README file for "Angularly resolved Atomic Time Delays"

D.I.R. Boll^{*1}, L. Martini^{1,2}, A. Palacios^{3,4}, and O.A. Fojón^{1,5}

¹Instituto de Física Rosario, CONICET-UNR, Blvd. 27 de Febrero 210 bis, 2000 Rosario, Argentina
²Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, USA
³Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
⁴Institute of Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
⁵Escuela de Ciencias Exactas y Naturales, FCEIA, Universidad Nacional de Rosario, Argentina

December 22, 2022

1 Time-Dependent Schrödinger Equation (TDSE) calculations

Author: D.I.R. Boll

1.1 Files

- 1. Angular_delays_TDSE_0_4_0_0_180_2.dat
- $2. Angular_delays_TDSE_{20_4_0_0_180_2.dat}$
- 3. Angular_delays_TDSE_40_4_0_0_180_2.dat
- 4. Angular_delays_TDSE_60_4_0_0_180_2.dat
- 5. Angular_delays_TDSE_80_4_0_0_180_2.dat
- 6. Angular_probs_TDSE_4_0_0_60_20_0_180_2.dat

^{*}boll@ifir-conicet.gov.ar

1.2 Description

Files with name pattern Angular_delays_TDSE_ $\Theta_{-4}_{-0}_{-0}_{-180}_{-2}$. dat contain the angularly resolved atomic time delays $\tau_{at}(\theta)$ we obtain from TDSE simulations of RABBITT spectra for hydrogen atoms initially in the 1s ground state. Each file contains the results for the relative polarization angle $\Theta = 0^{\circ}$, 20° , 40° , 60° , and 80° between the polarization vectors of pump and probe pulses. The first column indicates the photoelectron emission angle in the xy-plane measured from the positive x-axis, the polarization direction of the attosecond pulse train (see Fig. 1 in Ref. [1]). The following columns in the data file contain the angularly resolved time delays $\tau_{at}(\theta)$ for SBs 12 to 26.

The file with name Angular_probs_TDSE_4_0_0_60_20_0_180_2.dat contains the results for the fitting parameter A for SBs 12 to 26, as a function of the electron emission angle and for each relative polarization angle Θ . Again, we obtain these results from TDSE simulations of RABBITT spectra for hydrogen atoms initially in the 1s ground state.

1.3 Method

Utilizing the Qprop code [2], we numerically solve the TDSE for each angle Θ and 41 different values of the delay τ between the attosecond pulse train and the infrared (IR) laser. These delays span one IR period, and allow us to find the dependence of angle-resolved RABBITT spectra on the delay τ . Then, we fit the signal for each sideband with the general expression $I_{2q} = A + B \cos(2\omega_0 \tau - \phi_{at})$, from which we obtain the angular dependence of the parameters A and B, and the atomic time delay $\tau_{at} = \phi_{at}/2\omega_0$.

The relevant parameters to reproduce the TDSE simulations are the following (values in atomic units unless otherwise stated):

- Radial grid step: 0.24
- Cutoff radius: 850
- T-surff radius: 1700
- Number of angular momenta in expansion: 4
- Time step for propagation: 0.06
- IR intensity: 0.05 TW/cm^2
- IR angular freq. ω_0 : 0.056954190
- IR pulse duration: 10 IR-cycles
- XUV pulse duration: 3 IR-cycles
- XUV Harmonic orders: 11 to 27

1.4 Observations

The relative time delays $\Delta \tau_{at}(\theta)$ in Figs. (2) and (3) from Ref. [1], are obtained by taking the difference $\tau_{at}(\theta) - \tau_{at}(0^{\circ})$ from the datasets above.

2 Second-order perturbation theory (SOPT) calculations

Author(s): D.I.R. Boll and L. Martini

2.1 Files

- 1. Angular_delays_SOPT_0_0_180_2.dat
- 2. Angular_delays_SOPT_20_0_180_2.dat
- 3. Angular_delays_SOPT_40_0_180_2.dat
- 4. Angular_delays_SOPT_60_0_180_2.dat
- 5. Angular_delays_SOPT_80_0_180_2.dat

2.2 Description

Files with name pattern Angular_delays_SOPT_ $\Theta_0_180_2$.dat contain the angularly resolved atomic time delays $\tau_{at}(\theta)$ we obtain from SOPT calculations for hydrogen atoms initially in the 1s ground state. Each file contains the results for the relative polarization angle $\Theta = 0^{\circ}, 20^{\circ}, 40^{\circ}, 60^{\circ}, \text{ and } 80^{\circ}$ between the polarization vectors of pump and probe pulses. The first column indicates the photoelectron emission angle in the xy-plane measured from the positive x-axis, the polarization direction of the attosecond pulse train (see Fig. 1 in Ref. [1]). The following columns in the data file contain the angularly resolved time delays $\tau_{at}(\theta)$ for SBs 12 to 26.

2.3 Method

For initial atomic s states, in Ref. [1] we show that angularly resolved atomic phase imprinted on RABBITT sidebands is given by

$$\tan(\phi_{at}) = \frac{\sum_{L,L'} |T_L^+| |T_{L'}^-| g_{L,L'} \sin(\phi_{L'}^- - \phi_L^+)}{\sum_{L,L'} |T_L^+| |T_{L'}^-| g_{L,L'} \cos(\phi_{L'}^- - \phi_L^+)},\tag{1}$$

where $|T_L^{\pm}|$ and ϕ_L^{\pm} are the modulus and phase of (pseudo) radial matrix elements contributing to final states with angular momentum L, from absorption (+) and emission (-) channels, respectively. The full angular dependence of atomic phase ϕ_{at} is contained in the $g_{L,L'}$ functions (see appendix in Ref. [1]). Therefore, to obtain the angularly-resolved atomic time delays from SOPT calculations we substitute into Eq. (1) the results for radial matrix elements T_L^{\pm} obtained from Second-order Perturbation Theory (SOPT), reported previously [3].

2.4 Observations

The relative time delays $\Delta \tau_{at}(\theta)$ in Figs. (2) and (3) from Ref. [1], are obtained by taking the difference $\tau_{at}(\theta) - \tau_{at}(0^{\circ})$ from the datasets above.

3 Model calculations

Author(s): D.I.R. Boll

3.1 Files

- $1. Angular_delays_Model_0_0_180_2.dat$
- $2. Angular_delays_Model_20_0_180_2.dat$
- 3. Angular_delays_Model_40_0_180_2.dat
- 4. Angular_delays_Model_60_0_180_2.dat
- 5. Angular_delays_Model_80_0_180_2.dat

3.2 Description

Files with name pattern Angular_delays_Model_ $\Theta_{-}0_{-}180_{-}2.dat$ contain the angularly resolved atomic time delays $\tau_{at}(\theta)$ we obtain from ACC-RME model [4] calculations for hydrogen atoms initially in the 1s ground state. Each file contains the results for the relative polarization angle $\Theta = 0^{\circ}$, 20° , 40° , 60° , and 80° between the polarization vectors of pump and probe pulses. The first column indicates the photoelectron emission angle in the xy-plane measured from the positive x-axis, the polarization direction of the attosecond pulse train (see Fig. 1 in Ref. [1]). The following columns in the data file contain the angularly resolved time delays $\tau_{at}(\theta)$ for SBs 12 to 26.

3.3 Method

We obtain the angularly-resolved atomic time delays from model calculations by substituting into Eq. (1) the results for radial matrix elements T_L^{\pm} obtained from ACC-RME model [4], reported previously [3].

3.4 Observations

The relative time delays $\Delta \tau_{at}(\theta)$ in Figs. (2) and (3) from Ref. [1], are obtained by taking the difference $\tau_{at}(\theta) - \tau_{at}(0^{\circ})$ from the datasets above.

4 Changelog

References

- [1] D. I. R. Boll, L. Martini, and O. A. Fojón. Two-color polarization control on angularly resolved attosecond time delays. *Physical Review A*, submitted.
- [2] Vasily Tulsky and Dieter Bauer. Qprop with faster calculation of photoelectron spectra. Computer Physics Communications, 251:107098, 2020.
- [3] D.I.R. Boll, L. Martini, and O.A. Fojón. Two-photon two-color transition matrix amplitudes. Repositorio Institucional CONICET Digital. http://hdl.handle.net/11336/ 156629, 2022. Creation date: 2022/05/05.
- [4] D. I. R. Boll, L. Martini, and O. A. Fojón. Analytical model for attosecond time delays and fano's propensity rules in the continuum. *Phys. Rev. A*, 106:023116, Aug 2022.