table 1 summarise the values that these quantities take in the three phases.

zf χst q0 q mω2
− = zf − 2J mω2

+ = zf + 2J
I T ′ + J2/T ′ 1/T ′ 0 0 (

√
T ′ − J/

√
T ′)2 (

√
T ′ + J/

√
T ′)2

II 2J 1/J 0 0 0 4J
III 2J 1/J 6= 0 6= 0 0 4J

Table 1: This table summarises the asymptotic values of the Lagrange multiplier, the correlation with the initial condition
and the infinitely long time delay of the self correlation in the three first columns. The last two columns show the
parameter dependence of the two characteristic frequencies ω±.

3.9 The various overlaps
In Fig. 2 we show the numerical value of the overlap with the initial condition, q0 ≡ limt→∞ C(t, 0), and we

compare it to √qinq, where q is the one of the self-overlap, q ≡ limt−t′→∞ limt′→∞ C(t, t′), and qin = 1− T ′/J0
is the overlap of the initial condition. The data are plotted as a function of the parameter J/J0 that controls
the energy injection or extraction. The agreement of the numerical data points is very good for the three initial
conditions considered, that are made explicit in the key (see App. A and Ref. [33]).

3.10 Approach to the asymptotic limit
In this Section we present the rest of the original results in this contribution. They concern the way in which

the functions reach the asymptotic values zf , q0 and q, recalled in Table 1 and confronted in Fig. 2. We will find
that the approach is always algebraic with oscillations, and we will study the exponent as well as the relevant
frequencies involved in the periodic behaviour. The dependence of the exponents for |z(t)−zf |, |C(t, 0)−q0| and
|C(t, t′)− q| on the control parameters T ′/J0 and J/J0 is given in Figs. 5 (a) and (b), and Fig. 16, respectively.
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where q = limτ→+∞ C(t2 + τ, t2), for t2 � 1, is also estimated from the numerics. The two quantities are plotted
against J/J0, for three choices of the initial condition (T ′/J0) given in the key.

3.10.1 Pre-asymptotic behaviour of z(t)
In [7] we established that the long-time limit of z(t) is given by the two values in the second column in

Table 1 at the two sides of the diagonal T ′/J0 = J/J0 in the phase diagram. Let us now study the approach to
this value.
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Figure 3: Pre-asymptotic behaviour of z(t). The quantity |z(t)− zf | /zf , with zf = limt→+∞ z(t) is plotted against t in the
case of quenches with T ′ = 0.5 J0, that is to say, from a condensed state. The parameter controlling the energy
injection or extraction is given above each plot. The function f(x) = a x−b has been fitted to the upper envelope
of |z(t)− zf | /zf for t� 1 (dashed black line). The value of zf was fixed to the one that is expected, see Table 1.
The numerical values of b are indicated close to the fits. The reason why the decay in the critical quench seems
to be steeper than what is shown with the dashed line is explained in the text.
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We first use the algebraic decay proposal

env [z(t)− zf ] ∼ t−αz , (37)

where env stands for “the envelope of”, with the values of zf in Table 1, to extract the exponent αz. In practice,
we will use the upper envelope of the data that, in all cases excluding the critical quenches, coincides with the
results obtained from using the lower envelope. The critical quench is special and we will discuss it in detail
below.

In Fig. 3 we display four panels with parameters such that T ′ is fixed to 0.5 = T ′ < J0 = T 0
c and J/J0

changes in such a way that: there is injection of energy (upper left), the parameters are on the critical line
(upper right), and there is extraction of energy (the two lower panels). A detailed study of these and other cases
with T ′ < J0 indicates that the exponent αz varies on the left of T ′ = J , it takes the value αz = 3/2 at the
dynamic transition at T ′ = J , and it remains fixed to 3/2 on the right of it.

The decay in the critical quench in panel (b) seems to be steeper than what is shown with the dashed line
that represents the fit. The reason for this is that the upper (z(t)− zf > 0) and lower (z(t)− zf < 0) envelopes
of the function to fit do not have the same decay, at least up to the times t ≈ 300 that we are able to explore
with the numerical computation. The dashed line shown in the plot is an “average” between the fits of the upper
and lower envelopes over the available times. In fact, a fit to the upper envelope only yields αz > 1.5, while a fit
to the lower envelope yields αz < 1.5 (the lower envelope is not visible in the plot). Much longer times would be
needed to reach a regime in which the envelopes have the same algebraic decay during the computational times
and thus make a clean fit in this case.

A summary of the αz values for T ′/J0 < 1 are shown in Fig. 5 (a) with red points.
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Figure 4: Pre-asymptotic behaviour of z(t). The quantity |z(t)− zf | /zf , with zf = limt→+∞ z(t), is plotted against t in the
case of quenches with T ′ = 1.25 J0, that is to say, from a disordered state. The parameter controlling the energy
injection or extraction is given above each plot. The function f(x) = a x−b has been fitted to the upper envelope
of |z(t)− zf | /zf for t� 1 (dashed black line). The value of zf was fixed to the one that is expected, see Table 1.
The numerical values of b are indicated close to the fits. The same explanation for the difference between the data
and the dashed line in the critical quench given close to Fig. 3 applies to this case as well.

In Fig. 4 we repeat this analysis for 1.25 = T ′ > J0 = T 0
c and we see that, also for this kind of initial states,

the exponent αz depends on the parameters on the left of T ′ = J0 while it sticks to the value 3/2 at T ′ = J and
beyond it. The behaviour of αz in between J = J0 and T ′ = J is harder to determine from the numerical data.
The exponent seems to reach the value 3/2 at J = J0 and it either remains constant beyond this (no quench)
value or, if it varies, it does very smoothly, increasing slightly beyond 3/2, reaching a shallow maximum and
then decreasing again towards 3/2 at T ′ = J . A deeper analysis of this intermediate regime is easier to perform
using a larger T ′/J0 value that makes the interval J0 < J < T ′ wider, and we discuss these cases below.
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A summary of the αz values for T ′/J0 = 1.25 are shown in Fig. 5 (a) with blue points.
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Figure 5: The exponents αz (a) and αC (b) defined in Eqs. (37) and (44), obtained from fitting the upper envelopes of
|z(t)− zf | /zf and |C(t, 0)− q0| as functions of the parameter J/J0, for two different values of the temperature
with which one draws the initial states, T ′/J0 = 0.5 (red points) and T ′/J0 = 1.25 (blue points). Cases with
larger T ′/J0 are treated below to try to establish the behaviour of the exponent in the region 1 ≤ T ′/J0 ≤ J/J0,
see Fig. 6 where we report the exponents αz and αC vs. J/J0 for these T ′/J0.
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Figure 6: The exponents αz (a) and αC (b) defined in Eqs. (37) and (44), obtained from fitting the upper envelopes of
|z(t)− zf | /zf and |C(t, 0)− q0|, as functions of the parameter J/J0, for two different values of T ′/J0 > 1.

With the aim of determining the actual behaviour of αz in the uncertain region, we repeated this analysis
for much higher values of the initial temperature, T ′/J0 = 2, 3, in such a way that the interval between J = J0
and T ′ = J widens. We found that for these T ′/J0, the exponent αz is equal to 3/2 or very close to it also for
T ′ < J , that is to say, on the left of the critical line. It is possible that the change in behaviour occurs at J = J0
(the line separating quenches with injection of energy from those with extraction) since we detect a very small
deviation from 3/2 for J < J0. However, this is hard to establish beyond doubt. Although the error bars that
we estimate are smaller for J < J0 than for J > J0, the actual values of the exponent are pretty close to 3/2
even for J < J0. The summary of our findings for αz at T ′/J0 = 2 are shown with red points and the ones at
T ′/J0 = 3 are shown with blue points in Fig. 6 (a),

It is quite clear that the algebraic envelope captures part of the approach of z(t) to its asymptotic value zf
but not everything: the curves in Figs. 3 and 4 show strong oscillations. We now study the periodicity of the
approach to the asymptotic value by focusing on

Zosc(ω) ≡
∫

dt e−iωt tαz
(
z(t)− zf

zf

)
, (38)

with αz the exponent extracted from the analysis in Eq. (37) and zf fixed to the values given in Table 1. This
equation is the Fourier transform of the pure oscillating part of z(t), in the long time limit. It is clear that
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our data will be a bit corrupted by the fact that the numerical time interval is forcefully rather short, going
from a minimal time tmin where we expect to have reached the preasymptotic state to the maximal time in the
simulation.
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Figure 7: Energy extraction from a condensed state (T ′ = 0.5 J0, J = 1.5 J0). (a) The oscillating part of z(t) at short
(above) and long (below) times with the exponent fixed to the value αz = 1.500 obtained from fitting the envelope,
(b) Real and imaginary parts of the Fourier transform of the oscillating part, Zosc(ω), see Eq. (38). The vertical
dashed line is at 2ω+, where ω+ =

√
(zf + 2J)/m = 2

√
J/m. In the lower panel in (a), we also plotted the

function h(t) = A cos(2ω+ +φ) (blue dashed line) with A ' 0.0245 and φ ' 0.8399, that matches the data almost
perfectly in the given time window.

Figure 7 shows the oscillating part of z(t), that is tαz [z(t)− zf ]/zf , with the exponent αz defined in Eq. (37)
and fixed to the value αz = 1.500 obtained from fitting the envelope. The parameters are T ′ = 0.5 J0, J = 1.5 J0,
energy is extracted from the sample with this quench, and zf = 2J . The panels on the left display the time
dependence in two time intervals: at relatively short times when the decay is still far from the asymptotic limit,
and at sufficiently long times to have reached it. The right panel is the Fourier transform in Eq. (38) with a
clear peak at the frequency

ω = 2ω+ = 2
√

(zf + 2J)/m = 4
√
J/m . (39)

This figure shows that the characteristic frequency of the linear response function, ω+, the only non-vanishing
one for this set of parameters, also determines the periodic dependence of the approach to the constant long-time
limit of zf . Once we have found the characteristic frequency 2ω+ from the Fourier analysis, we plotted the form
A cos(2ω+t + φ) together with the numerical data in the lower panel on the left. The agreement between the
two is perfect within the scale of the figure, see Fig. 7 (a).

In the next figure, Fig. 8, we investigate a quench to the critical line. The oscillating part of z(t) displayed
in the left panel proves that this quantity has not yet reached a limit in which all the decaying time-dependence
is captured by the power law. More precisely, we determined the exponent αz from the upper envelope and the
data show that the lower part of the time-dependence is still varying quite a lot. We believe that this is due
to the very slow dynamics in a quench to the critical line and that, basically, for this reason the system has
not yet reached the pre-asymptotic regime. Still, the Fourier analysis points towards the special role played by
the frequency 2ω+ and the appearance of a (small) peak at ω− = 0, signalling that this frequency will detach
from zero beyond criticality and will play a role in the pre-asymptotic behaviour of z(t) as well. The comparison
between the numerical data and the curve A cos(2ω+t + φ) + B is shown in Fig. 8 and the agreement is rather
good, apart from the remanent time dependence in the lower part of the curve, that is seen as a deviation
between the blue (fit) and red (data).

Finally, in Figs. 9 and 10 we treat cases with large energy injection taking the system from a condensed state
or the disordered state into the phase in which zf depends on the two control parameters, that is to say, beyond
the critical diagonal to the left of it. On this side of the transition both frequencies ω− and ω+ are non zero
and they influence the pre-asymptotic behaviour. This is not so clear in Fig. 9 where the system is taken out of
a condensed state, but it is quite remarkable in Fig. 10. In the case T ′/J0 = 0.5 and J/J0 = 0.25 the peak at
2ω+ is negligible with respect to the one at 2ω− (but should be real, not an effect of numerical error), see Fig. 9.
Instead, in the case T ′/J0 = 1.25 and J/J0 = 0.75 (see Fig. 10) the higher frequency 2ω+ is clearly present.
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Figure 8: Quench from a condensed state to the critical line (T ′ = 0.5 J0, J = 0.5 J0). (a) The oscillating part of z(t),
with αz = 1.500 as obtained from fitting the upper envelope, in a selected time window (250 < t < 300) together
with the function h(t) = A cos(2ω+ + φ) (blue dashed line) with A ' 0.0106 and φ ' 0.7552. Notice that the
lower envelope has a remanent weak time dependence. (b) Fourier transform of the oscillating part, Zosc(ω), see
Eq. (38). The vertical dashed line is at 2ω+, where ω+ =

√
(zf + 2J)/m = 2

√
J/m. Since the lower frequency

ω− is zero in this case, a single harmonic at 2ω+ is enough to fit the data in (a).
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Figure 9: Energy injection on a condensed state (T ′ = 0.5 J0, J = 0.25 J0). (a) The oscillating part of z(t) with the exponent
αz ' 0.815 obtained from fitting the long-time envelope, at short (above) and long (below) times after the quench.
(b) Real and imaginary parts of the Fourier transform of the oscillating part, Zosc(ω), see Eq. (38). The vertical
dashed lines are at 2ω− and 2ω+, where ω± =

√
(zf ± 2J)/m and zf = T ′ + J2/T ′. In (a) we also plotted

the function h(t) = A+ cos(2ω+ + φ+) + A− cos(2ω− + φ−) (blue dashed line) with A+ ' 0.0076, φ+ ' 0.7029,
A− ' 0.3832 and φ− ' 0.2675, that fails to match the data at short times but does almost perfectly at long
times. In this case, the contribution of the higher frequency, 2ω+, is negligible (A+ ' 0.0076) and we would have
obtained an equally good numerical agreement keeping only the frequency 2ω−.

We summarise the results in this section in the equation

z(t) ' zf + t−αz [A+ cos(ω+t+ φ+) +A− cos(ω−t+ φ−)] (40)

that condenses in a single equation the time dependence of the Lagrange multiplier in the first correction to the
asymptotic constant value.

3.10.2 The susceptibility, and the kinetic and potential energies
The dynamic susceptibility also approaches a constant asymptotic value with an algebraic decay. The first

two panels in Fig. 11 show examples of this behaviour for T ′ < J0. The black and red continuous curves follow
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Figure 10: Energy injection on the disordered state (T ′ = 1.25 J0, J = 0.75 J0). (a) The oscillating part of z(t) with the
exponent αz ' 1.450 obtained from fitting the envelope at long times. (b) Real and imaginary parts of the
Fourier transform of the oscillating part, Zosc(ω), see Eq. (38). The vertical dashed lines are at 2ω− and 2ω+,
where ω± =

√
(zf ± 2J)/m and zf = T ′+J2/T ′. On the left, we also plotted the function h(t) = A+ cos(2ω+t+

φ+) + A− cos(2ω−t + φ−) (blue dashed line) with A+ ' −0.0242 and φ+ ' −2.3246, and A− ' 0.1077 and
φ− ' −0.7846. This function matches the data almost perfectly at long times.

the upper and lower envelopes. The dotted black line is a fit to the power law decay. For higher values of J/J0
we still find b = 1.5. The summary of exponent values found is given in panel (c) in the same figure both for
T ′/J0 < 1 and T ′/J0 > 1.
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Figure 11: (a) and (b) Asymptotic behaviour of the dynamical susceptibility, χ(t). The quantity |χ(t)− χ∞|, with χ∞ =
limt→+∞ χ(t), is plotted against t, in the case of quenches with T ′ = 0.5 J0 (purple curve). The black and red
continuous lines correspond to the upper and lower envelopes, respectively. The black dashed line represents a
fit of the upper envelope to the function f(x) = a x−b. The numerical values of a and b are indicated in the key.
(c) The exponent b obtained from fitting the envelope of χ(t)−χ∞, plotted against the parameter J/J0, for two
different values of T ′/J0.

The “oscillatory” part of χ(t)− χf , defined as χosc(t) = (χ(t)− χf ) · tαχ where αχ is the exponent obtained
by fitting the envelope of χ(t) − χf with a power law, as done in Fig. 11 (a) and (b), follows the same time
dependence as the one of z(t). More precisely,

χ(t) ' χf + t−αχ [B− cos(ω−t+ ϕ−) +B+ cos(ω+t+ ϕ+)] , (41)

with B−, B+, ϕ−, ϕ+ fitting parameters and ω± =
√

(zf ± 2J)/m, describes the data very accurately. As
beforehand, when zf = 2J , ω− = 0, and thus χ(t) reduces to a single harmonic. We also note that this form
implies

R(t) ' −αχt−αχ−1 [B− cos(ω−t+ ϕ−) +B+ cos(ω+t+ ϕ+)]
−t−αχ [B−ω− sin(ω−t+ ϕ−) +B+ω+ sin(ω+t+ ϕ+)] , (42)

13



The kinetic and potential energies, ekin(t) and epot(t), depend linearly on z(t),

ekin(t) = 1
2etot + 1

4z(t) , epot(t) = 1
2etot −

1
4z(t) , (43)

with etot the conserved total energy density and, therefore, they have the same time dependence as z(t) once
the factor and sign are taken into account.

3.10.3 Correlation with the initial state
A very similar analysis to the one described in the previous Subsection can be applied to the correlation

between the instantaneous configuration and the initial one. The envelope to be studied is in this case

env [C(t, 0)− q0] ∼ t−αC (44)

with q0 = limt→+∞ C(t, 0) being 0 for T ′/J0 > 1 and different from zero for T ′/J0 < 1 and T ′ < J (sector III,
dashed in green in dynamic phase diagram displayed in Fig. 1). We have to note an important difference with
the analysis of the pre-asymptotic behaviour of z(t) performed in the previous section. While zf is continuous,
q0 is discontinuous at the transition T ′ = J . We do not have an analytic expression for q0 but we have clear
numerical evidence for this claim, that was shown in Fig. 18 (b) in [7]. This implies that the behaviour on the
left of the critical line may not be the same as the one on the right of it entailing, as we will see, a discontinuity
of the exponent αC itself.

For reference we show in Fig. 12 the behaviour of this correlation for T ′/J0 = 0.5 and various choices of
J/J0. To notice here is the case of the critical quench that has been approached from the disordered side, and
the asymptotic value q0 = 0 was used. The exponent αC takes a very small value αC ' 0.226. Right beyond
criticality we see, in Fig. 13, that the exponent jumps to αC ' 3/2, the value it takes in the full trapped
dynamics, with q0 6= 0. There are also differences between the behaviour of the upper and lower envelopes in
close to critical quenches due to the short times available. Very close to criticality the data approach zero from
above, and only at the latest times reached numerically we see the oscillations go beyond 0 and the upper and
lower envelopes approach similar algebraic behaviours. When we get away from criticality the amplitude of the
oscillations around zero is larger at the same time scales and the upper and lower envelope power laws get closer
to each other. We think that by exploring longer times we should be able to observe the two envelopes with the
same algebraic decay and recover αC ' 1.5 in all these cases.

Interestingly enough, on the critical line T ′ = J , both for T ′ < J0 and T ′ > J0, the oscillations are suppressed
at sufficiently long times, and the correlation approaches q0 from above, taking only positive values, see Fig. 12
(b) and the three panels in Fig. 14. Moreover, in all the fits, we took q0 = 0 meaning that we were approaching
the critical line from the side T ′ > J .

The collection of exponent values αC thus derived are shown in Fig. 5 (b) and Fig. 6 (b). A comparison with
the exponent αz shown in the panels (a) of the same figures proves that αC has a similar behaviour, though not
identical, to the one of αz. Both for T ′/J0 < 1 and T ′/J0 > 1 the two exponents are constant and coincide,
αz = αC = 3/2, beyond the transition at T ′ = J . Instead, for both kinds of initial states αC weakly depends on
the parameters for J/J0 < 1. It is hard to establish beyond any doubt whether αC = αz for these parameters
but the numerical data are compatible with this possibility. In the region in between J/J0 = 1 and T ′/J = 1 the
determination of αC is more difficult. The data do not exclude the possibility of αC being constant and equal
to 3/2 in this region too but a very weak variation could also be hidden within the errorbars.

3.10.4 The time-delayed self-correlation
The time-delayed correlation C(t1, t2) depends, in principle, on the two times t1 and t2. In the study in [7]

we did not find ageing phenomena in this model. We want to investigate more deeply here the possible two-time
dependencies and, in particular, evaluate whether an interrupted ageing scenario, with the two-time correlation
decaying as

C(t1, t2)− q∞(t2) ∼ f(t1 − t2) + A(t2) g
(
t1
t2

)
with A(t2) ' at−α

′
C

2 for t2 � 1, t1 � t2 (45)

and q∞(t2) = limτ→+∞ C(t2 + τ, t2), is possible.
For initial conditions in the ordered phase T ′/J0 < 1 or quenches from the disordered phase T ′/J0 to

parameters on the left of the critical line, that is to say the white zone in the phase diagram in Fig. 1 that we
called sector I, we do not expect ageing nor interrupted ageing, that is to say, a = 0. This is confirmed by our
numerical studies (not shown). We can therefore immediately study the stationary dynamics in these cases.

For quenches into the orange sector of the phase diagram, that we called II, one needs to be more careful and
check whether there is, or not, interrupted ageing. We can mention at least three reasons for this possibility.
Firstly, it was for this kind of quench that we found ageing in the p = 3 model [5]. Secondly, these kind of energy
extraction quenches from disordered initial conditions are the ones that yield interrupted ageing in the isolated

14



(a) (b) (c)

10
−2

10
−1

1

1 10 10
2

|C
(t
,0
)
−

q 0
|

t

T ′
= 0.50J0 , J = 0.25J0

∼ x−0.226

10
−1

1

1 10 10
2

|C
(t
,0
)
−

q 0
|

t

T ′
= 0.50J0 , J = 0.50J0

∼ x−0.226

10
−6

10
−4

10
−2

1 10 10
2

|C
(t
,0
)
−

q 0
|

t

T ′
= 0.50J0 , J = 1.00J0

∼ x−1.500

(d) (e) (f)

10
−6

10
−4

10
−2

1

1 10 10
2

|C
(t
,0
)
−

q 0
|

t

T ′
= 1.25J0 , J = 1.00J0

∼ x−1.494

10
−6

10
−4

10
−2

1

1 10 10
2

|C
(t
,0
)
−

q 0
|

t

T ′
= 1.25J0 , J = 1.25J0

∼ x−1.507

10
−6

10
−4

10
−2

1

1 10 10
2

|C
(t
,0
)
−

q 0
|

t

T ′
= 1.25J0 , J = 1.50J0

∼ x−1.497

Figure 12: Pre-asymptotic behaviour of C(t, 0). The quantity |C(t, 0)− q0|, with q0 = limt→+∞ C(t, 0), is plotted against t
in the case of quenches with T ′ = 0.5 J0 (first line) and T ′ = 1.25 J0 (second line). The function f(x) = a x−b has
been fitted to the envelope of |C(t, 0)− q0| for t � 1 (dashed black line). The numerical value of b is indicated
close to the fit. On the critical line the fit yields a rather small value, αC = 0.226. Right beyond criticality, there
is a jump in the exponent αC for T ′/J0 < 1, see Fig. 13 and Fig. 14. Near the critical line, on its right (J & T ′),
it is a bit difficult to extract the algebraic decay of the envelope of C(t, 0)− q0. However, we believe that given
a sufficient long time t, we should be able to recover αC ' 1.5 from the numerical data, as soon as J > T ′.

O(N) model in the large N limit [34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. Thirdly, a current study that is being
carried out on the dynamics of the isolated one dimensional scalar field theory after quenches of different kind
displays non trivial two-time dependencies in various correlations after this kind of procedures [44].

In Fig. 15 we plot C(t1, t2) as a function of t1 − t2 for various t2, say t2 = 0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50
after quenches into the orange sector of the phase diagram, that is to say, for parameters such that T ′/J0 > 1,
T ′ < J . We show the data in linear scale and for short t1 − t2 only, so as to avoid the many oscillations hiding
the behaviour we wish to highlight. In all cases the dynamics soon become stationary, with the t2 dependence
being lost after, say, t2 = 5. We conclude that there is no relevant interrupted ageing in this problem.

For t2 � 1, that is to say, for times t2 such that C has become stationary, we can perform a similar analysis
of the algebraic approach to the asymptotic limit q

env [C(t1, t2)− q] ∼ (t1 − t2)−α
′′
C (46)

with q = limt2→∞ q∞(t2) = limt2→∞ limτ→+∞ C(t2 + τ, t2).
Figure 16 summarises the results of the study of this envelope and its fits with a power law. Once again we

find that for T ′/J0 < 1 and J > T ′ (on the right of the critical line) the exponent fixes to 3/2 while for T ′/J0 > 1
the data suggest that the behaviour of α′′C is similar to the one of αC . That is, for T ′/J0 > 1, α′′C is equal to 3/2
for J > J0. For J < J0, α′′C seems to decrease but it still remains very close to 3/2.

4 Mode analysis
The dynamics can also be addressed by writing the Langevin equations in the rotated basis constructed with

the eigenvectors ~vµ, µ = 1, ..., N , of the post-quench matrix Jij . Indeed, defining

sµ(t) = ~s(t) · ~vµ , (47)

the N rotated equations of motion read

ms̈µ(t) + (z(t)− λµ)sµ(t) = 0 . (48)
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Figure 13: Pre-asymptotic behaviour of C(t, 0) near the critical line. On the left, C(t, 0)− q0, with q0 = limt→+∞ C(t, 0), is
plotted against t for quenches from equilibrium at T ′ = 0.5 J0. On each row we present data for a value of J/J0:
from top to bottom, J/J0 = 0.505, 0.51, 0.55. In the same plots, in the panels in the left column, we included the
upper and lower envelopes, indicated by a blue and a green line, respectively. On the right column, we just plot
these envelopes, env|C(t, 0)− q0|, with the same colour code against t (using a double logarithmic scale) and the
corresponding fits (dashed line for the upper envelope, dotted line for the lower one).

where λµ are the eigenvalues associated to the eigenvectors ~vµ.
This set of equations has to be complemented with the initial conditions sµ(0) and ṡµ(0). They are close to

the equations for a parametric oscillator, with the difference that here the time-dependent frequency depends on
the variables via the Lagrange multiplier. In this formulation the relation with Neumann’s integrable classical
system [23] is explicit.

The uniform interaction quench corresponds to

λ(0)
µ = J0

J
λµ . (49)
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Figure 14: Pre-asymptotic behaviour of C(t, 0), on the critical line T ′ = J , for T ′/J0 = 0.25, 0.5, 0.75. The function
f(x) = a x−b has been fitted to C(t, 0) for t� 1 (dashed black line). The numerical value of b is indicated close
to the fit.
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Figure 15: Time-delayed correlation C(t1, t2), for different values of t2 (indicated in the key), plotted against t1 − t2, for
three quenches in Sector II of the phase diagram (T ′/J0 > 1, T ′ < J). In all cases the data rapidly approach,
say after t2 ≈ 5, a stationary behaviour.
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t2 � 1), plotted against the parameter J/J0, for two different values of T ′/J0.

4.1 Exact solution
Equation (48) can be implicitly solved with the amplitude-phase Ansatz [45, 46, 47, 48] in which the projection

of the spin configuration is written as

sµ(t) = sµ(0)
√

Ωµ(0)
Ωµ(t) cos

∫ t

0
dt′ Ωµ(t′) + ṡµ(0)√

Ωµ(t)Ωµ(0)
sin
∫ t

0
dt′ Ωµ(t′) (50)
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and the one of the spin’s projection velocity as

ṡµ(t) =
[
−1

2sµ(0)
√

Ωµ(0)
Ωµ(t)

Ω̇µ(t)
Ωµ(t) + ṡµ(0)

√
Ωµ(t)
Ωµ(0)

]
cos
∫ t

0
dt′ Ωµ(t′)

+

[
−1

2
ṡµ(0)√

Ωµ(t)Ωµ(0)
Ω̇µ(t)
Ωµ(t) − sµ(0)

√
Ωµ(0)Ωµ(t)

]
sin
∫ t

0
dt′ Ωµ(t′) , (51)

complemented with the equation ruling the evolution of Ωµ(t),

1
2

Ω̈µ(t)
Ωµ(t) −

3
4

(
Ω̇µ(t)
Ωµ(t)

)2

+ Ω2
µ(t) = ω2

µ(t) ≡ (z(t)− λµ)/m , (52)

with the initial condition
Ω̇µ(0) = 0 . (53)

Equations (50) and (51) are reminiscent of the general solution of the harmonic oscillator problem, here with a
time-dependent “frequency” Ωµ(t). In the numerical calculations we choose the initial condition

Ω2
µ(0) = λN − λµ , (54)

that ensures that Ωµ(t) is real at all times.
The spherical constraint fixes the time-dependence of the Lagrange multiplier that can be expressed in

different ways. For example,

z(t) = 2 [ekin(t)− epot(t)] = 1
N

∑
µ

[
〈p2
µ(t)〉
m

+ λµ〈s2
µ(t)〉

]
= ef + 2

N

∑
µ

λµ〈s2
µ(t)〉 . (55)

In Ref. [7] we gave more details on the numerical solution of the problem set in these terms. For our purposes
here, that is finding the preasymptotic approach towards the limit value of z(t), the finite N solution is not well
adapted, since we observe that even for relatively large number of modes, say N = 1024, the power law is blurred
at times that are quite short, say, t = 50. In the next Subsection we propose an approximation that allows us
to take the large N limit within this formalism.

4.2 Decay of the Lagrange multiplier
The formalism in the previous subsection is exact but still quite complicated and, as we explained, not so

well adapted to the numerical analysis of preasymptotic effects. We can make a series of assumptions, that we
will check are verified, to go farther into a quasi-analytic description of the problem.

We therefore propose that if z(t) is sufficiently close to its stationary limit, i.e., if z(t) ' zf , then

sµ(t) =
√

2Tµ
zf − λµ

cos
(
ω(f)
µ t+ φµ

)
, (56)

pµ(t) = −
√

2Tµm sin
(
ω(f)
µ t+ φµ

)
, (57)

where ω(f)
µ =

√
(zf − λµ)/m and φµ is an unspecified phase. This form for pµ(t) is consistent with the one

obtained differentiating sµ(t) with respect to time, and this implies that the two phases φµ should be the same.
This Ansatz assumes that when z(t) is close enough to its stationary value, all the modes decouple and behave like
independent harmonic oscillators, something that is verified in our calculations and that we discussed in [7]. The
amplitude of the sµ oscillation is given by

√
2Tµ/(zf − λµ), where Tµ is the µth mode temperature. Inserting

this Ansatz in the equation for z(t), Eq. (55), we obtain

z(t) = 2
N

∑
µ

Tµ

[
sin2 (ω(f)

µ t+ φµ
)

+ λµ
zf − λµ

cos2 (ω(f)
µ t+ φµ

)]
. (58)

If we are only interested in the asymptotic behaviour and we assume that φµ is approximately the same for all
modes we can take φµ = 0. In the long time limit the factors sin2(ω(f)

µ t) and cos2(ω(f)
µ t) average to 1/2 and a

constant limit is reached due to dephasing among the different mode contributions,

1 = 1
N

∑
µ

Tµ
zf − λµ

, (59)

which is just another way of expressing the spherical constraint, now very close to the one in canonical equilibrium
in which Tµ = T for all µ. This equation fixes the constant asymptotic value of the Lagrange multiplier zf .
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Moreover, we showed in Sec. 5.7 in Ref. [7] that in the limit in which the problem can be thought of as one of
independent harmonic oscillators, the mode temperatures are given by

Tµ = T ′

2

(
zf − λµ

zin − J0
J
λµ

+ 1
)
, (60)

with zin the value of the Lagrange multiplier in the initial condition. After some careful handling of the sum in
Eq. (59) for finite N , that is described in Sec. 5.7 of this reference, one rewrites the constraint equation as

1 = 1
N

∑
µ

T ′

zf − λµ
, (61)

that is to say, the canonical equilibrium equation at temperature T ′ for a model with variance of the disorder
distribution equal to J2. This result is verified numerically, see Table 1.

In search of the finite time corrections to this asymptotic limit, we then split Eq. (58) in two terms, one equal
to the asymptotic limit zf and the other one equal to the finite time correction:

z(t) = zf + 1
N

∑
µ

Tµ
2λµ − zf
zf − λµ

cos
(
2ω(f)

µ t
)
≡ zf + f(t) . (62)

The issue now is to compute the time dependence of the sum in the second term.
One can evaluate the sums in (61) and (62) in the N →∞ thermodynamic limit, introducing the density of

eigenvalues,
ρ(λ) = 1

2πJ2

√
(2J)2 − λ2 θ(2J − |λ|) . (63)

Concerning the sum in (61),

1 = T ′
∫
dλ

ρ(λ)
zf − λ

= T ′

2J2

(
zf +

√
z2
f − (2J)2

)
for zf > 2J ⇒ zf = T ′ + J2

T ′
, (64)

the correct asymptotic limit in Sectors I and IV. We already know that this expression cannot be continued on
the other side of the transition at T ′ = J and that the Lagrange multiplier freezes at zf = 2J for T ′ < J . In order
to capture this behaviour one has to go beyond the approximation (60) for the mode temperatures and consider
that the edge-mode one scales with N , similarly to what happens in the canonical equilibrium calculation with
the projection of the spin on the edge mode eigenvector.

As regards the sum in the finite time correction f(t) it becomes

f(t) ≡
∫
dλ ρ(λ) T (λ) 2λ− zf

zf − λ
cos
(
2ω(f)(λ)t

)
(65)

where ω(f)(λ) =
√

(zf − λ)/m and

T (λ) = T ′

2

(
zf − λ

zin − J0/J λ
+ 1
)
. (66)

We have not found an analytical solution to this integral but we computed it numerically. We follow this route
below.

In Fig. 17 (a) we show the decay of the function f(t) evaluated from Eq. (65) for T ′ = 1.25 J0 and J = 0.75 J0,
a point which belongs to sector I of the phase diagram. The function f(t) decays as a power law with an exponent
αz = 1.43, which is in agreement with the value αz = 1.45 found using the mean field equations (see Fig. 4).
We note that in this case there is no problem in taking the N →∞ limit in the sum in (62) since zin > 2J0 and
zf > 2J . In panel (b) in the same figure we show the decay of f(t) for T ′ = 1.25 J0 and J = 1.5 J0, in Sector
II (orange) in the phase diagram. f(t) now decays as a power law with exponent 3/2, that coincides with the
result from the N → ∞ equations that predicts αz = 3/2 in this sector of the phase diagram. In this case, the
continuum approximation of the sum is not fully justified as zf = 2J . Still the agreement between the algebraic
decay of the numerical evaluation of Eq. (65) and the slope −3/2 found with the Schwinger-Dyson approach is
excellent.

In Fig. 18 (a) we show the decay of the function f(t) for T ′ = 0.5 J0 and J = 0.8 J0, in sector III of the phase
diagram. We can clearly observe that f(t) decays as a power law with the exponent 3/2, which is in agreement
with the results from the mean-field equations that predict αz = 3/2 in this sector of the phase diagram. This
is another case in which the continuum limit should not hold since both z0 = 2J0 and zf = 2J .

In panel (b) we show f(t) for T ′ = 0.5 J0 and J = 0.25 J0, in sector IV of the phase diagram. The behaviour
is not as clear in this case. One can try a power law with an exponent αz = 0.815, the same value that was found
for N → ∞ (see Fig. 3). The power law fits well the quasi-analytic results up to time t = 100, approximately.
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Figure 17: Decay of the function f(t). (a) Sector I of the phase diagram. The red line is a decaying power law with exponent
1.43. (b) Sector II of the phase diagram. The red line is a decaying power law with exponent 3/2. The results
are in agreement with the solution of the mean-field equations presented in previous sections, in particular, see
Fig. 4 and compare it to the data in panel (a).
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Figure 18: Decay of the function f(t). (a) In Sector III of the phase diagram. The red line is a decaying power law with
exponent 3/2. The results are in agreement with the solution of the mean-field equations presented in previous
sections. (b) In sector IV of the phase diagram. The red line is a decaying power law with exponent 0.815.

For times larger than t ' 100 there are deviations from the power law behaviour. Since in this case zin = 2J0,
there is a singularity in T (λ) at λ = 2J . The deviation from the power law behaviour could be due to large
numerical errors caused by this singularity.

Let us end this section with a series of comments on the behaviour of f(t) in the various sectors of the phase
diagram.

The case in which there is no good agreement between the power law behaviour predicted by the results from
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the Schwinger-Dyson N → ∞ equations and the quasi-analytic results for finite N is sector IV. In this sector
zf > 2J but zin = 2J0 in the N →∞ limit.

We can end with a short discussion of the behaviour of f(t), more precisely, of each factor in the integrand
that contribute in different ways:

– The factor
√

(2J)2 − λ2, originating in the density of eigenvalues, tends to cure the singularities indepen-
dently of the value of zf and zin.

– The factor T (λ) diverges if zin = 2J0 and zf > 2J which is the case in the problematic sector IV. If
zin = 2J0 and zf = 2J it seems from the results in sector III that this factor does not cause trouble, the zero in
the numerator being "cancelled" with the zero in the denominator.

– The factor (2λ − zf )/(zf − λ) diverges in sectors II and III, but the behaviour of the integral is smooth.
Seemingly, the divergence is cured by the factor

√
(2J)2 − λ2 coming from the eigenvalue density.

5 Conclusions
This paper complements the study of the conservative dynamics of the p = 2 disordered spherical model or,

in other words, the Neumann integrable model, that we started in [7]. We focused here on the pre-asymptotic
dynamics of the model in the infinite system limit; more precisely, on the way in which the approach to the
constant asymptotic values of the Lagrange multiplier, and correlation functions, is achieved. We showed that
in all phases the dynamics approach the constant values algebraically with functions that decay as power laws
but also oscillate in time. The exponents take the same constant value α = 3/2 for z(t), χ(t), R(t), C(t, 0) and
C(t − t′) in all quenches such that J > T ′, that is to say, to the right of the critical diagonal T ′ = J in the
phase diagram. Instead, they depend on the parameters on the other side of the diagonal T ′ = J . Apart from
the algebraic decay, the functions are harmonic, with the frequencies given by ω+ and ω−.

The relaxational dynamics of the spherical p = 2 model and the O(N) field theory share many points in
common. In the former, the out of equilibrium dynamics after subcritical quenches correspond to the progressive
alignment of the N dimensional vector that collects all the spins, ~s = (s1, . . . , sN ) on the direction of the
eigenvector associated to the largest eigenvalue of the interaction matrix Jij [13, 14]. In the latter, the mechanism
is very similar, and the progressive condensation takes place on the vanishing wave vector (tendency to local
order) [50, 49]. Both models coarsen after subcritical quenches and the growing length scales have the same
time-dependence t1/2. Moreover, the Lagrange multiplier imposing the spherical constraint, or the equivalent
quantity imposing the self-consistent condition on the field modulus, approach their asymptotic values with the
same t−1 algebraic law.

One can then naturally ask whether the two models, endowed now with conservative dynamics, also share the
same scaling properties. However, this is not the case. To start with, interrupted ageing properties after quenches
to the critical dynamic phase transition of the quantum O(N) model [34, 35, 36, 37, 38, 39, 40, 41, 42, 43] were
derived in [38]. In the model here considered, interrupted ageing in critical quenches, if present, does not last
sufficiently long to be measurable and is therefore irrelevant.

A Correlation with the initial configuration
We recall here a way to derive the relation q0 = √qinq, obtained for models with a complex structure of

metastable states, such as the p-spin spherical model with p ≥ 3. This relation, as we showed numerically in the
main text, also holds for the simpler p = 2 model.

The analysis of q0 enables us to draw a link with the TAP states. In fact, the long-term limit of the correlation
function with the initial condition, Eq. (35) can also be written as

q0 = 1
N

∑
i

〈si(0)si(∞)〉 = 1
N

∑
i

〈si(0)〉〈si(∞)〉 = 1
N

∑
i

mi(0)mi(∞) , (67)

where the set {mi(0)} and {mi(∞)} are the local magnetisations of the TAP state in which the system is
initialised and the one reached asymptotically, at t→ +∞. Recalling that

mi(0) = √qin σi(0) and mi(∞) = √q σi(∞) (68)

with
1
N

∑
i

σi(0)σi(0) = 1
N

∑
i

σi(∞)σi(∞) = 1 , (69)

it follows that
q0 = 1

N

√
qinq

∑
i

σi(0)σi(∞) . (70)
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If we finally assume that the angular variables of the initial and final TAP states are identical, and that the
unique effect of the quench has been to rescale their “width” the previous formula boils down to

q0 = √qinq . (71)

This relation is checked, numerically, in Fig. 2 and the agreement is perfect, within our numerical accuracy.
As an example, the dissipative spherical p-spin model verifies this property for a quench with Tin ∈ [Ts, Td].

In fact, the dynamical equations yield, in this case, the two limits

q2
0 = q

[
1− µ(1− q)2qp−2

]
= q∗q ,

Tin

T (1− q) = µqp−2
0 (72)

where in the first equation we defined q∗ as the factor between square brackets and the

µ ≡ pJ2

2T 2 . (73)

Thus, injecting the second equation in (72) into the first one it follows that

Tin

T (1− q) = µ(q∗q)
p
2−1 , (74)

and then

1 =
√
µ
pJ2

2T 2
in

(1− q)(q∗q)
p
2−1 =

√
pJ2

2T 2
in

(1− q∗) q∗
p
2−1

. (75)

This last equation is exactly the one that determines the order parameter when the system is at equilibrium
with T = Tin. Therefore, q∗ = qin and q0 = √qinq. If after the quench the system stays in the same TAP state,
only the order parameter q changes.
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