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Summary

Immunogenicity risk assessment is a critical element in protein drug

development. Currently, the risk assessment is most often performed

using MHC-associated peptide proteomics (MAPPs) and/or T-cell activa-

tion assays. However, this is a highly costly procedure that encompasses

limited sensitivity imposed by sample sizes, the MHC repertoire of the

tested donor cohort and the experimental procedures applied. Recent

work has suggested that these techniques could be complemented by

accurate, high-throughput and cost-effective prediction of in silico models.

However, this work covered a very limited set of therapeutic proteins and

eluted ligand (EL) data. Here, we resolved these limitations by showcas-

ing, in a broader setting, the versatility of in silico models for assessment

of protein drug immunogenicity. A method for prediction of MHC class

II antigen presentation was developed on the hereto largest available mass

spectrometry (MS) HLA-DR EL data set. Using independent test sets, the

performance of the method for prediction of HLA-DR antigen presenta-

tion hotspots was benchmarked. In particular, the method was showcased

on a set of protein sequences including four therapeutic proteins and

demonstrated to accurately predict the experimental MS hotspot regions

at a significantly lower false-positive rate compared with other methods.

This gain in performance was particularly pronounced when compared to

the NetMHCIIpan-3.2 method trained on binding affinity data. These

results suggest that in silico methods trained on MS HLA EL data can

effectively and accurately be used to complement MAPPs assays for the

risk assessment of protein drugs.

Keywords: HLA antigen presentation; HLA eluted ligands; immunogenic-

ity assessment; prediction; protein immunogenicity.

INTRODUCTION

Therapeutic proteins such as antibodies and coagulation

factors are an essential part of modern medicine that pro-

vides treatments for complex diseases including cancer,

rheumatic diseases and haemophilia. Inherently, therapeu-

tic proteins bear the risk that the patient’s immune

system responds to it as foreign. A key example of this is

the generation of antidrug antibodies (ADAs). ADAs have

the potential to neutralize the functional activity of the

drug and to increase drug clearance, ultimately affecting

its pharmacokinetic and pharmacodynamic profiles. In

addition, ADAs can potentially cross-react with non-

redundant endogenous proteins and, in rare cases, elicit

Abbreviations: ADAs, antidrug antibodies; BA, binding affinity; EL, eluted ligand; MAPPs, MHC-associated peptide proteomics;
MCC, Matthews correlation coefficient; MHC-II, major histocompatibility complex class II; MS, mass spectrometry
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anaphylactic reactions, both having detrimental complica-

tions for the patients.1

Failure to identify such immunogenicity risks early in

preclinical stages has critical economical and potential

patient health implications for protein drug development.

A striking example of this includes vatreptacog alfa (VA),

a modified recombinant activated human factor VIIa

(rFVIIa) analogue with improved procoagulant activity.

The VA variant differed from the WT-rFVIIa in 3 amino

acid substitutions, V158D, E296V and M298Q. Due to an

incidence of 11% ADAs in phase 3 of clinical trials, the

development of VA was discontinued. In contrast, there

have been no reports of ADAs with the WT-rFVIIa,

which has been used clinically for more than two dec-

ades.2,3

In view of this, effective means to assess the risk of

therapeutic protein immunogenicity are highly on

demand. ADAs are most often T-cell-dependent and gen-

erated through T-cell activation of B cells. The most

selective step defining T-cell activation is the major histo-

compatibility complex class II (MHC-II) antigen presen-

tation of peptides to T cells,4 and MHC-II presentation is

often utilized as a proxy measure of immunogenicity.1,3

Advancements in mass spectrometry (MS) technologies

have greatly enhanced the sensitivity of MHC-associated

peptide proteomics (MAPPs) assays. The more general

MS HLA ligand elution technique5–7 has been used to

identify large volumes of HLA ligands (so-called eluted

ligand or EL data sets) casting renewed light on the rules

of HLA antigen presentation8–11 and HLA binding

motifs,12,13 and has served as a tool for the identification

of pathogen and cancer neoepitopes.14,15

MHC-associated peptide proteomics is a powerful tool

to identify immunogenic hotspots of biotherapeutics (re-

viewed in Ref. 16), and the main goals of using MAPPs

have been to understand the causes of immunogenicity,

compare biotherapeutic candidates, guide deimmuniza-

tion and investigate immunogenicity observed in the

clinic (reviewed in Ref. 17). In contrast to technologies

based on HLA binding only, MAPPs can identify an

MHC-II peptide repertoire from proteins who have been

taken up, processed and presented by antigen-presenting

cells – thereby identifying more ‘real’ potential T-cell epi-

topes with a lower degree of overpredictiveness. However,

while natural uptake, processing and HLA presentation of

peptides are a prerequisite for the development of high-

affinity ADAs, MAPPs data should not be considered as a

direct prediction of neither T-cell epitopes nor ADA and

immunogenicity towards a given biotherapeutic. Develop-

ment of ADAs is dependent on additional multiple fac-

tors including recognition by T and B cells, immune

status of the patient, route of administration and induc-

tion of tolerance.18,19 Therefore, the ability to trigger

T-cell and ADA responses has to be addressed experimen-

tally subsequently.

Despite the clear benefit of using MAPPs assays to eval-

uate the risk of immunogenicity, this technique is highly

cost-intensive and time-consuming, and the outcome is

limited in sensitivity imposed by sample sizes, the MHC

repertoire of the donor cohort tested and the experimen-

tal procedures applied. On that basis, it would be highly

attractive if accurate high-throughput and cost-effective

prediction models could be developed to complement

these experimental techniques.

Historically, MAPPs data have been difficult to use for

developing MHC-II predictors, as the obtained peptidome

data are multi-allelic, and therefore ‘concealing’ the pep-

tide-to-allele mapping information, which is needed for

training a supervised model. Most in silico MHC-II pre-

diction tools used to predict therapeutic protein

immunogenicity have therefore been trained using

in vitro peptide binding affinity (BA) data.20,21 These data

fail to capture antigen-processing effects.22 In addition,

in vitro peptide BA has proven to be a relative poor cor-

relate to peptide T-cell immunogenicity23 and MHC-II

BA predictors have been demonstrated to share a rela-

tively limited specificity leading to a large proportion of

false-positive predictions and resulting in an overpredic-

tion of potential immunogenicity.10,24–26 In contrast,

MAPPs data (and MS MHC EL data set in general) are a

more rich data source, as information is obtained from

all steps of the antigen processing and presentation

including natural peptide length-preference distribution

and signals of proteolytic cleavage in the termini of the

MAPPs ligands.10,12,27–29 Several studies have also demon-

strated how such EL data can be utilized to train

improved prediction methods for HLA antigen presenta-

tion.11,12,29–31

Recently, Barra et al.32 illustrated how neural networks

could be trained on MS data, which could be effectively

applied to predict HLA-DR antigen presentation hotspots

and T-cell immunogenicity for infliximab and rituximab.

This method showed superior performance to conven-

tional HLA binding prediction methods trained on

in vitro BA data. However, this study was limited in the

amount of data available as only seven donors were

included for the experimental assessment of the inflix-

imab HLA hotspot regions, and no donor HLA-typing

information was available for the rituximab data limiting

the performance evaluation.

In this study, we sought to resolve these limitations

and performed a more profound performance evaluation

of methods for the prediction of HLA antigen presenta-

tion hotspot regions, donor-specific MAPPs experiments

and risk assessment of protein drug immunogenicity.

Here, an extensive novel MAPPs data set combined with

publicly available MS HLA eluted ligand and peptide BA

data was utilized to train a predictor of MHC-II ligand

presentation. The predictor was trained using the

machine-learning framework NNAlign_MA.33 Briefly, the
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framework allows both for the integration of BA and MS

HLA eluted ligand data in the training procedure and for

the motif deconvolution of HLA eluted ligand data from

cell lines expressing multiple HLA molecules. This latter

feature allows the framework to greatly expand the vol-

ume of the accessible training data and the HLA coverage

of the developed predictor.29

To assess the performance of the developed predictor,

it was benchmarked against NetMHCIIpan-3.224 and

MixMHC2pred12 on several independent data sets includ-

ing a set of four protein therapeutics to demonstrate to

what degree the different methods can accurately predict

the experimentally observed MS hotspot regions while

maintaining a low false-positive rate.

MATERIALS AND METHODS

Data sets

Three different data types were used in this study: peptide

BA measurements; single-allele (SA) MS MHC eluted

ligands (EL); and multi-allele (MA) MS MHC EL. Here,

SA EL refers to data obtained from cell lines or experi-

mental settings where only one single MHC molecule is

expressed on the cell, and MA EL refers to data obtained

from cells expressing multiple MHCs.

BA and SA EL data were obtained from Reynisson

et al.29. The BA data included HLA-DR, HLA-DP and

HLA-DQ peptides within a length range of 13–21 amino

acids with IC50 (in nM) transformed to a value within 0–1
range by 1-log(IC50)/log(50 000). The SA EL data

included HLA-DR, HLA-DP and HLA-DQ ligands. MA EL

data were obtained from two sources: partly collected in

Reynisson et al.29 and partly generated in-house. The

Reynisson et al.29 data set included HLA-DR, HLA-DP and

HLA-DQ ligands. Note that the Reynisson data set is to a

very high degree obtained from the publication and data

underlying the MixMHC2pred method.12 The in-house

MA EL data were generated using a standard MAPPs MS-

LC/LC set-up (for details, refer to Supporting informa-

tion). In short, monocytes were isolated from PBMC

obtained from healthy volunteer donors and differentiated

in vitro into immature DCs. DCs were pulsed with the

benchmarked protein of interest and matured overnight

with LPS. Next, DCs were lysed, and HLA-DR molecules

were recovered using L243 mAb immunoprecipitation.

Peptides were eluted from the HLA-DR molecules and

sequenced using LC-MS/MS. Raw MS spectra were anal-

ysed searching against the human reference proteome using

a false discovery rate of (FDR) 5% for ligands derived from

therapeutic proteins and FDR of 1 otherwise. This in-house

data set is available in Tables S1 and S2.

The EL data set was filtered for ligands within length

range of 13–21 amino acids. Donor-specific MA data

sets were merged and duplicates removed. EL data are

positive by nature. For proper neural network training,

it is necessary to train on both positive and negative

data examples. To resolve this, artificial negative data

were generated for each cell line/donor data set as

described in,27 by randomly sampling peptides from the

human proteome, uniformly for each length between 13

and 21 amino acids for five times the amount of the

most represented length of the positive ligands. Peptide

context information included three downstream N-ter-

minal amino acids, three upstream C-terminal amino

acids of the source protein and three N-terminal and

three C-terminal amino acids of the ligand (as

described in Ref. 27). A summary of the different data

sets is given in Table 1.

Three test protein data sets were defined for model

development and benchmarking (for details, refer to Sup-

porting information). Test set 1 and test set 2 consisted of

self-proteins and were used to tune classification threshold

(test set 1, available in Table S3) and perform benchmark

evaluation (test set 2, available in Table S4). The third test

constructed from four therapeutic proteins was used to

showcase the predictive power of the developed model. In

all cases, redundant training instances sharing a 9-mer

common motif or more with one of the test set proteins

were removed prior to training resulting in removal of

5.7% of the training data. The impact of the redundancy

removal in the training data of each test set is detailed in

Table S5. The high overlap between the test sets and the

training data (40–80%) highlights the importance of per-

forming this redundancy reduction step in order to use the

three test sets for reliable performance assessment.

NNAlign_MA training

The model for prediction of HLA antigen presentation

was trained as described earlier29 using the NNA-

lign_MA machine-learning framework. To limit the

effect of performance overestimation and model overfit-

ting, the training data were partitioned with a common

motif clustering algorithm (described in Ref. 34) with a

9-mer motif length corresponding to the MHC-II bind-

ing core. BA and EL training data were clustered

simultaneously and then separated, resulting in five par-

titions for BA and five partitions for EL training data.

In short, the NNAlign_MA framework is based on a

three-layer neural network architecture with two output

values (one for BA and one for EL likelihood) allowing

integration of mixed data types.33 Initially, NNA-

lign_MA is pretrained exclusively with fully annotated

peptide data (BA and SA MS ligand data). The pre-

trained NNAlign_MA network is used to annotate the

most likely HLA restriction of ligands in the MA EL

based on the donor-typing information, casting the MA

data into a SA format, allowing for training also on

the MA data. The annotation step is performed in

ª 2020 John Wiley & Sons Ltd, Immunology 3



every training iteration allowing the model to converge

to an optimal annotation of HLA restriction while also

learning the associated HLA-specific binding motif (for

further details on the NNAlign_MA training, refer to

the Supporting information).

MAPPs predictions and benchmark evaluation

To benchmark the performance for a given predictive

method, a given benchmark protein was in silico-digested

into all possible peptides in the length range of 13–21
amino acids. Next, prediction score was computed for all

digested peptides for each HLA of the given donor. In

case a donor lacked HLA-DRB3, HLA-DRB4 and HLA-

DRB5 typing, DRB3*02:02, DRB3*03:01 and DRB5*01:01
typing was imputed when possible based on their known

linkage disequilibria to DRB1*14:01, DRB1*13:02 and

DRB1*15:01, respectively. The prediction scores were

transformed to percentile ranks by aligning the prediction

score to prediction scores for 100 000 random peptides

uniformly distributed within length range from 13 to 21

for the respective HLA-DR alleles, and afterwards, the

peptides were classified as binders or non-binders

depending on whether the minimal rank across all tested

HLAs was lower or greater than a given threshold. This

threshold was defined by assessing the performance on

test set 1. The performance was estimated from the Mat-

thews correlation coefficient (MCC) between the experi-

mental MAPPs-identified ligands and MAPPs-predicted

binders for each donor in the cohort. To account for sit-

uations where a predicted binder is not identical to but

shares a binding core with a MAPPs ligand, an MCC-core

performance value was also calculated per donor. Here,

all predicted binders with predicted binding cores shared

with one or more of the donor’s target ligands were

counted as true-positive predictions. For both MCC and

MCC-core, the median donor MCC is reported for each

benchmark protein from the donor MCCs.

For visualization, MAPPs profiles were generated for

both target MAPPs and predicted MAPPs ligands. MAPPs

profiles were produced by mapping and stacking ligands

to the benchmark protein sequence obtaining a count for

each position. The position counts were normalized to a

value between 0 and 1 by dividing with the maximal

position count.

NetMHCIIpan-3.224 and MixMHC2pred (v1.1.3)12

were included to establish a baseline and a state-of-the-

art benchmark, respectively. In both cases, a default set-

ting of the predictor together with a tuned percentile

rank classification threshold was used to generate MAPPs

predictions. The HLA-DR allele coverage of

MixMHC2pred is limited to 24 HLA-DR alleles, not cov-

ering all the HLA-DR alleles in the donor cohorts of the

benchmark proteins.

Statistical tests

Statistical significance was evaluated using one-sided

binomial tests excluding ties if not otherwise specified.

RESULTS

Here, we developed a method for prediction of the out-

come of MAPPs assays from a large set of novel MS

MHC eluted ligand data combined with data sets of BA

measurements and MS MHC EL data sets from previous

publications.29 The method is based on an advanced pre-

diction model for peptide MHC antigen presentation,

and its performance was benchmarked against other

state-of-the-art methods and showcased on a panel of

therapeutic proteins (Figure 1).

Training of NNAlign_MA

The essential component of the proposed prediction

framework is a method for accurate prediction of

MHC peptide antigen presentation. This method was

developed using the NNAlign_MA machine-learning

modelling framework to train a predictor on a large

MHC peptidome dataset. NNAlign_MA utilizes a

semi-supervised learning structure to initially leverage

information from SA EL and BA data to annotate

MA EL data, and consecutively iterates this process to

allow for a complete and accurate specificity deconvo-

lution.33 Using this approach, Reynisson et al.29

demonstrated that NNAlign_MA was able to expand

allelic coverage and boost predictive performance for

HLA-II alleles not present in the SA EL data support-

ing the semi-supervised learning structure of NNA-

lign_MA.

Table 1. Training data without exclusion of redundancy to benchmark self-proteins and therapeutic proteins

Type Pos. Rand. neg. Total Donors DR DQ DP

BA 106 429 – 106 429 – 35 27 9

SA EL 88 862 804 465 893 327 33 14 5 2

MA EL 269 506 2 678 445 2 947 951 93 33 52 21

MA EL in-house 372 586 3 456 360 3 828 946 40 29 0 0

ª 2020 John Wiley & Sons Ltd, Immunology4
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NNAlign_MA was trained for integrating an in-house

collection of EL data consisting of close to 375 000

HLA-DR ligands obtained from 221 samples covering 40

distinct HLA-DR molecules, combined with ~100 000

peptide BA measurements, close to 90 000 SA, and

~270 000 MA data points from a Reynisson et al.29 In

total, this data set consists of close to 840 000 MHC–pep-
tide interaction data points covering a potential of 42 dis-

tinct HLA-DR molecules. Three independent evaluation

data sets were constructed and used for model optimiza-

tion (one data set) and performance evaluation (two data

sets) (for details on the different datasets, refer to Materi-

als and methods). The MHC-II antigen presentation pre-

diction model was trained using a fivefold cross-

validation scheme (for details of the hyperparameters,

refer to Materials and methods). The cross-validation per-

formance for EL data sets was a median area under the

ROC curve (AUC) of 0.95, demonstrating the high ability

of NNAlign_MA to classify MHC-II ligands (Table S6).

The deconvolution of HLA-DR restriction for MA EL

data sets was evaluated by producing sequence logo rep-

resentations of individual HLA-DR binding motifs as

described in the Supporting information. Figure 2 dis-

plays sequence logo representations of the binding

motifs from donors 6, 7 and 37. These donors were

selected as representative examples, the complete decon-

volution is shown in Figure S1. From this figure, it is

apparent that NNAlign_MA performs sharp binding

In silico
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SA EL data
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Figure 1. Overview of modelling and benchmark pipeline. Upper panel: An in silico model was developed, trained on MHC-II peptide binding

affinity data (BA), and SA and multi-allele (MA) mass spectrometry EL. The NNAlign_MA model performs HLA motif deconvolution and pre-

dicts peptide HLA antigen presentation likelihood. The model is applied to perform in silico identification of HLA ligands for a protein of inter-

est (test set 1), where a % rank classification threshold is defined. With the given threshold, peptides derived from proteins and protein

therapeutics are predicted to bind to a set of HLA-II alleles (in silico peptides). Lower panel: MAPPs experiments are performed for a protein of

interest in a panel of HLA-typed donors, and donor-specific MS ligand data sets are identified. Identified peptides from self-proteins constitute

MA EL data sets, while peptides derived from protein and protein therapeutics (MAPPs peptides) are used for benchmarking, and ligand hotspot

profiles are generated and compared with in silico profiles
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motif deconvolution across donors, with clearly defined

anchor positions and consistent motifs for alleles shared

between multiple donors (exemplified by the HLA-DR

alleles shared between two or more of the donors

included in the figure). This consistency in binding

motifs of HLA-DR alleles expressed by multiple donors

reflects both the high quality of the EL data included in

this study and the ability of NNAlign_MA to accurately

infer the motifs from MA EL data. The consistency

among HLA-DR motifs across donors sharing the same

alleles was quantified in a pairwise position-specific scor-

ing matrix (PSSM) correlation analysis, resulting in a

median deconvolution consistency score (refer to Mate-

rials and methods for details on this measure) of 0.88

(Figure S2). An estimation of the predicted positive

value (PPV) evaluating the ‘cleanness’ of donor-specific

HLA-DR allele predictions (for details, refer to

Supporting information) resulted in a median PPV of

0.786 (Table S7).

NNAlign_MA outperforms existing MHC-II
predictors in MHC-II antigen presentation prediction

A set of 20 self-proteins was used for tuning the per-

centile rank classification threshold (test set 1) and a set

of 30 self-proteins for benchmarking to NetMHCIIpan24

and MixMHC2pred12 (test set 2). The self-proteins were

randomly selected from a pool of self-proteins with high

ligand coverage (for details on the two test data sets, refer

to Materials and methods and Tables S3,S4).

The proteins from test set 1 were in silico-digested into

all overlapping peptides of length range from 13 to 21

amino acids, and predictions were generated for all donor

HLAs with NNAlign_MA, NetMHCIIpan and
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tion of the 40 donors is included in Figure S1
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MixMHC2pred. Next, the performance of the different

methods was evaluated using MCC and MCC-core mea-

sures (details in Materials and methods) capturing the

overlap between the predicted and experimentally identi-

fied HLA ligands. In short, these measures are defined

from classifying predicted binders and non-binders into

true or false prediction depending on the overlap to the

observed experimental ligands. For the MCC measure, the

overlap was requested to be identical to the observed

ligand in order for a positive prediction to be true, and

for the MCC-core, a more relaxed overlap was requested,

so that only the predicted binding core should be con-

tained within the experimental ligand to be considered as

a true prediction. This MCC-core measure hence allows

slight mismatches between the predicted and the mea-

sured ligands to be counted as positive predictions. Clas-

sification of predicted binders/non-binders was defined

according to percentile rank scores (detailed in Materials

and methods). Optimal percentile rank classification

thresholds were selected based on MCC and MCC-core

performance values for test set 1, resulting in values of

1% rank for NNAlign_MA and MixMHC2pred, and 7%

rank for NetMHCIIpan (Figure S3).

Next, the different methods were benchmarked on the

proteins in test set 2. Here, NNAlign_MA was found to sig-

nificantly outperform both other methods with a median

MCC of 0.21 compared with 0.03 (NetMHCIIpan-3.2,

P-value <0.001) and 0.14 (MixMHC2pred, P-value <0.001)
(Figure 3A). The same pattern was observed when calculat-

ing the MCC-core performance. As expected, we observed

an increased performance for all three methods with a

median performance of 0.61 for NNAlign_MA, 0.36 for

NetMHCIIpan-3.2 and 0.47 for MixMHC2pred. Also here,

the performance of NNAlign_MA was significantly supe-

rior to the two other methods (P-value <0.001 and

P-value = 0.01; Figure 3B). Note that the performance val-

ues of NetMHCIIpan-3.2 and in particular MixMHC2pred

most likely are overestimated due to the overlap between

the training data of MixMHC2pred and the test set 2 evalu-

ation data (Table S5).

To visualize the overlap between the predicted and

MS-identified HLA-DR-enriched hotspots, ligand profiles

were generated for the different methods. Figure 3C

showcases one such profile for the self-protein P01911.2.

Here, NNAlign_MA shared a higher agreement with the

experimental MS EL data compared with both

MixMHC2pred and NetMHCIIpan-3.2, overall predicting

few false-positive peaks. For instance, NetMHCIIpan and

MixMHC2pred both predict an additional strong peak

towards the N-terminal that does not align with the

MAPPs data. These observations are also reflected in the

MCC performance values for P01911.2 of the different

methods (MCC = 0.24, 0.10 and �0.01; MCC-

core = 0.53, 0.36 and 0.06, for NNAlign_MA,

MixMHC2pred and NetMHCIIpan, respectively). Overall,

these analyses demonstrate the high power of the NNA-

lign_MA method to predict MS-identified HLA-DR-en-

riched hotspots.

Predicting the outcome of MAPPs experiment in
therapeutic proteins

To further test the developed tool, we evaluated its power

to predict the outcome of a series of MAPPs experiments

of therapeutic proteins and compared the performance

with that of NetMHCIIpan-3.2 and MixMHC2pred.

Therapeutic proteins included were vatreptacog alfa (co-

agulation factor VII analogue), coagulation factor X ana-

logue (referred to as factor X), liraglutide peptide

backbone (GLP-1 agonist) and infliximab (data obtained

from Barra et al.32 and Karle et al.35).

This benchmark confirmed the overall superior perfor-

mance of NNAlign_MA and MixMHC2pred compared to

NetMHCIIpan-3.2 with average MCC and MCC-core val-

ues over the four therapeutic proteins (five protein

chains) of MCC 0.26, 0.20 and 0.10 and MCC-core 0.72,

0.67 and 0.53 for NNAlign_MA, MixMHC2pred and

NetMHCIIpan-3.2, respectively (Table S8). Note that also

here, NetMHCIIpan-3.2 and in particular MixMHC2pred

are expected to show an overestimated predictive power

due to the overlap between their respective training data

and the protein drug test data (Table S5). Figure 4 show-

cases the results for vatreptacog alfa. MAPPs data for

vatreptacog alfa were generated from a cohort of 38

donors, where a unique set of 929 donor-specific ligands

were identified. The donor cohort covered 29 HLA-DR

alleles. Performance was evaluated as described for test

set 2. In terms of the strict MCC evaluation, NNA-

lign_MA and MixMHC2pred exhibited a comparable per-

formance with donor median MCC scores of 0.34 and

0.32, respectively. Both predictors demonstrated an

improved performance compared to NetMHCIIpan with a

donor median MCC of 0.11 (P-value <0.001) (Figure 4A).

Evaluating the predictors in terms of MCC-core, NNA-

lign_MA and MixMHC2pred again demonstrated a com-

parable performance with donor median MCC binding

core scores of 0.76 and 0.71 (P-value = 0.44), respectively.

Moreover, both predictors showed an improvement com-

pared with NetMHCIIpan (donor median MCC-core per-

formance of 0.53, P-value <0.001) (Figure 4B). Visually

assessing MAPPs profiles (Figure 4C) exhibited that all

predictors captured the four experimental HLA-DR-en-

riched hotspot regions. However, both NetMHCIIpan and

MixMHC2pred predicted an additional pronounced false-

positive peak at position ~175 that NNAlign_MA did not.

Results for factor X, liraglutide peptide backbone, and

infliximab HC and LC are provided in Figures S4–S7. Also
here, NNAlign_MA demonstrated a higher median MCC

and MCC-core performance across donors compared with

NetMHCIIpan for all protein drugs except for liraglutide
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backbone (Figure S5). This increase is significant for

infliximab HC and LC (n = 13, Figure S6 and S7), but

not for factor X (P-value = 0.063, n = 7, Figure S4).

NNAlign_MA likewise showed a generally higher MCC

and MCC-core performances compared with

MixMHC2pred. This performance gain was, however, only

significant for MCC (except for factor X, P-value = 0.5;

Figure S5). Overall, these additional test case examples

support the conclusions from vatreptacog alfa and consol-

idate the high performance of the developed in silico

method to accurately predict the experimentally identified

HLA antigen presentation hotspot regions at a reduced

false-positive rate compared with the other methods

included in the benchmark.

Generic Prediction of HLA presentation hotspot
regions

Finally, we tested the developed predictor in a more real-

istic setting where the objective was to predict HLA pre-

sentation hotspots rather than the detailed outcome of

individual MAPPs experiments. For that purpose, the

NNAlign_MA-trained predictor was applied to construct

HLA antigen presentation profiles for each of the protein

sequences in test set 3 using a reference set of prevalent

HLA-DR molecules in the population (for details on this

list, refer to Table S9) rather than the individual HLAs of

MAPPs-tested donors as done previously. Using each of

the HLA-DR molecules in said reference set, all possible
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Figure 3. Benchmark of MAPPs prediction for test set 2. (A) Each data point shows the median of the donor-specific MCC performance of each

method per benchmark protein. Median performances: NNAlign = 0.21; NetMHCIIpan-3.2 = 0.3; and MixMHC2 = 0.14. NNAlign_MA perfor-

mance was significantly higher compared with the two other methods (P-value <0.001). (B) Each data point shows the median of the donor-

specific MCC-core performance of each method per benchmark protein. Median performances: NNAlign_MA = 0.61; NetMHCIIpan-3.2 = 0.36;

MixMHC2pred = 0.47. NNAlign_MA performance was significantly higher (P-value <0.001 and P-value = 0.01, respectively). (C) Predicted and

MS HLA-DR ligands are mapped to generate ligand profiles for self-protein P01911.2 as described in the text
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peptides derived from the protein drugs in test set 3 were

predicted and the binding threshold value defined earlier

was used to classify the positive predicted ligands. Next,

in silico profiles were constructed by mapping the pool of

predicted ligands back to the source protein sequence and

calculating the total number of ligands overlapping each

position (normalizing the max count to 1). Figure 5

shows a comparison of the experimental and in silico

MAPPs-derived profile for vatreptacog alfa (details for

the other proteins are included in Figure S8 and

Table S8). Investigating these figures demonstrates that

this ‘generic’ hotspot identification approach shares a

very high predictive overlap to the donor-specific

approach described hereto. The mean and median of

Spearman’s correlation between the experimental and in

silico-predicted HLA ligand profiles were 0.612/0.621 and

0.632/0.627 for the ‘donor-specific’ and ‘generic’ hotspot

identification approaches. These results confirm that also

this approach to a very high degree and at a low rate of

false-positive predictions captures all the experimentally

identified HLA ligand hotspot regions.

As a further benchmark evaluation, we next compared

NNAlign_MA with two earlier methods for prediction of

MHC class II antigen presentation developed by us. The

first method (termed Barra) was described in Barra

et al.32 and consists of a model trained on a limited set of

MS EL data and benchmarked on MAPPs ligands and

T-cell epitope responses in infliximab. The second model

is the most recent version of NetMHCIIpan (version

4.0).29,36 This model was trained in a manner similar to
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what has been described here. Only did the HLA-DR MA

data set not include the novel MS data generated here

and more importantly was the overlap to the three test

data sets used in the current study maintained in training

data. These two methods were used to predict the MAPPs

profiles for the 4 therapeutic proteins using the ‘generic

prediction of HLA presentation hotspot regions’ imple-

mentation. The results of the benchmark are shown in

Figure S9. As expected, due to the large overlap between

the infliximab MAPPs data and the HLA cohort used to

develop the method by Barra et al., this method performs

better for infliximab and substantially worse for the other

protein drugs. On the other hand, NNAlign_MA and

NetMHCIIpan-4.0 show an overall comparable perfor-

mance. In conclusion, these analyses confirm the overall

high power of prediction methods trained on MS EL data

to predict the outcome of MAPPs experiments and like-

wise underline the importance of developing these predic-

tion methods in the context of large and HLA diverse

data sets.

DISCUSSION

MHC-associated peptide proteomics assays are frequently

used during biopharmaceutical development for assessing

and managing preclinical therapeutic protein immuno-

genicity, supporting deimmunization efforts and lead can-

didate selection. As it is a labour-intense, low-throughput

and costly assay, the industry would benefit greatly from

an in silico tool that could predict presented MHC-II

peptides. Barra et al.32 recently demonstrated that in sil-

ico models trained on a small MS MHC-II elution ligand

data set could predict the outcome of MAPPs assays on

therapeutic proteins. However, this study was limited by

a small donor cohort and a very limited set of investi-

gated proteins, which complicated the performance

evaluation. Here, we have addressed these shortcomings

and expanded the proof of concept to cover a broader set

of therapeutic proteins each characterized with MAPPs

data for a larger donor cohort. This allowed us to define,

in a robust manner, the optimal settings translating pep-

tide MHC antigen predictions into assessment hotspot

regions for potential T-cell epitopes. Altogether, these

results showed an increased capability of the trained in

silico model, termed NNAlign_MA, to predict MAPPs

experimental data on a donor level.

The developed NNAlign_MA method was benchmarked

against NetMHCIIpan-3.2 and MixMHC2pred. NetMH-

CIIpan-3.2 represents a traditional MHC-II predictor

trained exclusively with peptide BA data that do not con-

tain information about antigen processing and presenta-

tion. In contrast, the recently published MixMHC2pred is

trained exclusively with MS ligand data that should cap-

ture at least in part this information. Ideally, the bench-

mark analysis should have been performed with MAPPs

targets for an extensive set of therapeutic proteins. How-

ever, as only a highly limited set of MAPPs targets with

HLA-DR donor-typing data were available, the bench-

mark was extended to include a set of self-proteins with

mapped MS MHC-II ligands. In this benchmark, NNA-

lign_MA demonstrated a significant improvement in clas-

sifying MAPPs target ligands and binding cores compared

with both NetMHCIIpan-3.2 and MixMHC2pred. Also,

MixMHC2pred significantly outperformed NetMHCII-

pan-3.2. This result confirmed earlier findings that meth-

ods trained on MS HLA EL perform better than methods

trained on BA data for prediction of EL.27–29 Likewise,

the result aligned with the earlier findings demonstrating

a superior performance of NNAlign_MA compared with

MixMHC2pred29,36 potentially driven by the improved

motif deconvolution power of NNAlign_MA imposed by

its pan-specific prediction power enabling leveraging of
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information between data sets and expansion of predic-

tive power to also cover allele characterized by limited

(or even no) ligand data.29

Focusing on the protein drug benchmark, a similar

result was found with NNAlign_MA and MixMHC2pred

achieving the highest performance both outperforming

NetMHCIIpan-3.2. Investigating the overlap between the

observed and predicted HLA-DR hotspot regions revealed

that all methods in the vast majority of cases were cap-

able of correctly predicting the observed hotspot regions,

but that NetMHCIIpan-3.2 and to a less extend

MixMHC2pred predicted a larger proportion of false-pos-

itive hotspots compared with NNAlign_MA.

Investigating further the performance of NNAlign_MA

on the test set of therapeutic proteins, it was found that

the overlap between the predicted and measured HLA

ligands was augmented as the number of measured

MAPPs ligands identified per protein sequence was

increased. That is, a strong correlation (Spearman’s corre-

lation of 0.90, data from Table S8) was observed between

the number of ligands per residue in the investigated pro-

tein and performance of NNAlign_MA estimated in terms

of the MCC-core. This observation strongly suggests that

at least part of the additional predicted hotspot regions

could be true and that these were missed due to the lim-

ited size of donor cohort analysed and the general limited

sensitivity of a single MAPPs experiment, as has been

suggested earlier.32

In line with earlier work,29,32 it was likewise observed

that the predictive accuracy of the models was increased

when including the full HLA-DR information for each

donor rather than limiting this to HLA-DRB1. This is an

important observation arguing that full and high-resolu-

tion HLA typing is essential for accurate interpretation

and prediction of HLA antigen presentation in general

and MAPPs experiments in particular. Here, we have only

focused on HLA-DR motif deconvolution and antigen

presentation; however, earlier work has demonstrated that

complete high-resolution HLA-II typing including DQ

and DP is beneficial also for MS HLA eluted data sets

generated using HLA-DR immunoprecipitation.12,29

Future work will tell whether such higher resolution HLA

data can likewise improve the power for prediction of

MAPPs experiments.

The work here has been limited to the analysis of

antigen presentation for prevalent HLA-DR alleles (as

defined by the donor or world population). The

developed machine-learning framework and in silico

prediction models are, however, not limited to these

HLAs but accurately cover a much wider range of

HLA-DR, HLA-DP and HLA-DQ molecules.29 This

wide HLA coverage enables accurate predictions also

for HLA molecules whose specificity is characterized

with limited or even no experimental data.29 That

makes the NNAlign_MA tool an ideal complement to

experiment immunogenicity assessment in the context

of, for instance, rare HLA alleles challenged by donor

scarcity.

Several other methods have recently been published

claiming improved predictive power for MHC class II

antigen presentation including NeonMHC2,11 MARIA30

and EDGE.31 While these methods all proclaim very high

prediction power, they all suffer from high restrictions in

their public availability. For instance, NeonMHC2 only

allows max 20 predictions per day for any given user, and

MARIA allows only 5000 predictions per submission,

making it impractical to include these tools in a large-

scale benchmark analysis. Given these constraints, we do

not here make any claims of superiority of the NNA-

lign_MA model to these methods. Future work is needed

to perform such benchmark evaluations.

It is important to underline that the current work and

the developed in silico models are limited to the predic-

tion of HLA antigen presentation. Neither the MAPPs

experiment nor the in silico predictions make any assess-

ment on the immunogenicity of the suggested HLA

ligands and hotspot regions. Liraglutide backbone is a

good example of that – as even though peptides are pre-

sented from liraglutide backbone, the frequency and levels

of antidrug antibodies towards the current therapeutic

version of liraglutide are low and do not impact gly-

caemic efficacy or safety.37 However, it is possible that

these presented peptides could initiate a higher frequency

of antidrug antibodies in other versions of liraglutide

with different quality attributes (such as impurities with

additions and deletions in the primary sequence). Clinical

trials would then be necessary to assess the immunogenic-

ity risk of alternative versions of liraglutide.

With this reservation, we believe the results presented

here strongly suggest that in silico prediction methods

can and should serve as a guide, complementing MAPPs

assays, for the general assessment of the immunogenicity

of therapeutic proteins and the identification of HLA-II

antigen presentation hotspot regions relevant for protein

deimmunization.16,17,38,39
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