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Abstract: An innovative approach to position-selective
polyhalogenation of aliphatic hydrocarbon bonds is pre-
sented. The reaction proceeded within the Hofmann-Lçf-
fler manifold with amidyl radicals as the sole mediators to
induce selective 1,5- and 1,6-hydrogen-atom transfer fol-
lowed by halogenation. Multiple halogenation events of
up to four innate C�H bond functionalizations were ac-
complished. The broad applicability of this new entry into
polyhalogenation and the resulting synthetic possibilities
were demonstrated for a total of 27 different examples in-
cluding mixed halogenations.

Polyhalogenated aliphatic compounds represent fascinating
molecules with important properties that have triggered signif-
icant interest from various fields of the chemical sciences.
Nature has made use of this particular motif to a large extent
with the family of polyhalogenated natural products, which
have emerged as an important class of natural marine toxins.[1]

As a result, recent synthetic efforts were elaborated on the pol-
yhalogenation theme. Apart from conventional functional
group transformation, commonly employed elegant ap-
proaches to this class of compounds rely on allylic and olefinic
halogenation strategies.[2, 3] An attractive alternative would con-
sist of direct halogenation of ubiquitous aliphatic C�H bonds.
Although attempts toward such challenging endeavors have
been undertaken for monohalogenation,[4] the synthetic con-
cept of predictable multiple C�H halogenation has remained

notably unaddressed so far. A possible synthetic realization
may derive from the application of suitable functional groups
to direct the C�H halogenation event. In this regard, radical
processes appear particularly promising.[5] Amidyl radicals[6] are
known to promote such C�H halogenation as the key step in
photochemically initiated Hofmann–Lçffler reactions.[7] Recent
improvements by several groups have provided mild reaction
conditions based on the stoichiometric use of electrophilic
halide sources.[7, 8] Our recent efforts to develop new protocols
for the Hofmann–Lçffler reaction identified manifolds that are
catalytic in halogen.[9] Their most important feature is the ac-
celerated final C�N bond formation to regenerate the halide
catalyst. To accomplish multiple halogenation, the NH group
must remain intact to re-engage in the C�H halogenation.
Unlike monofunctionalization, the anticipated multiple C�H
functionalization needs to address several challenges
(Figure 1). At the outset, the required N-halogenation of the
substrate proceeds with an external halogenating agent [N]X.
The photochemically generated amidyl radical provides the re-
quired selectivity through intramolecular selection of accessi-
ble C�H bonds, guided by 1,5-[8] or 1,6-hydrogen-atom transfer
(HAT).[10] In Hofmann–Lçffler reactions, the initial C�H halogen-

Figure 1. Strategy for multiple carbon–halogen bond formation through
consecutive Hofmann–Lçffler reaction. [N]X = halogenating agent. Represen-
tative hydrogens are depicted for each methylene group.
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ation is usually followed by nucleophilic amination to the het-
erocyclic product, which is commonly a pyrrolidine. Provided
that another N�H halogenation would kinetically outperform
the nucleophilic amination, multiple aliphatic C�H bond deco-
ration, including the depicted vicinal (from sequential 1,5- and
1,6-HAT) and geminal (from two 1,5- or 1,6-HATs) dihalogena-
tion becomes available. Additional structural motifs arise from
branched or cyclic hydrocarbon substrates. As an additional
challenge, a potential background reaction arising from com-
peting amidyl radicals from the halogenating agent itself must
be avoided because the resulting non-guided C�H functionali-
zation process would result in unselective halogenation.

As a result, multiple C�H halogenation events appear chal-
lenging at the outset, because only pertinent kinetic domi-
nance of the guided pathway shown in Figure 1 would ensure
the required selectivity. Based on these considerations, we
screened possible conditions for multiple halogenation reac-
tions and chose the 2-adamantane derivatives 1 a–e as sub-
strates targeting tertiary C�H bonds (Scheme 1). Halogenated
hydantoins 2 a–c were chosen as halogenating agents.[4a,b, 11, 12]

Under photochemical initiation, in situ-formed N-halogenated
derivatives engaged cleanly in the expected C�H halogenation
reactions for X = I, Br.

The reaction outcome depends on the length of the alkyl
chain spacer. For ethylenylamides clean diiodination products
3 a,b were observed.[13] The position-selective C�H halogena-
tion drew its origin from a spontaneous 1,5-HAT via N-centered
radicals of the Hofmann–Lçffler pathway. In contrast, the ho-
mologous propylenylamides provided a sufficiently fast cycliza-
tion after the initial iodination leading to selective formation of
the pyrrolidine products 3 c,d. Such a cyclization should be dis-
favored for the less reactive bromination products. Indeed, the
corresponding mesylamides generated the expected brominat-
ed products, which were isolated as dibromides 3 e and tribro-
mide 3 f. The former compound was generated through the
common 1,5-HAT, whereas the latter was formed through se-
quential 1,5- and 1,6-HAT. The potentially competing non-
guided halogenation of the remaining tertiary C�H bonds by
direct free-radical functionalization with reagents 2 a,b was
never observed, indicating the exclusive involvement of innate
Hofmann–Lçffler pathways.[14] These reactions provide the se-
lectivity proof of principle for the kinetic dominance of an es-
sentially amidyl-radical-guided multiple C�H halogenation.

In a related manner, recently introduced N-alkyl sulfamate
groups[10] could be employed for this purpose (Scheme 1). Al-
though halogenation with N-alkyl sulfamates has been report-
ed,[10] their use in polyhalogenation is again entirely without
precedence. These groups promote the expected preferential
1,6-HAT with visible light as the only initiator and, consequent-
ly, substrate 1 e provided the selectively diiodinated and dibro-
minated products 3 g and 3 h, respectively. Applying sequential
halogenation reactions with (i) 2 c and (ii) 2 a or 2 b allowed for
the introduction of two different halide groups, as demonstrat-
ed for 3 i and 3 j. To the best of our knowledge, these are the
first examples of defined mixed dihalogenation from Hof-
mann–Lçffler reaction conditions.

Attempts to generate such compounds through alternative
halogen-exchange reactions did not succeed. For example,
treatment of crude 3 a with hydantoins 2 b,c led to exclusive
formation of the chlorinated and brominated pyrrolidines 4 a,b
(Scheme 2). A control experiment with the N-methylated deriv-
ative of 3 a also provided halogen exchange, indicating that
the potential involvement of a sulfonamide amidyl radical did
not take place.[15] Instead, iodine oxidation[16] to iodine(III) A
should be involved in these transformations. This would gener-
ate an iodine leaving group for pyrrolidine formation affording
B, as previously demonstrated[9a] and corroborated with a con-
trol experiment using PhICl2.[15] Oxidation of the remaining
iodine with liberated IX[17] would initiate iodide extrusion to
cationic C and, thus, subsequent nucleophilic halogenatio-
n[16a,b, 18] would provide the halogenated pyrrolidines 4 a,b
within a unique oxidatively induced transformation of the diio-
dide.

Interestingly, the corresponding unsaturated substrate 1 f
underwent unprecedented diiodination with 2 a to give the
corresponding product 3 k. With respect to the mechanism, an
unprecedented sequence of two Hofmann–Lçffler reactions

Scheme 1. Multiple directed halogenation at the adamantane core: reaction
scope. [a] With 2 a as reagent. [b] i) 2 c, CH2Cl2, ii) C6H6, black LEDs, iii) 2 a,b,
CH2Cl2, visible light. Yields refer to the overall three-step process.
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may be involved. After the initial iodination, non-bonded inter-
actions should initiate the known double-bond isomerization[19]

under the present reaction conditions followed by a second
Hofmann–Lçffler iodination.[15] Alternative allylic functionaliza-
tion events appear less plausible due to the lack of stabiliza-
tion of the putative allylic radical because the rigid adamantyl
core would induce orthogonality between the radical and the
alkene p-system. With an excess of hydantoin, double-bond
oxidation took place leading to the formation of the triiodinat-
ed aziridine 3 l. The selective aziridine formation over the azeti-
dine is believed to originate from steric preferences. In fact,
chlorination of 1 f led to clean four-membered ring formation.

Given the observed higher stability in the cases of the bro-
minated adamantyl derivatives and the general interest in bro-
minated organic compounds as important synthons,[20] poly-
bromination was investigated further for additional alicyclic
substrates (Scheme 3). For indane-derived substrates 5 a–c, the
2-ethylenylamides induced selective 1,5-HAT at the benzylic
positions, demonstrating that dual halogenation is also possi-
ble involving methylene groups. Concomitant cyclization took
place to provide the annelated pyrrolidines 6 a–c as single dia-
stereoisomers. The same occurred for the related tetrahydro-
naphthalene substrates, which displayed additional selective
C�H bromination from 1,5- and 1,6-HAT, affording products
6 e,f, which are also formed in a completely diastereoselective
manner. In case of a higher excess of hydantoin 2 b, dibromi-
nated ketone 6 d was obtained as a single diastereomer, in
which the carbonyl group was formed from hydrolysis of the

geminal dibromination product.[8d, 21] Use of a longer propyl
spacer provided the tribrominated products 6 g,h without cyc-
lization. Control experiments indicated again that free non-
guided radical bromination[22c–e] was not competitive with the
Hofmann-Lçffler reactions in the cases for 6 a–h.[15] Although
all products 6 a–h form in high yields, their tendency for de-
composition reduced the isolated yields.

In view of the interesting formation of 6 d, we next sought
to stabilize the geminal dibromination motif and, to this end,
decided to choose a more flexible cycloheptane ring system
(Scheme 4). For mesylated and tosylated derivatives 7 a,b, the
expected selective tribromination at the homobenzylic position
was obtained. This outcome corresponds to three independent
1,5-HAT processes and exemplifies the potential of sequential
Hofmann–Lçffler reactions. For the first time, this process has
thus been employed for the formation of a geminal dihaloge-
nation motif.[23] In contrast, less stabilized triflamide and tri-
fluoroacetamide amidyl radicals[6b] did not promote halogena-

Scheme 2. Additional halogenation at the adamantane core. [a] Yields refer
to the overall two-step process from 1 a.

Scheme 4. Selectivity in multiple C�H amination. Hofmann-Lçffler vs. free
radical pathways.

Scheme 3. Multiple halogenation of cyclic aliphatic C�H bonds. [a] With
5 equiv of 2 b.
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tion through the amidyl pathway and only low yields were ob-
tained for products 8 c,d due to free-radical benzylic bromina-
tion. The outcome in the case of 8 a,b suggests that loss of ri-
gidity in the substrate favors multiple halogenation.

To further explore this context, acyclic substrates were inves-
tigated. In contrast to cyclic aliphatic substrates, their acyclic
counterparts performed less efficiently for sulfonamides. An ex-
ception was encountered for acyclic sulfonamide 9, which
under reported conditions[23] underwent dihalogenation fol-
lowed by amination at the more activated benzylic position
and formed diastereomerically pure piperidine 10 (Scheme 5).

Importantly, N-methyl sulfamates 11 a–d could be applied for
amidyl-radical-promoted sequential di- and tribromination
within a Hofmann–Lçffler pathway. These reactions again oc-
curred through their common 1,6-HAT,[10] and provided selec-
tive dibromination affording the symmetric 11 a and the ter-
pene derivative 11 b. For the latter compound, the remote ter-
tiary C�H bond remained intact due to the absence of any
free-radical pathway. The reaction is not restricted to tertiary
C�H bonds, and provided exclusive double bromination at the
benzylic and tertiary positions of 11 c, respectively. Further-
more, in the presence of an excess of hydantoin 2 b, multiple
bromination of 11 d allowed access tribrominated 12 d with a
geminal dibromination motif.

In summary, we have pioneered conditions that allow for
multiple position-selective C�H halogenation reactions within
the Hofmann–Lçffler manifold. These reactions provide access
to various new structures, which derive from unprecedented
mixed dihalogenation and polyhalogenation of up to four se-
lective C�H oxidation events and geminal dihalogenation.
These results render amidyl radicals important tools for se-
quential innate C�H halogenation and overall streamline C�H
halogenation strategy.
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Multiple Halogenation of Aliphatic C�
H Bonds within the Hofmann–Lçffler
Manifold

More than one at a time! Multiple site-
selective C�H halogenation events can
be accomplished as an innovative var-
iant of the classic Hofmann–Lçffler reac-
tion by using halogenated hydantoins

as oxidant and halide source. The reac-
tion scope includes cyclic and linear hy-
drocarbons, as well as vicinal and gemi-
nal halogenation.
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