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a b s t r a c t

Mitogen-activated protein kinase (MAPK) signaling pathways play an essential role in the transduction

of environmental stimuli to the nucleus, thereby regulating a variety of cellular processes, including cell

proliferation, differentiation and programmed cell death. The components of the MAPK extracellular activated

protein kinase (ERK) cascade represent attractive targets for cancer therapy as their aberrant activation is

a frequent event among highly prevalent human cancers. MAPK networks are a model for computational

simulation, mostly using ordinary and partial differential equations. Key results showed that these networks

can have switch-like behavior, bistability and oscillations. In this work, we consider three representative ERK

networks, one with a negative feedback loop, which present a binomial steady state ideal under mass-action

kinetics. We therefore apply the theoretical result present in [27] to find a set of rate constants that allow two

significantly different stable steady states in the same stoichiometric compatibility class for each network.

Our approach makes it possible to study certain aspects of the system, such as multistationarity, without

relying on simulation, since we do not assume a priori any constant but the topology of the network. As the

performed analysis is general it could be applied to many other important biochemical networks.

© 2015 Elsevier Inc. All rights reserved.
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. Introduction

Mitogen-activated protein kinases (MAPKs) are serine/threonine

inases that play an essential role in signal transduction by modu-

ating gene transcription in the nucleus in response to changes in

he cellular environment. MAPKs participate in a number of disease

tates including chronic inflammation and cancer [20,26,29,35] as

hey control key cellular functions, including differentiation, prolifer-

tion, migration and apoptosis. In humans, there are several members

f the MAPK superfamily which can be divided in groups as each group

an be stimulated by a separate protein kinase cascade that includes

he sequential activation of a specific MAPK kinase kinase (MAPKKK)

nd a MAPK kinase (MAPKK), which in turn phosphorylates and ac-

ivates their downstream MAPKs [26,33]. These signaling modules

ave been conserved throughout evolution, from plants, fungi, ne-

atodes, insects, to mammals [34]. Among the MAPK pathways, the

echanisms governing the activation of ERK2 have been the most

xtensively studied, the MAPKK is MEK2 and the MAPKKK is RAF

hich can be activated by RAS. Impeding the function of ERK2 pre-
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ents cell proliferation in response to a variety of growth factors [25]

nd its overactivity is sufficient to transform cells in culture [22]. RAS,

AF and MEK2 have been intensively studied for the development

f cancer inhibitors with several of them in the market. Indeed, the

ealth of available cellular and biochemical information on the na-

ure of the signaling routes that activate MAPK has enabled the use of

omputational approaches to study MAPK activation, thus becoming

prototype for systems biology studies [15,30].

In the present work, we study the capacity for multistationarity

f three systems which involve the activation of a MAPKKK then a

APKK and finally a MAPK and are of general application but have

een proposed previously for the extracellular signal-regulated ki-

ase (ERK) cascade: The first network is the most frequent in the

iterature [16,18] and is the simple sequential activation. The second

ne differs from the first one in the phosphatases, which we assume to

e equal for the last two layers of the cascades [11]. The third network

ncludes a negative feedback between pRAF and ppERK in which the

atter acts as a kinase for the former, producing a new phosphorylated

nd inactive form Z [1,8,12].

The three networks are summarized in Fig. 1.

In general, the existence of (positive) steady states and the capac-

ty for multistationarity of chemical reaction systems is difficult to

stablish. Even for mass-action systems, the large number of inter-

cting species and the lack of knowledge of the reaction rate constants

http://dx.doi.org/10.1016/j.mbs.2014.12.010
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Fig. 1. (A) The ERK network with sequential activation. (B) The ERK network with the same phosphatase for MEK and ERK. (C) The ERK network with a negative feedback.

o

m

d

s

c

a

m

f

b

o

s

m

o

i

t

s

S

F

p

t

f

s

s

A

2

n

become major drawbacks. If, however, the steady state ideal of the

system is a binomial ideal, it was shown in [27] – and recently gen-

eralized in [24] – that these questions can be answered easily. Such

systems are said to have toric steady states. For these networks there

are necessary and sufficient conditions that allow to decide about

multistationarity and they take the form of linear inequality systems

(based on previous work by [3]).

In this work we show that the three MAPK systems we study have

toric steady states, which allows us to exploit the results in [27] for

determining the existence of positive steady states and the capacity

for multistationarity of each system. In fact, each one of the three

systems has many choices of rate constants for which they show

multistationarity. We present, in the corresponding section, a certain

choice of reaction constants for which each system has two different

stable steady states. We can moreover conclude that the negative

feedback loop is not necessary for the presence of bistability and

neither does it prevent the system from this characteristic.

A similar mathematical analysis to signaling networks has been

done in previous works. In [2], the authors present necessary and

sufficient conditions for multistationarity for mass-action networks

with certain structural properties and they also apply their results

on some simple ERK cascade networks. They translate the question

of multistationarity into a system of linear inequalities although they

do not consider the possibility of these networks having toric steady

states, while we do take this characteristic into account thus simpli-

fying the way to prove the existence of more than one steady state.

In [14], the authors describe a sign condition that is necessary and

sufficient for multistationarity in n-site sequential, distributive phos-

phorylation.

Multistationarity in signaling pathways has also been studied in

[9,10]. In the former, the authors study small motifs that repeatedly
ccur in these pathways. They include examples of a cascade with

onostationarity and another with multistationarity, and although

ifferent tools are used for this result, it is possible to check that both

ystems have toric steady states. In [9], the focus is on a signaling

ascade with n layers and one cycle of post-translational modification

t each layer, such that the modified protein of one layer acts as

odifier in the next layer, which is shown to have one steady state

or fixed total amounts of substrates and enzymes. The analysis is

ased on variable elimination, but it could be shown that these types

f cascades also have toric steady states.

In our work we show that biologically relevant networks have toric

teady states, which simplifies the way to translate the question of

ultistationarity, i.e., of finding two different (nonnegative) solutions

f a system of polynomial equations, into solving systems of linear

nequalities.

We give in Section 2 the theoretical background needed to study

he capacity for multistationarity of the ERK cascades via toric steady

tates. The main theorem is adapted from [27]. We then apply in

ection 3 our results to three specific ERK cascades presented in

ig. 1: the standard ERK cascade; the ERK cascade with the same

hosphatase for the MEK and ERK layers; and the ERK cascade with

he same phosphatase for the MEK and ERK layers, and a negative

eedback loop. We show that we can find reasonable reaction con-

tants and concentrations that allow to identify two different stable

teady states by modeling with ordinary differential equations. An

ppendix contains the details of the computations.

. Methods

We start this section with a brief presentation of the corresponding

otation and we finish by revisiting the theorem obtained in [27]
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hich we will use to prove the capacity for multistationarity of the

eneral MAPK’s signaling networks with and without feedback. We

odel our networks under mass-action kinetics.

We introduce the notation with an example: the network for the

mallest cascade.

xample 2.1. For the two-layer cascade of one cycle of post-

ranslational modification at each layer we have the following

etwork:

S0 S1

F

E

P0 P1

F

S1

here we consider the reactions:

S0 + E
k1

�
k2

ES0
k3→ S1 + E

S1 + F
k4

�
k5

FS1
k6→ S0 + F

P0 + S1

k7

�
k8

S1P0
k9→ P1 + S1

P1 + F
k10

�
k11

FP1
k12→ P0 + F

The network in Example 2.1 consists of ten species S0, S1, P0, P1,

, F, ES0, S1P0, FS1 and FP1 and twelve complexes: S0 + E, ES0, S1 + E,

1 + F, FS1, S0 + F, P0 + S1, S1P0, P1 + S1, P1 + F, FP1 and P0 + F. These

omplexes are connected by twelve reactions, where each reaction is

ssociated with a rate constant ki. In the ordering chosen here, the first

eaction would be S0 + E
k1→ ES0 with rate constant k1. In this reaction,

he complex S0 + E reacts to the complex ES0, hence S0 + E is called

duct complex and ES0 product complex.

We denote with [·] the concentration of a species and then cor-

espond to each concentration a variable xi. For example, we can

onsider:

x1 ↔ [S0], x2 ↔ [S1], x3 ↔ [P0], x4 ↔ [P1], x5 ↔ [E],

x6 ↔ [F], x7 ↔ [ES0], x8 ↔ [S1P0], x9 ↔ [FS1], and

x10 ↔ [FP1].

We associate to each species the corresponding canonical vector of
10 (e1 to S0, e2 to S1, . . . ). Then every complex can be represented by

he sum of its constituent species (use yi to denote complex vectors):

1 = e1 + e5 for S0 + E, and so on.

Let us call s the number of species, m the number of complexes,

nd r the number of reactions. Which, for the running example, would

e s = 10, m = 12, and r = 12.

Regarding the equations that describe the dynamics of the bio-

hemical network, under mass-action kinetics, reactions contribute

roduction and consumption terms consisting of monomials like

1x1x5 to the rates of formation of the species in the network. This

esults in a system of ordinary differential equations (ODEs), dx/dt =
(x; k), in which each component rate function fi(x; k) is a polyno-

ial in the state variables x1, x2, · · · , xs ∈ R and k1, · · · , kr ∈ R>0 are

ositive rate constants.

The steady states of such ODEs are then zeros of a set of polynomial

quations, f1(x, k) = 0, · · · , fs(x, k) = 0. Computational algebra and

lgebraic geometry provide powerful tools for studying these

olutions [4], and these tools have recently been used to gain new

iological insights, for instance in [5,6,21,31,32]. The rate constants

an now be treated as symbolic parameters, whose numerical values

o not need to be known in advance. The possibility of overriding the
roblems usually arisen by parameters allows more general results

o be obtained than those that can be expected from numerical

imulation [17,32].

The steady state ideal is defined as the set

= 〈f1, f2, . . . , fs〉
=

{
s∑

i=1

gi(x)fi(x) | gi(x) ∈ R[x1, . . . , xs] for 1 ≤ i ≤ s

}
.

We say that the polynomial dynamical system has toric steady

tates if J is a binomial ideal (i.e. the ideal J can be generated by

inomials) and it admits nonnegative zeros.

We will now introduce some matrices and subspaces that will be

seful for studying multistationarity.

The stoichiometric subspace is the vector subspace spanned by the

eaction vectors yk − yj (where there is a reaction from complex yj

o complex yk), and we will denote this space by S . We define the

toichiometric matrix, N, in the following way: if the educt complex

f the i-th reaction is yj, and the product complex is yk, then the i-th

olumn of N is the reaction vector yk − yj. Hence, N is an s × r matrix.

otice that S is exactly Columnspan(N) (i.e. the subspace generated

y the columns of N). For the network in Example 2.1, we obtain:

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 1 0 0 0 0 0 0
0 0 1 −1 1 0 −1 1 1 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 1
0 0 0 0 0 0 0 0 1 −1 1 0

−1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 −1 1 1 0 0 0 −1 1 1
1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0 0 0
0 0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

f ỹi is the vector of the educt complex of the i-th reaction, we can

efine the vector of educt complex monomials

(x) := (xỹ1 , xỹ2 , . . . , xỹr )t.

In our example, this vector would be:

(x) = (x1x5, x7, x7, x2x6, x9, x9, x2x3, x8, x8, x4x6, x10, x10)
t.

e also define k ∈ R
r
>0 to be the vector of reaction rate constants: ki

s the rate constant of the i-th reaction. A chemical reaction system

an then be expressed as:

˙ = N diag(k)φ(x).

he vector ẋ lies in S for all time t. In fact, a trajectory x(t) begin-

ing at a positive vector x(0) = x0 ∈ R
s
>0 remains in the stoichiometric

ompatibility class (x0 + S)∩ R
s
≥0 for all positive time. The equations

f x0 + S give rise to the conservation relations of the system.

In our example, the conservation relations are:

1 + x2 + x7 + x8 + x9 = C1

x3 + x4 + x8 + x10 = C2 (1)

x5 + x7 = C3

x6 + x9 + x10 = C4

hese conservation relations in 1 can be translated as the conservation

f the total amounts of the first-layer substrate, S, the second-layer

ubstrate, P, and the enzymes E and F, respectively.

A chemical reaction system exhibits multistationarity if there exists

stoichiometric compatibility class with two or more steady states

n its relative interior. A system may admit multistationarity for all,

ome, or no choices of positive rate constants ki; if such rate constants

xist, then we say that the network has the capacity for multistation-

rity.
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We now recognize that the set ker(N)∩ R
r
>0, if nonempty, is the

relative interior of the pointed polyhedral cone ker(N)∩ R
r
≥0. To uti-

lize this cone, we collect a finite set of generators (also called “ex-

treme rays”) of the cone ker(N)∩ R
r
≥0 as columns of a nonnegative

matrix M.

For network in Example 2.1, a possible matrix M is:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 1 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 1
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 1
0 0 0 1 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

If the steady state ideal J is generated by the binomials bix
ŷj − bjx

ŷi ,

let A ∈ Z
w×s be a matrix of maximal rank such that ker(A) equals the

span of all the differences ŷj − ŷi. For the mass-action system arising

from the network in Example 2.1, the ideal J can be generated by the

binomials

k1x1x5 − (k2 + k3)x7 k10x4x6 − (k11 + k12)x10

k4x2x6 − (k5 + k6)x9 k3x7 − k6x9

k7x2x3 − (k8 + k9)x8 k9x8 − k12x10

Then, a possible matrix A is

A =

⎛
⎜⎜⎝

1 1 0 1 0 0 1 1 1 1
1 0 1 0 0 1 1 1 1 1
0 0 1 1 0 0 0 1 0 1
0 0 1 0 1 1 1 1 1 1

⎞
⎟⎟⎠

We define the sign of a vector v ∈ R
s as a vector sign(v) ∈ {−, 0, +}s

whose i-th coordinate is the sign of the i-th entry of v. We recall that

the rowspan of a matrix is the linear subspace spanned by its rows.

The following theorem from [27] is the one that we will use to

study the multistationarity of MAPK’s networks with and without

feedback.

Theorem 2.2. Given matrices A and N as above, and nonzero vectors

α ∈ Rowspan(A) and σ ∈ Columnspan(N) with

sign(α) = sign(σ ), (2)

then two steady states x1 and x2 and a reaction rate constant vector k

that witness multistationarity arise in the following way:

(
x1

i

)
i=1, ..., s

=
{

σi

eαi −1
, if αi �= 0

x̄i > 0, if αi = 0,
(3)

where x̄i denotes an arbitrary positive number, and

x2 = diag(eα)x1 (4)

k = diag(φ(x1))−1 M λ, (5)

for any nonnegative vector λ ∈ R
p
≥0 for which M λ ∈ R

r
>0. Conversely,

any witness to multistationarity (given by some x1, x2 ∈ R
s
>0, and k ∈

R
r
>0) arises from Equations (2)–(5) for some vectors α ∈ Rowspan(A)and

σ ∈ Columnspan(N) that have the same sign.

3. Results

We prove in this section the capacity for multistationarity of three

networks that are frequently used to represent the principal kinase
ransduction pathways in eukaryotic cells, which are the MAPK cas-

ades. The first network is the most frequent in the literature [16,18].

he second one differs from the first one in the phosphatases, which

e assume to be equal for the last two layers of the cascades [11]. The

hird network includes a negative feedback between pRAF and ppERK

n which the latter acts as a kinase for the former, producing a new

hosphorylated and inactive form Z [1,8,12]. The three networks are

ummarized in Fig. 1.

We determine that the ERK cascades present toric steady states,

nd this helps us to prove the capacity for multistationarity of each

ystem. We then determine reaction constants and concentrations

hat witness multistability. Namely, we analyze the ODEs that arise

nder mass-action for each network, and we find that the correspond-

ng steady state ideals are binomial. We show, in different Appendixes,

n order for the species of each network, the conservation relations,

nd binomials that generate the mentioned ideal. We also present a

atrix A as in Section 2 for studying multistationarity, and we include

he corresponding matrices N and M, and vector φ(x). By solving three

ifferent systems of sign equalities, we find vectors α ∈ Rowspan(A)
nd σ ∈ S with sign(αi) = sign(σi) (for each system) as required by

heorem 2.2 for proving the capacity for multistationarity. With the

id of these vectors, we can build two different steady states and a

ector of reaction constants which, according to Theorem 2.2, witness

o multistationarity in each case in the corresponding stoichiometric

ompatibility class defined by the constants (i.e. total amounts). It can

e checked that the steady states we find are stable.

We note that the matrices and vectors presented in the Appendixes

an furthermore be used to compute different values for the rate con-

tants where multistationarity occurs, and also to compute different

teady states in other stoichiometric compatibility classes. It is simply

question of playing with the values of α ∈ Rowspan(A), σ ∈ S and

he nonnegative vector λ ∈ R
p
≥0.

In the following subsections we treat each network separately.

umerical computations and simulations in this article were per-

ormed with MATLAB [23], while computations regarding ideals and

ubspaces were done with Singular [7].

.1. The network without feedback and three phosphatases

We start by studying the network for the signaling pathway of

RK without feedback (see Fig. 1(A); [16,18]). This network entails

= 22 species, m = 26 complexes and r = 30 reactions which are as

ollows:

RAF + RAS
k1

�
k2

RAS-RAF
k3→ pRAF + RAS

pRAF + RAFPH
k4

�
k5

RAF-RAFPH
k6→ RAF + RAFPH

MEK + pRAF
k7

�
k8

MEK-pRAF
k9→ pMEK + pRAF

k10

�
k11

pMEK-pRAF
k12→ ppMEK + pRAF

ppMEK + MEKPH
k13

�
k14

ppMEK-MEKPH
k15→ pMEK + MEKPH

k16

�
k17

pMEK-MEKPH
k18→ MEK + MEKPH

ERK + ppMEK
k19

�
k20

ERK-ppMEK
k21→ pERK + ppMEK

k22

�
k23

pERK-ppMEK
k24→ ppERK + ppMEK

ppERK + ERKPH
k25

�
k26

ppERK-ERKPH
k27→ pERK + ERKPH

k28

�
k29

pERK-ERKPH
k30→ ERK + ERKPH
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Fig. 2. (a) The normalized trajectory of ppERK vs. time for two different initial values in the same stoichiometric compatibility class. The nonzero entries of the initial value for

the green curve are [RAF]=12.8629, [MEK] = 11.9697, [ERK] = 23.3465, [RAS] = 2, [RAFPH] = 2, [MEKPH] = 7.3058 and [ERKPH] = 3.2013. The nonzero entries of the initial value

for the blue curve are the same except for [MEK] = 4.5697 and [ppMEK] = 7.4. (b) Dose-response curve for the network without feedback. The horizontal axis represents the total

amount of the dose ([RAS]+[RAS-RAF]), and the vertical axis stands for the normalized equilibrium values of [ppERK]. For each value of RAS, the corresponding equilibria belong to

the same stoichiometric compatibility class. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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We can prove that the corresponding mass-action system is ca-

able of reaching two significantly different (stable) steady states in

he same stoichiometric compatibility class. We refer the reader to

ppendix A for the corresponding computations. Fig. 2 pictures this

eature of the system.

.2. The network without feedback and two phosphatases

We now study the network for the signaling pathway of ERK with-

ut feedback and the same phosphatase for both, MEK and ERK (see

ig. 1(B); [11]). This network entails s = 21 species, m = 26 complexes

nd r = 30 reactions which are:

RAF + RAS
k1

�
k2

RAS-RAF
k3→ pRAF + RAS

pRAF + RAFPH
k4

�
k5

RAF-RAFPH
k6→ RAF + RAFPH

MEK + pRAF
k7

�
k8

MEK-pRAF
k9→ pMEK + pRAF

k10

�
k11

pMEK-pRAF
k12→ ppMEK + pRAF

ppMEK + PH
k13

�
k14

ppMEK-PH
k15→ pMEK + PH

k16

�
k17

pMEK-PH
k18→ MEK + PH

ERK + ppMEK
k19

�
k20

ERK-ppMEK
k21→ pERK + ppMEK

k22

�
k23

pERK-ppMEK
k24→ ppERK + ppMEK

ppERK + PH
k25

�
k26

ppERK-PH
k27→ pERK + PH

k28

�
k29

pERK-PH
k30→ ERK + PH

We depict in Fig. 3 the hysteresis and bistability this network

resents. All the necessary information for this network is presented

n Appendix B.
.3. The network with feedback

We now study a network for the signaling pathway of ERK with

negative feedback between pRAF and ppERK in which the latter

cts as a kinase for the former, producing a new phosphorylated and

nactive form Z (see Fig. 1(C); [1,8,12]). This network consists of s = 25

pecies, m = 32 complexes and r = 36 reactions.

RAF + RAS
k1

�
k2

RAS-RAF
k3→ pRAF + RAS

pRAF + RAFPH
k4

�
k5

RAF-RAFPH
k6→ RAF + RAFPH

MEK + pRAF
k7

�
k8

MEK-pRAF
k9→ pMEK + pRAF

k10

�
k11

pMEK-pRAF
k12→ ppMEK + pRAF

ppMEK + PH
k13

�
k14

ppMEK-PH
k15→ pMEK + PH

k16

�
k17

pMEK-PH
k18→ MEK + PH

ERK + ppMEK
k19

�
k20

ERK-ppMEK
k21→ pERK + ppMEK

k22

�
k23

pERK-ppMEK
k24→ ppERK + ppMEK

ppERK + PH
k25

�
k26

ppERK-PH
k27→ pERK + PH

k28

�
k29

pERK-PH
k30→ ERK + PH

pRAF + ppERK
k31

�
k32

pRAF-ppERK
k33→ Z + ppERK

Z + PH2
k34

�
k35

Z-PH2
k36→ pRAF + PH2

We can prove that the corresponding mass-action system is ca-

able of reaching two significantly different (stable) steady states in
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Fig. 3. For the network without feedback and the same phosphatase for MEK and ERK. (a) The normalized trajectory of ppERK vs. time for two different initial values in the same

stoichiometric compatibility class. The nonzero entries of the initial value for the green curve are [RAF] = 4.1738, [MEK] = 1.9063, [ERK] = 3.7737, [RAS] = 2, [RAFPH] = 2 and [PH]

= 1.3995. The nonzero entries of the initial value for the blue curve are the same except for [MEK] = 0.0063, [ppMEK] = 1.9, [ERK] = 3.5237 and [ppERK] = 0.25. (b) Dose-response

curve for the network without feedback. The horizontal axis represents the total amount of the dose ([RAS] + [RAS-RAF]), and the vertical axis stands for the normalized equilibrium

values of [ppERK]. For each value of RAS, the corresponding equilibria belong to the same stoichiometric compatibility class. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 4. For the network with a negative feedback and the same phosphatase for MEK and ERK. (a) The normalized trajectory of ppERK vs. time for two different initial values in the

same stoichiometric compatibility class. The nonzero entries of the initial value for the green curve are [RAF] = 12.8629, [MEK] = 11.9697, [ERK] = 23.3465, [RAS] = 2, [RAFPH] = 2,

[PH] = 7.3058 and [PH2] = 3.2013. The nonzero entries of the initial value for the blue curve are the same except for [MEK] = 4.5697 and [ppMEK] = 7.4. (b) Dose-response curve for

the network without feedback. The horizontal axis represents the total amount of the dose ([RAS] + [RAS-RAF]), and the vertical axis stands for the normalized equilibrium values

of [ppERK]. For each value of RAS, the corresponding equilibria belong to the same stoichiometric compatibility class. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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a

the same stoichiometric compatibility class. We refer the reader to

Appendix C for the corresponding computations. Fig. 4 pictures this

feature of the system.

4. Discussion

We have applied a useful algebraic tool for studying the capacity

for multistationarity of an important signaling pathway as the MAPK

cascade. We included in our analysis three frequent possible net-

works for describing the MAPK signaling mechanism, which happen
o have, under mass-action kinetics, a binomial steady state ideal. This

llowed us to translate the question of multistationarity to a system

f sign equalities, and so we proved that ERK systems are able to show

ultistationarity for reasonable choices of rate constants.

The application of computational biology and systems biology is

ielding quantitative insight into cellular regulatory phenomena and

large number of papers have appeared that estimate in vivo pro-

ein concentrations and reaction constants of the MAPK signaling

etworks [15]. However, there is no agreement about these values

nd differences of more than two orders of magnitude have appeared
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28]. In this sense, in our case, any nontrivial solution of the linear

nequality system defined by (2) gives two different steady sates and

set of rate constants for which the system has those steady states,

nd both the steady states and the constants are determined explic-

tly. Our results highlight that the robustness of the topology also

olerates changes in protein concentrations and rate constants, al-

owing a similar overall behavior of the network. Concentrations may

ary from one organism to another, and kinetic constants can be reg-

lated by different mechanisms as for example the role of scaffolds in

APK kinase cascades [19]. We also reveal that the MAPK cascades

re robust in the sense that neither the differences in phosphatases

or the presence or absence of feedback loops alter the capacity for

ultistability.

Finally, algebraic methods are proving to be powerful tools for

nswering questions from biochemical reaction network studies. In

articular, they are very useful for addressing matters of steady state

haracterization [17,24]. The same analysis we performed in the

resent work could be applied to many other important biochemical

etworks as long as they present toric steady states. We are currently

eveloping easier (graphical) methods for detecting this character-

stic in enzymatic networks, and we plan to improve the computa-

ional methods for solving the system of sign equalities defined by

quation (2).
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ppendix A. The ERK network without feedback

We present in this Appendix the matrices, vectors, constants and

orresponding (stable) steady states that prove the capacity for mul-

istationarity for the system without feedback and three different

hosphatases for each substrate, presented in Subsection 3.1.

The conservation relations of this system are:

[RAF] + [pRAF] + [RAS-RAF] + [MEK-pRAF] + [pMEK-pRAF]

+[pRAF-RAFPH] = C1

[MEK] + [pMEK] + [ppMEK] + [MEK-pRAF] + [pMEK-pRAF]

+[ERK-ppMEK] + [pERK-ppMEK] + [ppMEK-MEKPH]

+[pMEK-MEKPH] = C2

ERK] + [pERK] + [ppERK] + [ERK-ppMEK] + [pERK-ppMEK]

+[ppERK-ERKPH] + [pERK-ERKPH] = C3

[RAS] + [RAS-RAF] = C4

[RAFPH] + [RAF-RAFPH] = C5

[MEKPH] + [ppMEK-MEKPH] + [pMEK-MEKPH] = C6

[ERKPH] + [ppERK-ERKPH] + [pERK-ERKPH] = C7

here C1, . . . , C7 usually stand, respectively, for [RAF]tot, [MEK]tot,

ERK]tot, [RAS]tot, [RAFPH]tot, [MEKPH]tot, and [ERKPH]tot, the to-

al amounts of the corresponding species.

If we consider the following order of the species:

x1 ↔ [RAF], x2 ↔ [pRAF], x3 ↔ [MEK], x4 ↔ [pMEK],

x5 ↔ [ppMEK], x6 ↔ [ERK], x7 ↔ [pERK], x8 ↔ [ppERK],

x9 ↔ [RAS], x10 ↔ [RAFPH], x11 ↔ [MEKPH],

12 ↔ [ERKPH], x13 ↔ [RAS − RAF], x14 ↔ [MEK − pRAF],
15 ↔ [pMEK − pRAF], x16 ↔ [ERK − ppMEK],

17 ↔ [pERK − ppMEK], x18 ↔ [RAF − RAFPH],

19 ↔ [ppMEK − MEKPH], x20 ↔ [pMEK − MEKPH],

21 ↔ [ppERK − ERKPH], x22 ↔ [pERK − ERKPH],

e obtain the following mass-action system dx/dt = f (x; k)which we

resent in a convenient order:

13(x) = −(k2 + k3)x13 + k1x1x9, f1(x) = k2x13 − k1x1x9 + k6x18,

14(x) = −(k8 + k9)x14 + k7x2x3, f3(x) = k8x14 − k7x2x3+k18x20,

15(x) = −(k11 + k12)x15 + k10x2x4, f5(x) = k12x15 − k14x19

−k13x5x11 − f16 − f17,

16(x) = −(k20 + k21)x16 + k19x5x6, f6(x) = k20x16 − k19x5x6

+ k30x22,

17(x) = −(k23 + k24)x17 + k22x5x7, f8(x) = k24x17 + k26x21

− k25x8x12,

18(x) = −(k5 + k6)x18 + k4x2x10,

19(x) = −(k14 + k15)x19 + k13x5x11,

20(x) = −(k17 + k18)x20 + k16x4x11,

21(x) = −(k26 + k27)x21 + k25x8x12,

22(x) = −(k29 + k30)x22 + k28x7x12,

nd f2 = −f1 − f13 − f14 − f15 − f18, f4 = −f3 − f5 − f14 − f15 − f16 −
17 − f19 − f20, f7 = −f6 − f8 − f16 − f17 − f21 − f22, f9 = −f13, f10 =
f18, f11 = −f19 − f20, f12 = −f21 − f22. (Note that these last equations

ive rise to the conservation relations above.)

Operating linearly on the f ′
i
s, we obtain the following binomials

hat generate the steady state ideal. (They can also be found by com-

uting a reduced Gröbner basis of the ideal generated by the f ′
i
s, with

ny computer algebra system.)

1 = (k2 + k3)x13 − k1x1x9 h9 = (k26 + k27)x21 − k25x8x12

2 = (k8 + k9)x14 − k7x2x3 h10 = (k29 + k30)x22 − k28x7x12

3 = (k11 + k12)x15 − k10x2x4 h11 = k3x13 − k6x18

4 = (k20 + k21)x16 − k19x5x6 h12 = k9x14 − k18x20

5 = (k23 + k24)x17 − k22x5x7 h13 = k12x15 − k15x19

6 = (k5 + k6)x18 − k4x2x10 h14 = k21x16 − k30x22

7 = (k14 + k15)x19 − k13x5x11 h15 = k24x17 − k27x21,

8 = (k17 + k18)x20 − k16x4x11

amely: hi = f12+i for 1 ≤ i ≤ 10, h11 = −f1 − f13, h12 = −f3 − f14,

13 = −f5 − f19 − f16 − f17, h14 = −f6 − f16 and h15 = −f8 − f21.

We the aid of the matrices and vectors we show below, we found

wo steady states for this network. The first one, x1, is approximately:

[RAF] = 3.9412, [pRAF] = 3.9412,

[MEK] = 0.0005, [pMEK] = 0.0439,

[ppMEK] = 1.8241, [ERK] = 0.0084,

[pERK] = 1.1512, [ppERK] = 19.3999,

[RAS] = 0.4048, [RAFPH] = 0.4048,

[MEKPH] = 0.0099, [ERKPH] = 1.4295

[RAS − RAF] = 1.5952, [MEK − pRAF] = 0.0531,

[pMEK − pRAF] = 1.7369, [ERK − ppMEK] = 0.0237,

[pERK − ppMEK] = 0.9915, [RAF − RAFPH] = 1.5952,

[ppMEK − MEKPH] = 7.2949, [pMEK − MEKPH] = 0.0010,

[ppERK − ERKPH] = 0.9915, [pERK − ERKPH] = 0.7803
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The second steady state, x2, is then built as:

[RAF] = 0.4715, [pRAF] = 0.4715,

[MEK] = 0.8619, [pMEK] = 0.0126,

[ppMEK] = 0.0001, [ERK] = 23.1647,

[pERK] = 0.0724, [ppERK] = 0.00003,

[RAS] = 1.3591, [RAFPH] = 1.3591,

[MEKPH] = 6.8520, [ERKPH] = 3.0951

[RAS − RAF] = 0.6409, [MEK − pRAF] = 10.5784,

[pMEK − pRAF] = 0.0597, [ERK − ppMEK] = 0.0032,

[pERK − ppMEK] = 0.0001, [RAF − RAFPH] = 0.6409,

[ppMEK − MEKPH] = 0.2506, [pMEK − MEKPH] = 0.2032,

[ppERK − ERKPH] = 0.0001, [pERK − ERKPH] = 0.1062

Both steady states can be shown to be stable, and the total amounts

defining the corresponding stoichiometric compatibility class are

[RAF]tot = 12.8629, [MEK]tot = 11.9697, [ERK]tot = 23.3465,

[RAS]tot = 2, [RAFPH]tot = 2, [MEKPH]tot = 7.3058, and

[ERKPH]tot = 3.2013.

The rate constants that arise for the system to have the previous

stable steady states are the following:

k1 = 1.2537, k2 = 0.6269, k3 = 0.6269, k4 = 1.2537,

k5 = 0.6269, k6 = 0.6269, k7 = 5.3900, k8 = 0.1882,

k9 = 0.0188, k10 = 5.8335, k11 = 0.5757, k12 = 0.0058,

k13 = 6.1030, k14 = 0.0137, k15 = 0.0014, k16 = 4.6076,

k17 = 0.9800, k18 = 0.9800, k19 = 7.1500, k20 = 0.4218,

k21 = 4.2181, k22 = 0.9524, k23 = 1.0086, k24 = 1.0086,

k25 = 0.0721, k26 = 1.0086, k27 = 1.0086, k28 = 0.6684,

k29 = 1.2816, k30 = 0.0128.

Remark A.1. The numerical results present here are only intended to

show that our method is able to produce rate constants that can lead

to bistability and which are in ranges that are in agreement with ob-

servations in previous experimental research. However, the reported

values for rate constants in the literature show some differences from

each other [13,18]. Taking some constraints into account, we chose

those numerical results (rate constants and total protein amounts)

that are more likely to be reliable in biology.

The matrix A we chose from the binomials above can be found be-

low. The vectors α ∈ Rowspan(A) and σ ∈ S with sign(αi) = sign(σi)
for i = 1, . . . , 22 that we found are:

α = (−2.1233, −2.1233, 7.4172, −1.2477, −9.9127, 7.9181,

−2.7671, −13.4522, 1.2113, 1.2113, 6.5417,

0.7725, −0.9120, 5.2940, −3.3710, −1.9946, −12.6797,

−0.9120, −3.3710, 5.2940, −12.6797, −1.9946),

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0
0 1 −1 −1 −1 2 1
0 0 1 0 −1 2 1
0 0 0 1 2 −4 −2
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
= (−3.4697, −3.4697, 0.8613, −0.0313, −1.8240, 23.1563,

−1.0789, −19.3998, 0.9544, 0.9544, 6.8421, 1.6656,

−0.9544, 10.5253, −1.6772, −0.0205, −0.9915, −0.9544,

−7.0443, 0.2022, −0.9915, −0.6741),

here the sign pattern is

ign(α) = sign(σ )

= (−, −, +, −, −, +, −, −, +, +, +, +,

−, +, −, −, −, −, −, +, −, −).

We present below the matrices N and M, and vector λ where

he order for the reactions is defined by the subindices of the rate

onstants.

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (1, 1, 1, 0.01, 0.001, 1, 0.01, 0.1, 0.001, 0.01, 0.1, 1, 1, 1, 1).

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 0 1 0 1 0 0 0 1 0 1
0 0 −1 0 0 0 1 −2 0 0 1 0 0 −2
0 0 0 1 0 0 0 1 0 0 0 0 0 1
0 0 0 −1 0 0 0 0 1 0 0 0 1 0
1 1 0 0 1 0 0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠



M. Pérez Millán, A.G. Turjanski / Mathematical Biosciences 262 (2015) 125–137 133

N

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

−1

0

0

0

A

p

c

t

p

+

i

x

x

x

b

t

d

[

[

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 1 −1 1 0 −1 1 1 −1 1 1 0 0

0 0 0 0 0 0 −1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 −1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

ppendix B. The ERK network without feedback and two

hosphatases

We present in this Appendix the matrices, vectors, constants and

orresponding (stable) steady states that prove the capacity for mul-

istationarity for the system without feedback and two phosphatases,

resented in Subsection 3.2.
The conservation relations of this system are:

[RAF] + [pRAF] + [RAS-RAF] + [MEK-pRAF] + [pMEK-pRAF]

+[pRAF-RAFPH] = C1

[MEK] + [pMEK] + [ppMEK] + [MEK-pRAF] + [pMEK-pRAF]

[ERK-ppMEK] + [pERK-ppMEK] + [ppMEK-PH] + [pMEK-PH] = C2

[ERK] + [pERK] + [ppERK] + [ERK-ppMEK] + [pERK-ppMEK]

+[ppERK-PH] + [pERK-PH] = C3

[RAS] + [RAS-RAF] = C4

[RAFPH] + [RAF-RAFPH] = C5

[PH] + [ppMEK-PH] + [pMEK-PH] + [ppERK-PH] + [pERK-PH] = C6

Under mass-action kinetics, the steady state ideal for this network

s binomial. In fact, if we consider the following order of the species:

x1 ↔ [RAF], x2 ↔ [pRAF], x3 ↔ [MEK], x4 ↔ [pMEK],

x5 ↔ [ppMEK], x6 ↔ [ERK], x7 ↔ [pERK], x8 ↔ [ppERK],

x9 ↔ [RAS], x10 ↔ [RAFPH], x11 ↔ [PH], x12 ↔ [RAS − RAF],

13 ↔ [MEK − pRAF], x14 ↔ [pMEK − pRAF], x15 ↔ [ERK − ppMEK],

16 ↔ [pERK − ppMEK], x17 ↔ [RAF − RAFPH], x18 ↔ [ppMEK − PH],

19 ↔ [pMEK − PH], x20 ↔ [ppERK − PH], x21 ↔ [pERK − PH],

operating linearly on the ODEs, as in Appendix A, we obtain these

inomials that generate the steady state ideal:

(k2 + k3)x12 − k1x1x9 (k5 + k6)x17 − k4x2x10 k3x12 − k6x17

(k8 + k9)x13 − k7x2x3 (k14 + k15)x18 − k13x5x11 k9x13 − k18x19

(k11 + k12)x14 − k10x2x4 (k17 + k18)x19 − k16x4x11 k12x14 − k15x18

(k20 + k21)x15 − k19x5x6 (k26 + k27)x20 − k25x8x11 k21x15 − k30x21

(k23 + k24)x16 − k22x5x7 (k29 + k30)x21 − k28x7x11 k24x16 − k27x20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 1 1 −1 1 1 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 −1 1 0 0 0 1 −1 1 0

0 0 0 0 0 0 0 0 1 −1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 1 1 −1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We the aid of the matrices and vectors we show below, we found

wo steady states for this network. The first one, x1, is approximately:

[RAF] = 1, [pRAF] = 1,

[MEK] = 0.0939, [pMEK] = 0.1582,

[ppMEK] = 0.1019, [ERK] = 0,

[pERK] = 0.0116, [ppERK] = 3.5988,

[RAS] = 1, [RAFPH] = 1,

[PH]0.0210 =, [RAS − RAF] = 1,

[MEK − pRAF] = 0.0157, [pMEK − pRAF] = 0.1582,

[ERK − ppMEK] = 0, [pERK − ppMEK] = 0.0816,

[RAF − RAFPH] = 1, [ppMEK − PH] = 1.2656,

[pMEK − PH] = 0.0313, [ppERK − PH] = 0.0816,

[pERK − PH] = 0

The second steady state, x2, would then be:

[RAF] = 1, [pRAF] = 1,

[MEK] = 0.6939, [pMEK] = 0.0582,

[ppMEK] = 0.0019, [ERK] = 1.4000,

[pERK] = 1.4116, [ppERK] = 0.3988,

[RAS] = 1, [RAFPH] = 1,

[PH] = 0.4210, [RAS − RAF] = 1,

[MEK − pRAF] = 0.1157, [pMEK − pRAF] = 0.0582,

[ERK − ppMEK] = 0.1, [pERK − ppMEK] = 0.1816,

[RAF − RAFPH] = 1, [ppMEK − MEKPH] = 0.4656,

[pMEK − MEKPH] = 0.2313, [ppERK − ERKPH] = 0.1816,

[pERK − ERKPH] = 0.1

Both steady states can be shown to be stable, and the total amounts

efining the corresponding stoichiometric compatibility class are

RAF]tot = 4.1738, [MEK]tot = 1.9063, [ERK]tot = 3.7737,

RAS]tot = 2, [RAFPH]tot = 2, and [PH]tot = 1.3995.
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The rate constants that arise for the system to have the previous

stable steady states are the following:

k1 = 2, k2 = 1, k3 = 1, k4 = 2,

k5 = 1, k6 = 1, k7 = 1.1713, k8 = 6.3891,

k9 = 0.6389, k10 = 6.9533, k11 = 6.3212, k12 = 0.6321,

k13 = 93.6799, k14 = 0.0790, k15 = 0.0790, k16 = 6.0322,

k17 = 0.3195, k18 = 0.3195, k19 = 18.6873, k20 = 0.2440,

k21 = 0.2440, k22 = 16.9005, k23 = 0.1226, k24 = 0.1226,

k25 = 13.3910, k26 = 12.2554, k27 = 0.1226, k28 = 4.1482,

k29 = 24.3960, k30 = 0.2440.

The matrix A we chose from the binomials above is depicted below.

The vectors α ∈ Rowspan(A) and σ ∈ S with sign(αi) = sign(σi) for

i = 1, . . . , 21 that we found are

α = (0, 0, 2, −1, −4, 11.8, 4.8, −2.2, 0, 0, 3, 0, 2,

−1, 7.8, 0.8, 0, −1, 2, 0.8, 7.8),

σ = (0, 0, 0.6, −0.1, −0.1, 1.4, 1.4, −3.2, 0, 0, 0.4, 0, 0.1,

−0.1, 0.1, 0.1, 0, −0.8, 0.2, 0.1, 0.1),

where the sign pattern is

sign(α) = sign(σ )

= (0, 0, +, −, −, +, +, −, 0, 0, +, 0, +,

−, +, +, 0, −, +, +, +).

We present below the matrices N and M, and vector λ where the

order for the reactions is defined by the subindices of the rate con-

stants.

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0

0 1 −1 −1

0 0 0 0

1 0 0 0

0 1 −1 0

0 −1 2 1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 1 −1 1 0 −1 1 1 −1 1 1 0 0

0 0 0 0 0 0 −1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 1

1 −1 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 −1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (1, 1, 1, 0.1, 0.1, 0.01, 0.00001, 0.01, 1, 0.001, 1, 0.01, 0.1, 0.01,

0.00001).

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

3 1 −1 0 −1 1 0 0 0 2 0 0 0 0 0 2

1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1

0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

−2 −1 0 0 −1 0 0 0 1 −1 0 0 1 0 0 −1

0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 1 1 −1 1 1 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 −1 1 0 0 0 1 −1 1 0

0 0 0 0 0 0 0 0 1 −1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 1 0 0 0 0 0 0 −1 1 1 −1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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ppendix C. The ERK network with feedback

We present in this Appendix the matrices, vectors, constants and

orresponding (stable) steady states that prove the capacity for mul-

istationarity for the system with a negative feedback loop, presented

n Subsection 3.3.

The conservation relations of this system are:

[RAF] + [pRAF] + [RAS-RAF] + [MEK-pRAF] + [pMEK-pRAF]

+[pRAF-RAFPH] + [pRAF-ppERK] + [Z-PH2] + [Z] = C1

[MEK] + [pMEK] + [ppMEK] + [MEK-pRAF] + [pMEK-pRAF]

[ERK-ppMEK] + [pERK-ppMEK] + [ppMEK-PH] + [pMEK-PH] = C2

[ERK] + [pERK] + [ppERK] + [ERK-ppMEK] + [pERK-ppMEK]

+[ppERK-PH] + [pERK-PH] + [pRAF-ppERK] = C3

[RAS] + [RAS-RAF] = C4

[RAFPH] + [RAF-RAFPH] = C5

[PH] + [ppMEK-PH] + [pMEK-PH] + [ppERK-PH] + [pERK-PH] = C6

[PH2] + [Z-PH2] = C7

Under mass-action kinetics, the steady state ideal for this net-

ork is binomial. In fact, if we consider the following order of the

pecies:

x1 ↔ [RAF], x2 ↔ [pRAF], x3 ↔ [MEK], x4 ↔ [pMEK],

x5 ↔ [ppMEK], x6 ↔ [ERK], x7 ↔ [pERK], x8 ↔ [ppERK],

x9 ↔ [RAS], x10 ↔ [RAFPH], x11 ↔ [PH], x12 ↔ [PH2],

13 ↔ [RAS − RAF], x14 ↔ [MEK − pRAF], x15 ↔ [pMEK − pRAF],

16 ↔ [ERK − ppMEK], x17 ↔ [pERK − ppMEK],

18 ↔ [RAF − RAFPH], x19 ↔ [ppMEK − MEKPH],

20 ↔ [pMEK − MEKPH], x21 ↔ [ppERK − ERKPH],

22 ↔ [pERK − ERKPH], x23 ↔ [pRAF − ppERK],

24 ↔ [Z − PH2], x25 ↔ [Z],

we operate linearly on the ODEs and obtain these binomials that

enerate the steady state ideal:

(k2 + k3)x13 − k1x1x9 (k5 + k6)x18 − k4x2x10 k3x13 − k6x18

(k8 + k9)x14 − k7x2x3 (k14 + k15)x19 − k13x5x11 k9x14 − k18x20

(k11 + k12)x15 − k10x2x4 (k17 + k18)x20 − k16x4x11 k12x15 − k15x19

(k20 + k21)x16 − k19x5x6 (k26 + k27)x21 − k25x8x11 k21x16 − k30x22

(k23 + k24)x17 − k22x5x7 (k29 + k30)x22 − k28x7x11 k24x17 − k27x21

(k32 + k33)x23 − k31x2x8 (k35 + k36)x24 − k34x25x12 k33x23 − k36x24

With the aid of the matrices and vectors we show below, we found

wo steady states for this network. The first one, x1, is approximately:

[RAF] = 0.4723, [pRAF] = 0.4723,

[MEK] = 0.8601, [pMEK] = 0.0128,

[ppMEK] = 0.0001, [ERK] = 23.1985,

[pERK] = 0.0345, [ppERK] = 0.00001,

[RAS] = 1.3584, [RAFPH] = 1.3584,

[PH] = 6.7373 [PH2] = 3.2013

[RAS − RAF] = 0.6416, [MEK − pRAF] = 10.5743,

[pMEK − pRAF] = 0.0608, [ERK − ppMEK] = 0.0033,

[pERK − ppMEK] = 0.000002, [RAF − RAFPH] = 0.6416,

[ppMEK − PH] = 0.2552, [pMEK − PH] = 0.2031,

[ppERK − PH] = 0.000002, [pERK − PH] = 0.1101,

[pRAF − ppERK] = 0.00000003, [Z − PH2] = 0.0000003,

[Z] = 0.0000001
The second steady state, x2, would then be:

[RAF] = 1.0761, [pRAF] = 1.0761,

[MEK] = 0.0048, [pMEK] = 0.1608,

[ppMEK] = 2.6347, [ERK] = 0.0000001,

[pERK] = 0.0045, [ppERK] = 23.0822,

[RAS] = 0.9633, [RAFPH] = 0.9633,

[PH] = 0.0068 [PH2] = 0.7111

[RAS − RAF] = 1.0367, [MEK − pRAF] = 0.1346,

[pMEK − pRAF] = 1.7359, [ERK − ppMEK] = 0.0000004,

[pERK − ppMEK] = 0.0056, [RAF − RAFPH] = 1.0367,

[ppMEK − PH] = 7.2907, [pMEK − PH] = 0.0026,

[ppERK − PH] = 0.0056, [pERK − PH] = 0.00001,

[pRAF − ppERK] = 0.2485, [Z − PH2] = 2.4902,

[Z] = 4.0283

Both steady states can be shown to be stable, and the total amounts

efining the corresponding stoichiometric compatibility class are

[RAF]tot = 12.8629, [MEK]tot = 11.9697, [ERK]tot = 23.3465,

[RAS]tot = 2, [RAFPH]tot = 2, [PH]tot = 7.3058, and

PH2]tot = 3.2013.

The rate constants that arise for the system to have the previous

table steady states are the following:

k1 = 0.0312, k2 = 0.0156, k3 = 0.0156, k4 = 0.0312, k5 = 0.0156,

k6 = 0.0156, k7 = 0.0492, k8 = 0.0009, k9 = 0.0009, k10 = 1.8160,

k11 = 0.1646, k12 = 0.0165, k13 = 3.1717, k14 = 0.0039, k15 = 0.0039,

k16 = 0.2315, k17 = 0.0492, k18 = 0.0492, k19 = 5.0662, k20 = 2.9888,

k21 = 0.2989, k22 = 6.1986, k23 = 6.5645, k24 = 6.5645, k25 = 0.4694,

k26 = 6.5645, k27 = 6.5645, k28 = 0.0474, k29 = 0.0908, k30 = 0.0091,

k31 = 0.0670, k32 = 3.3460, k33 = 3.3460, k34 = 3.1930, k35 = 3.3392,

k36 = 0.3339.

Below we can find the matrix A we chose from the binomials above.

he vectors α ∈ Rowspan(A) and σ ∈ S with sign(αi) = sign(σi) for

= 1, . . . , 25 that we found are

α = (0.8234, 0.8234, −5.1877, 2.5288, 10.2453, −19.1666,

−2.0282, 15.1102, −0.3436, −0.3436, −6.8931, −1.5045,

0.4798, −4.3642, 3.3523, −8.9213, 8.2171, 0.4798,

3.3523, −4.3642, 8.2171, −8.9213, 15.9336, 15.9336,

17.4380)

= (0.6038, 0.6038, −0.8553, 0.1480, 2.6346, −23.1985,

−0.0299, 23.0821, −0.3950, −0.3950, −6.7305, −2.4902,

0.3950, −10.4397, 1.6751, −0.0033, 0.0056, 0.3950,

7.0355, −0.2005, 0.0056, −0.1101, 0.2485, 2.4902,

4.0283),

here the sign pattern is

ign(α) = sign(σ ) = (+, +, −, +, +, −, −, +, −, −, −, −, +,

−, +, −, +, +, +, −, +, −, +, +, +).

We present below the matrices N and M, and vector λ where the

rder for the reactions is defined by the subindices of the rate con-
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1, 0.

0

−1

1

−1

3

0

0

0

0

1

0

0 −
0 −
0

0

0

0

1

0

0

0

0

0

0

0

0

−1

0

0

0

0

0

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

λ = 0.01(1, 1, 1, 1, 1, 0.1, 0.1, 1, 1, 1, 0.001, 0.001, 0.001, 1, 0.1, 0.0000

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 1 0 0 1 0

0 1 −3 −2 −1 1 0 −1 0 −1 0 0 0 −2

0 0 1 1 1 −1 0 1 0 0 0 1 0 1

0 0 −1 −1 −1 2 1 0 0 0 0 0 0 −1

0 0 4 3 2 −2 −1 0 0 0 1 0 0 4

0 0 0 0 0 0 0 0 1 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 −1 1 0 −1 1 1 −1 1 1 0 0 0 0 0

0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 1 0 0 0 1 −1 1

0 0 0 0 0 0 0 0 0 0 0 1 −1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 1 1 −1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0001, 0.00001).

0 0 1 0 0 0 0 0 0 0

0 −1 0 −1 −2 −1 0 0 0 0

0 1 0 1 1 1 0 1 1 0

1 0 0 −1 −1 0 1 0 0 0

0 1 0 3 4 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 −1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 −1 1 0 0 0 1 −1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 −1 1 0 0 0 0 −1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 1 1 −1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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