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ABSTRACT
A formulation of a kinematic dynamo is presented, based on a previously derived self-
consistent procedure for obtaining large-scale models for complex system of equations. The
model has only a small number of parametrized variables: the small-scale magnetic dif-
fusivity, the scale of the large-scale fields, and a factor in the explicit expression of the
αϕϕ component of the α tensor. Explicit expressions of what corresponds to the other com-
ponents of the α tensor and of the diffusivity tensor are derived in terms of the large-scale
meridional flow and of the differential rotation law, without introducing additional parameters.
A very simple simulation of a solar-like dynamo, employing the model without meridional
flow shows reasonable magnetic field evolution, with a cycle duration of about 2/3 that of the
Sun, shift of the magnetic field from mid-latitudes towards the equator, poleward migration
of the radial field at high latitudes, and correct phase relation between radial and azimuthal
components.
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1 IN T RO D U C T I O N

Mean-field models of natural dynamos are fundamental for our
comprehension of dynamo processes in stars and planets. However,
due to the variety and complexity of the mechanisms involved, the
modellization of the effect of fluctuations on the mean fields is a
difficult, open problem. If separation of scales between mean fields
and fluctuations can be assumed, in the sense that mean field mag-
nitudes have a much larger spatial scale than active, fluctuating
scales, and consequently assuming that the magnitude of fluctua-
tions is relatively small, closed models for the effects of fluctuating
scales on the mean scales can be obtained (Rüdiger & Hollerbach
2004), with as few as possible parameters. With the intention of test-
ing alternative approaches to the modelling of mean field dynamos,
we consider in this work the application of the formalism devel-
oped in Minotti (2000) and Minotti & Dasso (2001) to the dynamo
problem. The formalism allows us to derive effective, large-scale
equations for rather general fluid systems directly from the origi-
nal dynamical equations. The resulting large-scale equations differ
from the original ones by the addition of new terms, generically
referred to as subgrid scale terms (SGST), which arise due to the
non-linear character of the fundamental equations, and which rep-
resent the effect of the small (non-resolved) scales on the dynamics
of the large-scale (resolved) flow. The method is particularly suited
to capture the effect of non-resolved scales close in size to those
resolved, thus relaxing the assumption of separation of scales, so
that, for instance, one can first include the effect of ‘microscopic’
scales, well separated in size from those resolved, by usual meth-
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ods, and then apply the formalism to include the effect of closer,
non-resolved scales. It is important to mention that the formalism
itself is derived from exact expressions that relate averages made
on two different scales, so that no parametrization or modelling is
involved, other than the assumption of smoothness of the averaged
fields. In this way, the method adds only one new parameter, the
scale on which the spatial average is made, which in itself has a
direct meaning, so that the formalism allows a new approach with
as few as possible parameters.

The mentioned formalism produces large-scale equations in their
simplest form for spatial averages made on non-elongated volumes,
so that it is not possible to directly obtain equations fully averaged
in one of the spatial dimensions, as one would wish, for instance, to
generate axisymmetric dynamo models. In this way, if a model of
this kind is desired, the resulting large-scale equations depending
on three spatial coordinates must be further elaborated.

To present the formalism in its simplest form, we consider in this
work only the induction equation for the magnetic field, and derive
its large-scale version containing SGST fully expressed in terms of
the resolved magnetic and mass flow fields. The equation is assumed
to be previously averaged over isotropic microscales in order to
describe their effect on the large-scale flow in terms of an increased
(relative to the molecular value) diffusivity. To this equation, the
averaging procedure described in Minotti (2000) is applied, which
can be referred to as a spatial mesoscale averaging, performed over
cells of linear size λ. Effective, anisotropic diffusivity effects due
to non-resolved fluctuations on scales close in size to the resolved
ones are automatically given by the model, together with equivalent
α-type effects. The resulting mesoscale equations depend on the
three spherical coordinates (r, θ , and ϕ), with ϕ the angle about
the rotation axis z, and constitute in themselves a closed kinematic
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3D large-scale dynamo model. In order to obtain a description in
terms of axisymmetric fields, we perform a final average over the
azimuthal angle ϕ. It is seen that the mesoscale average gives rise to
an explicit ‘α-effect’ term in the poloidal field evolution equation,
which on further elaboration is found to be approximated in the
axisymmetric model in terms of the stellar rotation profile. The
rest of the SGST can be identified with the different components
of the α and diffusivity tensors, obtained explicitly in terms of the
large-scale meridional circulation and rotation profile.

2 FORMALISM

In this section, we briefly describe the application of the mesoscale
averaging (Minotti 2000) as applied to the magnetic induction equa-
tion:

∂b
∂t

= ∇ × (u × b − η∇ × b) , (1)

where η is the microscale turbulent diffusivity, b is the magnetic
field, and u is the velocity field.

The separation of scales into small and large scales is effected
with a top-hat filter, defined by the volume average

C(X, t) = 〈c(x, t)〉X = 1

�V

∫
c(x, t) dV , (2)

where X = 〈x〉X denotes the ‘centre of mass’ of a cubic volume �V
of size length λ, and c(x, t) is a generic field variable. Fluctuations
of c(x, t) around its average are defined as the difference

δc(X, x, t) = c(x, t) − C(X, t), (3)

an approach originated by Schumman (1975) which has the advan-
tage of avoiding the generation of the so-called Leonard and cross-
terms (Leonard 1973; Clark et al. 1979) in the volume-averaged
equations because definitions (2) and (3) lead to averages that sat-
isfy Reynolds’ postulates,

〈C(X)〉X = C(X), 〈δc(X, x, t)C(X)〉X = 0, (4)

and〈
∂c

∂x

〉
X

= ∂C

∂X
. (5)

Due to these properties, averaging of equation (1) is very simple
and results in

∂B
∂t

= ∇ × (U × B − η∇ × B) + ∇ × S, (6)

where capital letters denote the average of the fields represented by
the corresponding lower case letters, and spatial derivatives are all
with respect to X . The last term corresponds to the SGST for which
S is given by

S(X) = 〈δu(X, x) × δb(X, x)〉X . (7)

The expression of S can be directly obtained as described in
Minotti (2000), and can be expressed in Cartesian index notation
as

Si(X) = λ2

24
εijk

∂Uj

Xm

∂Bk

Xm

, (8)

where εijk is Levi-Civita’s pseudo-tensor.
Since the equations are to be used in non-Cartesian coordinates,

it is convenient to express equation (8) in terms of covariant opera-
tions, which results in

S = λ2

48

[∇2 (U × B) − (∇2U
) × B − U × ∇2 B

]
. (9)

Although second-order derivatives appear in this expression, all of
them cancel after expansion.

3 AXI SYMMETRI C MODEL

Given the mesoscale flow U and the microscale diffusivity η, equa-
tions (6) and (9), together with appropriate initial and boundary
conditions, constitute a complete description of a kinematic dynamo
given solely in terms of mesoscale fields. To obtain an axisymmetric
model, we proceed to consider a description in terms of azimuthally
averaged fields, so that the magnetic field is described by the az-
imuthal component B(r, θ , t) and the azimuthal component A(r, θ ,
t) of the vector potential of the zonal magnetic field,

〈B〉 = ∇ × (
A eϕ

) + B eϕ, (10)

where 〈...〉 denotes the azimuthal average, eϕ is the unit vector in
the azimuthal direction, and B = 〈Bϕ〉.

From equation (6), the equation for A can then be written as

∂A

∂t
= 〈UrBθ − UθBr 〉 + η

(
∇2A − A

r2 sin2 θ

)
+ 〈

Sϕ

〉
. (11)

In order to proceed, we consider the ϕ dependence as weak, in
such a way that a generic field C is expressed as C = 〈C〉 + δC,
with δC of small magnitude, which we formally denote as O(δC) ≡
ε O(〈C〉), with ε a small number compared to one. We note that this
assumption is made on the averaged fields, so that the choice of
the scale λ of the volume average can be guided by the condition
that this assumption applies. Since 〈δC〉 = 0, we see that the lowest
order corrections due to the azimuthal dependence are of the order
of ε2. The equation for A can thus be written as

∂A

∂t
= 〈Ur 〉 〈Bθ 〉 − 〈Uθ 〉 〈Br 〉 + η

(
∇2A − A

r2 sin2 θ

)

+ S0
ϕ + O

(
ε2

)
, (12)

where the zeroth-order SGST is

S0
ϕ = λ2

48

[∇2 (〈U〉 × 〈B〉) − (∇2 〈U〉) × 〈B〉

− 〈U〉 × ∇2 〈B〉] · eϕ (13)

and the order ε2 terms are given by

O
(
ε2

) = 〈δUrδBθ − δUθδBr 〉

+ λ2

24r2 sin2 θ

[〈
∂ϕUr∂ϕBθ

〉 − 〈
∂ϕUθ∂ϕBr

〉]

+ λ2

24r2 sin2 θ

[〈
Uϕ∂ϕBz

〉 − 〈
Bϕ∂ϕUz

〉]
. (14)

To keep the simplicity of the final expressions, in the third line of
equation (14) we have employed the components of velocity and
magnetic field along the rotation axis z.

We further note that the first two lines in equation (14) correspond
to O(ε2) corrections to the first two terms in equation (12), while the
third line contains terms with no equivalent zeroth order (S0

ϕ given by
equation (13) does not have terms containing Uϕ or Bϕ , as is shown
explicitly below). In the spirit of obtaining the simplest possible
model, we thus neglect the O(ε2) corrections to existing zeroth-order
terms, and so keep only the terms in the third line of equation (14).
In particular, the last term in equation (14) is responsible for a kind
of α-effect with a clear physical interpretation, as the indicated ϕ

variation of the meridional flow leads to a deformation of the lines
of Bϕ that contributes to the poloidal magnetic field generation. We
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Model of the axisymmetric kinematic dynamo 3717

can obtain a simple model of this term by noting the following. In
cylindrical coordinates with z the rotation axis, as before, and with
cylindrical radial coordinate s = r sin θ , the last term in equation (14)
is written as

− λ2

24s2

〈
Bϕ∂ϕUz

〉 = − λ2

24s

[〈
Bϕ∂zUϕ

〉 + 〈
Bϕωs

〉]
,

with ωs the s component of vorticity,

ωs = 1

s
∂ϕUz − ∂zUϕ.

The idea is that, although their azimuthal averages are of equal mag-
nitude (but different sign), ωs and ∂zUϕ are differently correlated
with Bϕ . In effect, since ωs corresponds to pure rotations around s of
the local fluid element, which twist the Bϕ lines and is thus opposed
by the magnetic tension, the magnitudes of Bϕ and ωs are expected
to be anticorrelated: 〈δBϕδωs〉/(〈Bϕ〉〈ωs〉) < 0. The shear ∂zUϕ , on
the other hand, does not have the effect of bending Bϕ lines so that
its magnitude is not so strongly correlated with that of Bϕ . In this
way, we expect that〈
Bϕ∂zUϕ

〉 ≈ 〈
Bϕ

〉
∂z

〈
Uϕ

〉 = − 〈
Bϕ

〉 〈ωs〉 ,∣∣〈Bϕωs

〉∣∣ = ∣∣〈Bϕ

〉 〈ωs〉 + 〈
δBϕδωs

〉∣∣ <
∣∣〈Bϕ

〉 〈ωs〉
∣∣ ,

which allows us to propose the model

− λ2

24s2

〈
Bϕ

∂Uz

∂ϕ

〉
≈ −κ

λ2

24s
B

∂
〈
Uϕ

〉
∂z

≡ αB,

where 0 < κ < 1 is an adjustable coefficient that approximately
accounts for the effect of the neglected term 〈Bϕωs〉. In spherical
coordinates,

α = κ

λ2

24r2

[
∂θ

〈
Uϕ

〉 − r cot θ∂r

〈
Uϕ

〉]
. (15)

By writing〈
Uϕ

〉 = �(r, θ ) r sin θ, (16)

with �(r, θ ) the large-scale rotation profile, we finally have

α = κ

λ2

24 r
(sin θ∂θ� − r cos θ∂r�) . (17)

Concerning the first term in the third line of equation (14), we note
that it can be written as

λ2

24r2 sin2 θ

〈
Uϕ∂ϕBz

〉 = − λ2

24r2 sin2 θ

〈
Bz∂ϕUϕ

〉
. (18)

Consistently with the approximation made, we can at this point
give a couple of arguments to neglect this term altogether. One
argument is that the variation of Uϕ along its own direction does
not have a direct dynamic effect on the meridional magnetic field
lines, and so we expect Bz and Uϕ to be weakly correlated, so that〈
Bz ∂ϕUϕ

〉 ≈ 〈Bz〉
〈
∂ϕUϕ

〉 = 0. An alternative argument is that us-
ing the stationary mass conservation equation (anelastic approxima-
tion), one can relate ∂ϕUϕ to derivatives of the meridional velocity
with respect to r and θ , in such a way that equation (18), which is
of second order in ε, is written as a series of terms similar to those
already present in the zeroth-order expression S0

ϕ . In this way, we
end up with the axisymmetric equation for the evolution of A

∂A

∂t
= UrBθ − UθBr + η

(
∇2A − A

r2 sin2 θ

)
+ S0

ϕ + αB, (19)

with S0
ϕ and α given by equations (13) and (17), respectively, and

with the convention that azimuthal averages are not explicitly writ-
ten, so that all magnitudes are considered azimuthally averaged,

represented by the same symbol as the original, non-averaged mag-
nitude. The explicit expression of S0

ϕ is

S0
ϕ = λ2

24 r2
[−BrU θ − Ur∂θBr − Uθ∂θBθ + Br∂θUr

+ ∂θBθ∂θUr − ∂θBr∂θUθ + Bθ ( Ur + ∂θUθ )

+ r2 (∂rBθ∂rUr − ∂rBr∂rUθ )
]
. (20)

We now consider the axisymmetric model equation for the aver-
aged azimuthal component B, whose subscale term [∇ × 〈S〉] · eϕ

is expressed in terms of the components 〈Sr〉 and 〈Sθ 〉. An analysis
similar to that of 〈Sϕ〉 can also be done for these terms. If one ne-
glects order ε2 terms that are corrections to zeroth-order ones, there
are five different ε2-order terms left to be modelled: 〈Br ∂ϕUr 〉,
〈Bθ ∂ϕUθ 〉, 〈Bϕ ∂ϕUϕ〉, 〈Br ∂ϕUθ 〉, and 〈Bθ ∂ϕUr 〉. For all these ex-
pressions, we have that the azimuthal variation of the velocity field
in each average does not directly lead to twisting or bending of
lines of a magnetic field with the direction of the field indicated
in the same average. We thus expect a weak correlation between
the factors inside each average, so that for a generic one of them,
〈B1 ∂ϕU2〉 ≈ 〈B1〉 〈∂ϕU2〉 = 0. In this way, only the zeroth-order
terms are retained in the axisymmetric model for the B equation,
which is thus expressed as

∂B

∂t
= [∇ × (U × B − η∇ × B) + ∇ × S0

] · eϕ, (21)

where S0 is given by equation (9), and all fields in equations (9) and
(21) are to be interpreted as axisymmetric, averaged ones, indepen-
dent of ϕ. Explicitly, the SGST is

(∇ × S0
) · eϕ = 1

r
∂r

(
rS0

θ

) − 1

r
∂θS

0
r , (22)

where, using equation (16) to express Uϕ in terms of �,

S0
r = λ2

24 r2
[B cot θ ( Ur + cot θUθ ) − �rBθ cos θ cot θ

− r sin θ ∂θBθ∂θ� − r Br (2� cos θ + sin θ∂θ�)

− r2 (� sin θ ∂rBθ − ∂r B ∂rUθ + r sin θ∂rBθ∂r�)

+ Ur∂θB − �r cos θ ∂θBθ + ∂θB ∂θUθ ] , (23)

and

S0
θ = λ2

24 r2
[−B (Ur + cot θUθ ) + �rBr sin θ

+ �r cos θ∂θBr + Uθ∂θB − ∂θB∂θUr

+ r2 (� sin θ∂rBr − ∂rB∂rUr + r sin θ∂rBr ∂r�)

− rBθ sin θ∂θ� + r sin θ∂θBr ∂θ�] . (24)

The explicit expression of equation (22) can be more easily em-
ployed by separating it in the part corresponding to the differential
rotation and that corresponding to the meridional flow. The differ-
ential rotation part can be simplified using the relation ∇ · B = 0
to obtain

(∇ × S0
)� · eϕ = λ2

24r2
[FrBr + FθBθ + Frθ∂rBθ

+ Fθr∂θBr + Fθθ∂θBθ ] , (25)
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3718 L. Sraibman and F. Minotti

where

Fr = 3 cos θ∂θ� + sin θ
(
∂θθ� + r∂r� − 2r2∂rr�

)
,

Fθ = 3 + cos 2θ

2
csc θ∂θ� − r sin θ∂rθ� − r2 cos θ∂rr�,

Frθ = r2 sin θ∂rθ�,

Fθr = r cos θ∂r� − sin θ∂θ� + r sin θ∂rθ�,

Fθθ = cos θ∂θ� + sin θ∂θθ� − r2 sin θ∂rr�.

The part coming from the meridional flow is directly obtained as

(∇ × S0
)U · eϕ = − λ2

24r2
[Gr∂rB + Gθ∂θB + Grθ∂rθB

+ Grr∂rrB + Gθθ∂θθB] , (26)

where

Gr = Ur + Uθ cot θ + r∂rUr + r2∂rrUr + r∂rθUθ ,

Gθ = (
Ur cot θ + Uθ csc2 θ + ∂θθUθ

)
/r − ∂rUθ + ∂rθUr ,

Grθ = −Uθ + ∂θUr + r∂rUθ ,

Grr = r2∂rUr ,

Gθθ = (Ur + ∂θUθ ) /r.

In the expression of S0
ϕ , equation (20), the terms multiplying Br and

Bθ can be identified as the (ϕ, r) and (ϕ, θ ) components of the α

tensor, the α given by equation (17) being the (ϕ, ϕ) component.
Similarly, the terms multiplying the derivatives of Br and Bθ can be
identified with the components of the magnetic diffusivity tensor.
Likewise, the other components of the α and diffusivity tensors can
be identified in expressions (23) and (24). In this way, once the
scale λ of the filter is chosen, and the microscopic (still turbulent in
general) diffusivity η is prescribed, the magnetic field dynamics is
completely determined by the large-scale toroidal and meridional
flows. In this respect, the approach presented can be considered as
a kind of ‘flux transport dynamo’ (Choudhouri 2015).

4 EXAMPLE O F A PPLICATION
TO A SO L A R - L I K E DY NA M O

We have developed a mean-field α� dynamo simulation in order to
test the new formulation of α equation (17) and of the subgrid effects
given by S0. As the meridional circulation is known to a lesser extent
(Guerrero & Muñoz 2004; Belucz, Dikpati & Forgacs-Dajka 2015)
than the rotation profile of the Sun, we have chosen in this work to
test the subgrid effects without any meridional circulation, so that
only equation (25) enters the model, while the other terms related
to S0 are zero.

The parameter λ can be chosen considering that it should be
large enough in order to have a smooth dependence of the averaged
fields on the coordinate ϕ. While meridional space variation appears
naturally due to the rotation of the star, the ϕ dependence can be
associated with the presence of structures whose sizes determine
the scales of zonal space variation. In this way, for the Sun we
can take supergranules as indication of structures to be averaged
out in order to obtain a smooth enough ϕ dependence. Considering
that supergranules sizes are smaller than, approximately, 35 000 km
(Srikanth, Singh & Raju 2000), we have taken λ to encompass about
two such lengths, and so have fixed λ to 0.1Rt (Rt is the solar radius).
Finally, the value of κ in expression (17) was taken as 0.4 in order
to better fit the cycle duration.

Figure 1. α radial profiles for different latitudes in the Southern hemi-
sphere (values in the Northern hemisphere have the same magnitude, but
opposite sign). Left: expression (17) for the Sun’s rotation profile modelled
by equation (29). Right: model given by equation (27). Both expressions are
normalized to their respective maximum values.

Before considering the simulation itself, it is interesting to com-
pare the α given by equation (17) to those usually employed in mean
field dynamo simulations, like the expression given by

α (r, θ ) = α0 cos (θ )
1

4

[
1 + erf

(
r − r1

d1

)]

×
[

1 + erf

(
r − r2

d2

)]
. (27)

By selecting the values of r1 and r2, the zone where the α-effect
is concentrated can be imposed. Some authors using expression
(27) set the maximum value of α near the surface (as a model for
the Babcock–Leighton mechanism; Dikpati & Charbonneau 1999;
Dikpati & Gilman 2001), while others employ an α-effect concen-
trated just above the tachocline (Parker 1993; Charbonneau 2010),
in Cartesian geometry, and by Charbonneau & MacGregor (1997),
in spherical geometry, or a combination of both (Passos et al. 2014).
As a matter of fact, expression (17) with a rotation profile taken form
helioseismology data is rather similar to α models acting mainly in
the tachocline (Guerrero & de Gouveia Dal Pino 2008). In Fig. 1, the
radial profile of two α coefficients is shown for different latitudes,
one is equation (17) (α1), with the profile �(r, θ ) given below
in equation (29), and the other equation (27) (α2) with α0 = 5,
r1 = 0.7Rt, d1 = d2 = 0.025Rt, r2 = 0.77Rt (Charbonneau 2010).
Both profiles are quite similar, decreasing from pole to equator and
with their maximum value near the tachocline. The main difference
is appreciable for r/Rt above 0.8, where α2 is zero, whereas α1,
although smaller than in the tachocline, is not zero.

In the simulation, we assume that the small-scale magnetic dif-
fusivity in the convection zone is dominated by its turbulent con-
tribution. Following the observed magnetic diffusivity as function
of the scale (Chae, Litvinenko & Sakurai 2008), we take the dif-
fusivity in the Sun convection zone to be ηSCZ = 1 × 106 m2 s−1,
which approximately corresponds to the diffusivity associated with
mini-granular scales, well described by a Kolmogorov turbulence
spectrum (Chae et al. 2008; Abramenko et al. 2012). In order to
model the spatial transition between the non-turbulent diffusivity
value ηRZ below the tachocline and its value in the convection zone,

MNRAS 456, 3715–3719 (2016)
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Model of the axisymmetric kinematic dynamo 3719

Figure 2. Magnetic field components as functions of latitude and time.
Upper panel: azimuthal component near the tachocline. Middle and bottom
panels: meridional components just below the surface.

we employ the functional form (Chatterjee, Nandy & Choudhouri
2004)

η (r) = ηRZ + ηSCZ

2

[
1 + erf

(
r − rBCZ

dt

)]
, (28)

where ηRZ = 2.2 × 104 m2 s−1, rBCZ = 0.7Rt, and dt = 0.025Rt.
The simulation also uses a differential rotation profile �(r, θ )

that fits the helioseismology data (Schou et al. 1998; Charbonneau
et al. 1999), given by

� (r, θ) = �RZ + 1

2

[
1 + erf

(
2
r − rt

dt

)]
[�SCZ (θ ) − �RZ] ,

(29)

where �SCZ(θ ) = �EQ + a2 cos 2(θ ) + a4 cos 4(θ ) is the surface
latitudinal rotation. The value of the angular velocity of the rigidly
rotating core is �RZ = 2π × 432.8 nHz. The other parameters are
set to rt = 0.7Rt, dt = 0.05Rt, �EQ = 2π × 460.7 nHz, a2 =
−62.69 nHz, and a4 = −67.13 nHz.

As an example of the model behaviour, we present the result of a
simulation modelling 90 yr of magnetic field evolution in Fig. 2. In
this figure, we can appreciate the polarity reversals in all the com-
ponents of the magnetic field, although the cycle length is smaller
than the observed one by approximately 7 yr. Another important
observation is that despite not including meridional circulation, the
field shows a shift of its maximum magnitude from middle latitudes
towards the equator, as well and as a poleward migration of the
radial field at high latitudes. There is also a phase lag between Br

and Bϕ leading to a negative correlation between them, as observed.
The magnitude of all fields grows with time, which is under-

standable as in the simulations presented neither the magnetic field
nor the α values were saturated. Simulations where the α value is
modified depending on the value of the toroidal field (α-quenching)
have also been performed, showing stable amplitudes of the mag-
netic field cycles as well as correct cycle durations, but since these
computations involve additional modelling, not derived from the
formalism used, we have not included them in this work.

5 C O N C L U S I O N S

We have presented a large-scale, axisymmetric, kinematic dynamo
model in which only a small number of variables need to be
parametrized, namely the small-scale magnetic diffusivity, the scale
λ of the fields spatial average, and a factor 0 < κ < 1 in the ex-
pression of the α term (more precisely the αϕϕ component of the
α tensor). Explicit expressions of what corresponds to the other
components of the α tensor and of the diffusivity tensor are given
in terms of the large-scale meridional flow and of the differential
rotation law, without introducing additional parameters. The model
was derived from a self-consistent approach applicable to general
continuous systems which only requires for its application that the
averaged fields be smooth, what can be checked from the solution
itself. A very simple simulation of a solar-like dynamo, employ-
ing the model without meridional flow and without any saturation
effects, shows reasonable magnetic field evolution, with a cycle du-
ration of about 2/3 that of the sun, shift of the magnetic field from
mid-latitudes towards the equator, poleward migration of the radial
field at high latitudes, and correct phase relation between radial and
azimuthal components. The explicit formulation of the dynamo-
related effects in terms of the mean flows (meridional and zonal)
allows in principle to explore directly their effect on dynamo action,
as well as to eventually include back reaction of the magnetic field
on the flow to study possible self-regulating mechanisms, saturation
effects, etc.
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