README file for "Angularly resolved Atomic Time Delays"

D.I.R. Boll ${ }^{* 1}$, L. Martini ${ }^{1,2}$, A. Palacios ${ }^{3,4}$, and O.A. Fojón ${ }^{1,5}$
${ }^{1}$ Instituto de Física Rosario, CONICET-UNR, Blvd. 27 de Febrero 210 bis, 2000 Rosario, Argentina
${ }^{2}$ Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, USA
${ }^{3}$ Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
${ }^{4}$ Institute of Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
${ }^{5}$ Escuela de Ciencias Exactas y Naturales, FCEIA, Universidad Nacional de Rosario, Argentina

December 22, 2022

1 Time-Dependent Schrödinger Equation (TDSE) calculations

Author: D.I.R. Boll

1.1 Files

1. Angular_delays_TDSE_0_4_0_0_180_2.dat
2. Angular_delays_TDSE_20_4_0_0_180_2.dat
3. Angular_delays_TDSE_40_4_0_0_180_2.dat
4. Angular_delays_TDSE_60_4_0_0_180_2.dat
5. Angular_delays_TDSE_80_4_0_0_180_2.dat
6. Angular_probs_TDSE_4_0_0_60_20_0_180_2.dat
[^0]
1.2 Description

Files with name pattern Angular_delays_TDSE_O_4_0_0_180_2.dat contain the angularly resolved atomic time delays $\tau_{a t}(\theta)$ we obtain from TDSE simulations of RABBITT spectra for hydrogen atoms initially in the $1 s$ ground state. Each file contains the results for the relative polarization angle $\Theta=0^{\circ}, 20^{\circ}, 40^{\circ}, 60^{\circ}$, and 80° between the polarization vectors of pump and probe pulses. The first column indicates the photoelectron emission angle in the $x y$-plane measured from the positive x-axis, the polarization direction of the attosecond pulse train (see Fig. 1 in Ref. [1]). The following columns in the data file contain the angularly resolved time delays $\tau_{a t}(\theta)$ for SBs 12 to 26.

The file with name Angular_probs_TDSE_4_0_0_60_20_0_180_2.dat contains the results for the fitting parameter A for SBs 12 to 26 , as a function of the electron emission angle and for each relative polarization angle Θ. Again, we obtain these results from TDSE simulations of RABBITT spectra for hydrogen atoms initially in the $1 s$ ground state.

1.3 Method

Utilizing the Qprop code [2], we numerically solve the TDSE for each angle Θ and 41 different values of the delay τ between the attosecond pulse train and the infrared (IR) laser. These delays span one IR period, and allow us to find the dependence of angle-resolved RABBITT spectra on the delay τ. Then, we fit the signal for each sideband with the general expression $I_{2 q}=A+B \cos \left(2 \omega_{0} \tau-\phi_{a t}\right)$, from which we obtain the angular dependence of the parameters A and B, and the atomic time delay $\tau_{a t}=\phi_{a t} / 2 \omega_{0}$.

The relevant parameters to reproduce the TDSE simulations are the following (values in atomic units unless otherwise stated):

- Radial grid step: 0.24
- Cutoff radius: 850
- T-surff radius: 1700
- Number of angular momenta in expansion: 4
- Time step for propagation: 0.06
- IR intensity: 0.05 TW/ cm^{2}
- IR angular freq. $\omega_{0}: 0.056954190$
- IR pulse duration: 10 IR-cycles
- XUV pulse duration: 3 IR-cycles
- XUV Harmonic orders: 11 to 27

1.4 Observations

The relative time delays $\Delta \tau_{a t}(\theta)$ in Figs. (2) and (3) from Ref. [1], are obtained by taking the difference $\tau_{a t}(\theta)-\tau_{a t}\left(0^{\circ}\right)$ from the datasets above.

2 Second-order perturbation theory (SOPT) calculations

Author(s): D.I.R. Boll and L. Martini

2.1 Files

1. Angular_delays_SOPT_0_0_180_2.dat
2. Angular_delays_SOPT_20_0_180_2.dat
3. Angular_delays_SOPT_40_0_180_2.dat
4. Angular_delays_SOPT_60_0_180_2.dat
5. Angular_delays_SOPT_80_0_180_2.dat

2.2 Description

Files with name pattern Angular_delays_SOPT_-_0_180_2.dat contain the angularly resolved atomic time delays $\tau_{a t}(\theta)$ we obtain from SOPT calculations for hydrogen atoms initially in the $1 s$ ground state. Each file contains the results for the relative polarization angle $\Theta=0^{\circ}, 20^{\circ}, 40^{\circ}, 60^{\circ}$, and 80° between the polarization vectors of pump and probe pulses. The first column indicates the photoelectron emission angle in the $x y$-plane measured from the positive x-axis, the polarization direction of the attosecond pulse train (see Fig. 1 in Ref. [1]). The following columns in the data file contain the angularly resolved time delays $\tau_{a t}(\theta)$ for SBs 12 to 26.

2.3 Method

For initial atomic s states, in Ref. [1] we show that angularly resolved atomic phase imprinted on RABBITT sidebands is given by

$$
\begin{equation*}
\tan \left(\phi_{a t}\right)=\frac{\sum_{L, L^{\prime}}\left|T_{L}^{+} \| T_{L^{\prime}}^{-}\right| g_{L, L^{\prime}} \sin \left(\phi_{L^{\prime}}^{-}-\phi_{L}^{+}\right)}{\sum_{L, L^{\prime}}\left|T_{L}^{+}\right|\left|T_{L^{\prime}}^{-}\right| g_{L, L^{\prime}} \cos \left(\phi_{L^{\prime}}^{-}-\phi_{L}^{+}\right)}, \tag{1}
\end{equation*}
$$

where $\left|T_{L}^{ \pm}\right|$and $\phi_{L}^{ \pm}$are the modulus and phase of (pseudo) radial matrix elements contributing to final states with angular momentum L, from absorption $(+)$ and emission (-) channels, respectively. The full angular dependence of atomic phase $\phi_{a t}$ is contained in the $g_{L, L^{\prime}}$ functions (see appendix in Ref. [1]). Therefore, to obtain the angularly-resolved atomic time delays from SOPT calculations we substitute into Eq. (1) the results for radial matrix elements $T_{L}^{ \pm}$obtained from Second-order Perturbation Theory (SOPT), reported previously [3].

2.4 Observations

The relative time delays $\Delta \tau_{a t}(\theta)$ in Figs. (2) and (3) from Ref. [1], are obtained by taking the difference $\tau_{a t}(\theta)-\tau_{a t}\left(0^{\circ}\right)$ from the datasets above.

3 Model calculations

Author(s): D.I.R. Boll

3.1 Files

1. Angular_delays_Model_0_0_180_2.dat
2. Angular_delays_Model_20_0_180_2.dat
3. Angular_delays_Model_40_0_180_2.dat
4. Angular_delays_Model_60_0_180_2.dat
5. Angular_delays_Model_80_0_180_2.dat

3.2 Description

Files with name pattern Angular_delays_Model_O_0_180_2.dat contain the angularly resolved atomic time delays $\tau_{a t}(\theta)$ we obtain from ACC-RME model [4] calculations for hydrogen atoms initially in the $1 s$ ground state. Each file contains the results for the relative polarization angle $\Theta=0^{\circ}, 20^{\circ}, 40^{\circ}, 60^{\circ}$, and 80° between the polarization vectors of pump and probe pulses. The first column indicates the photoelectron emission angle in the $x y$-plane measured from the positive x-axis, the polarization direction of the attosecond pulse train (see Fig. 1 in Ref. [1]). The following columns in the data file contain the angularly resolved time delays $\tau_{a t}(\theta)$ for SBs 12 to 26 .

3.3 Method

We obtain the angularly-resolved atomic time delays from model calculations by substituting into Eq. (1) the results for radial matrix elements $T_{L}^{ \pm}$obtained from ACC-RME model [4], reported previously [3].

3.4 Observations

The relative time delays $\Delta \tau_{a t}(\theta)$ in Figs. (2) and (3) from Ref. [1], are obtained by taking the difference $\tau_{a t}(\theta)-\tau_{a t}\left(0^{\circ}\right)$ from the datasets above.

4 Changelog

References

[1] D. I. R. Boll, L. Martini, and O. A. Fojón. Two-color polarization control on angularly resolved attosecond time delays. Physical Review A, submitted.
[2] Vasily Tulsky and Dieter Bauer. Qprop with faster calculation of photoelectron spectra. Computer Physics Communications, 251:107098, 2020.
[3] D.I.R. Boll, L. Martini, and O.A. Fojón. Two-photon two-color transition matrix amplitudes. Repositorio Institucional CONICET Digital. http://hdl.handle.net/11336/ 156629, 2022. Creation date: 2022/05/05.
[4] D. I. R. Boll, L. Martini, and O. A. Fojón. Analytical model for attosecond time delays and fano's propensity rules in the continuum. Phys. Rev. A, 106:023116, Aug 2022.

[^0]: *boll@ifir-conicet.gov.ar

