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String theory on AdS3 with NS-NS fluxes admits a solvable irrelevant deformation which is close to the
TT̄ deformation of the dual conformal field theory (CFT2). This consists of deforming the world sheet
action, namely the action of the SLð2;RÞ Wess-Zumino-Witten model, by adding to it the operator J−J̄−,
constructed with two Kac-Moody currents. The geometrical interpretation of the resulting theory is that of
strings on a conformally flat background that interpolate between anti–de Sitter (AdS3) in the IR and a flat
linear dilaton spacetime with its Hagedorn spectrum in the UV, having passed through a transition region of
positive curvature. Here, we study the properties of this string background both from the point of view of
the low-energy effective theory and of the world sheet CFT. We first study the geometrical properties of the
semiclassical geometry, then we revise the computation of correlation functions and of the spectrum of the
J−J̄− deformed world sheet theory, and finally we discuss how to extend this type of current-current
deformation to other conformal models.
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I. INTRODUCTION

In the context of AdS3=CFT2 correspondence, it was
shown in [1] that certain type of TT̄-deformation of the
boundary dual conformal field theory (CFT2), which can be
regarded as a single trace version of the one originally
introduced in [2–4], gives rise in the bulk to a string theory
background that interpolates between anti–de Sitter (AdS3)
in the infrared limit and a flat linear dilaton background in
the ultraviolet. This construction was argued in [1] to
provide a family of holographic pairs, including a large
class of string theory vacua with asymptotically linear
dilaton. The solvable irrelevant deformation of AdS3=CFT2

correspondence studied in [1] was further studied in [5],
where in particular its spectrum was studied. It was
observed that this type of deformation leads in the ultra-
violet to a theory with Hagedorn spectrum. This has been
studied in [6–11] and references therein and thereof; see
also [12–14].
In [15,16], the correlation functions in the deformed

theory were studied, and it provided an alternative way of
studying the spectrum; the insertion of an operator that
realizes the deformation produces a logarithmic divergence
in the correlation functions, leading to the renormalization

of the primary operators. This yields an anomalous dimen-
sion that can be computed explicitly. From this, one may
determine the spectrum of the theory from the world sheet
computation. The form of the correlation functions, on the
other hand, permits us to investigate the properties of the
dual theory [15].
The model studied in [1] was later investigated in many

different contexts. The entanglement entropy was first
studied in [17]; in [18,19] the theory was studied in
presence of boundaries and the JT̄ analog of it has also
been studied [20–23]. Here, we study the properties of
this string background both from the point of view of
the low-energy effective theory and of the world sheet
CFT. In Sec. II, we study the geometrical properties of the
semiclassical geometry. We study the geometry as a
solution to the low-energy effective field theory, its
T-dual background, the main properties of this specific
deformation of AdS3, and the field probes in such an
spacetime. In Sec. III, we revise the computation of
correlation functions of [15,16] and how it provides a
direct way of studying the spectrum. Finally, in Sec. IV we
discuss how to extend this type of deformation to other
conformal models.

II. LOW ENERGY THEORY

A. Interpolating background

Let us start by considering the effective theory describing
the low-energy limit of bosonic string theory. This is given
by the field equations
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Rαβ þ 2∇α∇βΦ −
1

4
HαμνH

μν
β ¼ 0; ð1Þ

∇αðe−2ΦHαμνÞ ¼ 0; ð2Þ

∇α∇αΦ−2∇αΦ∇αΦþ2α0 þ 1

12
HαμνHαμν ¼ 0; ð3Þ

where Hμνρ ¼ ∂ ½μBνρ� is the field strengh associated to the
Kalb-Ramond B-field, and Φ is the dilaton. These equa-
tions admit locally AdS3 solutions [24],

ds2 ¼ −
r2

l2
dt2 þ l2

r2
dr2 þ r2dθ2; ð4Þ

provided the other backgrounds fields take the form

Φ ¼ Φ0; Hμνρ ¼
2r
l
ϵμνρ: ð5Þ

The dilaton receives quantum (i.e., finite-α0) corrections.
Here, we will consider the convention α0 ¼ 1, so that the
semiclassical limit corresponds to large k ¼ l2=α0 ¼ l2.
As (4) describes the universal covering of AdS3, we have

t ∈ R. The radial coordinate is r ∈ R≥0, with the boundary
of the space being located at r → ∞. If we take θ to be
periodic with a period 2π, the metric above corresponds to
that of the massless Bañados-Teitelboim-Zanelli geometry
[25,26]. It will be convenient to consider coordinates r ¼
leϕ and x ¼ lθ. In these variables, the metric and the field
strength take the form

ds2 ¼ e2ϕð−dt2 þ dx2Þ þ l2dϕ2;

Hμνρ ¼ ∂ ½μBνρ� ¼ 2e2ϕϵμνρ; ð6Þ

where we now consider the covering x ∈ R. That is, the
nonvanishing component of the Kalb-Ramond field is
Bxt ¼ e2ϕ and grows when approaching the boundary
at ϕ → ∞.
Now, let us consider a deformation of (6), given by

ds2 ¼ e2ϕ

λe2ϕ þ 1
ð−dt2 þ dx2Þ þ l2dϕ2; ð7Þ

with λ being a real parameter. This metric solves the field
equations (1) for arbitrary λ provided the Kalb-Ramond
field and the dilaton are given by

Bxt ¼
2e2ϕ

λe2ϕ þ 1
; Φ ¼ Φ0 − ϕ −

1

2
logðλþ e−2ϕÞ; ð8Þ

respectively. Near the boundary, the dilaton becomes linear
in ϕ. We are mostly interested in the case λ ≥ 0, as for
λ < 0 the geometry exhibits a singularity at ϕ ¼ − 1

2
log jλj.

In terms of the double null coordinates u ¼ ðxþ tÞ=l and
ū ¼ ðx − tÞ=l, the fields take the following form

ds2 ¼ l2dϕ2 þ l2dudū
λþ e−2ϕ

; B ¼ l2du ∧ dū
λþ e−2ϕ

: ð9Þ

This solution has recently attracted much attention
[1,5,8–11,15–23] as it appears as an exact string back-
ground that corresponds to a marginal deformation of the
world sheet theory on AdS3 ×N which is closely related to
the TT̄-deformation of the dual CFT.
Let us go back for a moment to the more familiar

coordinates r ¼ leϕ, namely

ds2 ¼ −
r2

r2λþ l2
dt2 þ l2

r2
dr2 þ r2

r2λþ l2
dx2; ð10Þ

in which it becomes evident that the geometry interpolates
between AdS3 and Minkowski space; while in the limit
r ≪ l=

ffiffiffi
λ

p
one recovers the metric (4), in the limit r ≫

l=
ffiffiffi
λ

p
one gets ds2 ¼ −dt̂2 þ dx̂2 þ dŷ2 where t̂ ¼ t=

ffiffiffi
λ

p
,

x̂ ¼ x=
ffiffiffi
λ

p
, ŷ ¼ lϕ. The local isometry group of spacetime

(10) for arbitrary value of λ is ISOð1; 1Þ and is generated by
the Killing vectors ∂t, ∂x and x∂t þ t∂x. It gets enhanced
to the full SLð2;RÞ × SLð2;RÞ for λ ¼ 0 and to ISOð2; 1Þ
in the limit λ → ∞
The interpolating geometry (9) has very interesting

properties. Apart from being fascinating in that it describes
the transition between AdS3 and the type of linear dilaton
background that appears in little string theory, its geometry
(9) exhibits peculiar features; it admits a supersymmetric
embedding in type IIB SUGRA, since it appears in the
S-dual frame of the D1/D5 system [27]. Besides, it is
solvable in different limits: On the one hand, despite being
a geometry of nonconstant curvature, it turns out that the
probe fields are integrable on it, and thus enables us to gain
intuition from the semiclassical analysis. On the other hand,
the string world sheet σ-model is an exact string solution,
being a marginal deformation of a WZW (Wess-Zumino-
Witten) model, and can be solved explicitly in the sense that
analytic expressions for the correlation functions can be
obtained and the spectrum can be written down.

B. T-duality

Let us study some of the properties of (9), starting by
noticing that it is dual to pp-waves on AdS3. Spacetime (6)
happens to be invariant under t and x translations, and so
we can apply T-duality transformations along the direction
generated by ∂t and ∂x in order to obtain new solutions
g̃μν; B̃μν; Φ̃ to the field equations (1)–(3). At the level of the
low-energy effective action, this amounts to applying the
Buscher rules [28,29]. For the t-direction, these trans-
formation rules are
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g̃tt¼
1

gtt
; g̃ti¼

Bti

gtt
; g̃ij¼gij−

gtigtj
gtt

−
BtiBtj

gtt
; ð11Þ

together with

B̃ti ¼
gti
gtt

; B̃ij¼Bij−2
gt½iBj�t
gtt

; Φ̃¼Φ−
1

2
logðgttÞ;

ð12Þ

where i, j correspond to the coordinates other than t. After
performing these transformations and renaming the varia-
bles as u ¼ x, v ¼ t, and y ¼ lϕ, one obtains

ds̃2¼−FðyÞdv2þ2dudvþdy2; with FðyÞ¼ λþe−2y=l;

ð13Þ

together with B̃μν ¼ 0, and Φ̃ ¼ Φ̃0 − ϕ. Analogously, by
applying similar transformations to (7) in the x direction,
one gets

ds̃2 ¼ FðyÞdu2 þ 2dudvþ dy2: ð14Þ

This geometry describes a 3-dimensional version of a
pp-wave solution in Brinkmann type coordinates with a
wave profile F. The nonvanishing component of the
Riemann tensor for this geometry is

Rvy
uy ¼ −

2

l2
e−2y=l: ð15Þ

This solution represents an exact string background. In
order to apply the T-duality transformation to (7) along the
ξ ¼ x∂t þ t∂x direction, we perform the change of coor-
dinates t ¼ ffiffiffi

v
p

sinhðuÞ and x ¼ ffiffiffi
v

p
coshðuÞ which maps

x∂t þ t∂x → ∂u. Using this new coordinate system, the
metric of the interpolating background is

ds2 ¼ e2ϕ

λe2ϕ þ 1

�
−vdu2 þ 1

4v
dv2

�
þ l2dϕ2; ð16Þ

while the Kalb-Ramond field changes as Btx → Buv ¼
Btx=2, and the dilaton remains as in (8). By applying the
Busher’s rules in the ∂u we get

ds2 ¼ −
FðyÞ
v

du2 −
1

v
dudvþ dϕ2; ð17Þ

which under the change of coordinates v ¼ ew takes the
form

ds2 ¼ −e−wFðyÞdu2 − dudwþ dϕ2: ð18Þ

This spacetime also admits the interpretation of a pp-wave.

C. Geometric properties of the
interpolating spacetime

As said, spacetime (9) interpolates between AdS3 in the
limit ϕ → −∞ and a flat linear dilaton background in the
opposite limit. The geometry thus has nonconstant curva-
ture. In fact, it can be shown to have an infinite region of
positive curvature. To see this, we can compute the scalar
curvature

R ¼ 2ð4λr2 − 3l2Þ
ðλr2 þ l2Þ2 ; ð19Þ

which, indeed, happens to be positive for r > l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð4λÞp

,
all the way to infinity. R has a global maximum at rmax ¼
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5=ð2λÞp

with a maximum value Rmax ¼ 8=ð7l2Þ that
does not depend on the deformation parameter λ. Figure 1
depicts the function R as a function of the radial coordinate
r for different values of λ.
Other curvature invariants of (9) are

RμνRμν ¼
4ð6λ2r4 − 8l2λr2 þ 3l4Þ

ðλr2 þ l2Þ4 ; ð20Þ

Rμ
νRν

ρRρ
μ ¼

−8ð−10λ3r6 þ 18l2λ2r4 − 12l4λr2 þ 3l6Þ
ðλr2 þ l2Þ6 ;

ð21Þ

and we see from these, and from (19), that the geometry is
actually singular at r ¼ l=

ffiffiffiffiffiffi
−λ

p
when λ < 0. It is important

noticing that it is sufficient to give the three curvature
invariant R, TrðR2

μνÞ, and TrðR3
μνÞ to characterize them all,

since any higher curvature scalar can be obtained as a
combination of powers of the latter three quantities by
virtue of the three-dimensional identities

δμ1���μnν1���νn R̃
ν1
μ1 � � � R̃νn

μn ≡ 0; n > 3; ð22Þ

FIG. 1. Ricci scalar for different values of λ.
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where R̃ν1
μ1 is the traceless part of the Ricci tensor. Despite

being of nonconstant curvature, geometry (9) yields van-
ishing Cotton tensor

Cμν ¼ ϵμ
αβ∇α

�
Rνβ −

1

4
Rgνβ

�
¼ 0; ð23Þ

which implies that it is locally conformally flat. This
property makes Weyl invariant probes integrable on this
background, as we will show below. This permits us to gain
a semiclassical intuition. The conformal factor that allows
to write the interpolating background (10) in a manifestly
conformally flat form, defines an improper Weyl trans-
formations and, therefore, imposing boundary conditions
and asymptotic behaviors on probe fields is nontrivially
related to their flat counterpart.

D. Probes on the deformed geometry

1. Conformally coupled scalar field

Consider a conformally coupled scalar field on the
geometry (9). The corresponding equation is

∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ − 1

8

ffiffiffiffiffiffi
−g

p
RΦ ¼ 0: ð24Þ

We consider the separable ansatz

Φðt; r; xÞ ¼ e−iωteiκxφðrÞ: ð25Þ

This problem is exactly solvable. However, we can first
gain intuition from the well-known small and large r
regimes, where it reduces to the AdS3 and to the flat space
computation, respectively. This does not mean that the
solution to the complete problem will be a simple junction
of the two constant curvature problems. The transmission
coefficients may actually change due to the different
boundary conditions that have to be satisfied in the λ-
deformed background.
Let us consider first the case κ2 − ω2 < 0. In this case,

the solution for φðrÞ takes the form

φðrÞ ¼
�
r2λþ 1

r2

�
1=4�

A1ei
ffiffiffiffiffiffiffiffiffi
ω2−κ2

p
χðrÞ þ B1e−i

ffiffiffiffiffiffiffiffiffi
ω2−κ2

p
χðrÞ

�
;

ð26Þ

where

χðrÞ ¼
ffiffiffi
λ

p
log

�
λrþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2λþ 1Þλ

q �
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2λþ 1

p

r
; ð27Þ

and where A1 and B1 are two constants to be determined
by requiring appropriate boundary conditions. In order to
impose conditions at infinity, it is convenient to solve (24)
on the nearly flat metric

ds2 ≃ −
1

λ
dt2 þ dr2

r2
þ 1

λ
dx2 ð28Þ

which is the large r limit of (10) (here, we set l ¼ 1 for
short). The radial dependence of the conformal scalar on this

metric is φðrÞ ∝ A1ei
ffiffi
λ

p ffiffiffiffiffiffiffiffiffi
ω2−κ2

p
logðrÞ þ B2e−i

ffiffi
λ

p ffiffiffiffiffiffiffiffiffi
ω2−κ2

p
logðrÞ.

Wewant to impose outgoing boundary conditions at infinity.
Since for λ ≠ 0 we have1

Φðt; r; xÞ ∼ A1e−iωðt−
ffiffi
λ

p
logðrÞÞ þ B1e−iωðtþ

ffiffi
λ

p
logðrÞÞ; ð29Þ

by expanding at infinity we find that imposing outgoing
boundary conditions corresponds to B1 ¼ 0. This is con-
firmed by considering the flux of particles defined by the
Uð1Þ current, jμ ¼ −iðΦ�∂μΦ −Φ∂μΦ�Þ. Thus,

φðrÞ ¼ A1

�
r2λþ 1

r2

�
1=4

ei
ffiffiffiffiffiffiffiffiffi
ω2−κ2

p
ð ffiffi

λ
p

log ðλrþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2λþ1Þλ

p
Þ−

ffiffiffiffiffiffiffi
r2λþ1

p
r Þ:

ð30Þ

Now, let us study the behavior near r ¼ 0. To do so, we
expand the expression around the origin, where we find that

the dominant part goes like φðrÞ ∼ r−1=2e−i
ffiffiffiffiffiffiffiffiffi
ω2−κ2

p
=r. At this

point, we are interested in making connection between this
result and the well-known result for AdS3 (i.e., λ ¼ 0) when
ω2 > κ2; namely

φλ¼0ðzÞ¼A2zJ1
2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−κ2

p
zÞþB2zJ−1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−κ2

p
zÞ; ð31Þ

where z ¼ 1=r and where J�1=2 are Bessel functions.2 In
order to relate (31) with the complex exponentials in (26)
one can use

J1
2
ðxÞ ¼

ffiffiffi
2

π

r
sinðxÞffiffiffi

x
p ; J−1

2
ðxÞ ¼

ffiffiffi
2

π

r
cosðxÞffiffiffi

x
p ð32Þ

and, therefore, in terms of r this becomes

φλ¼0ðrÞ ¼ ðA2 þ B2Þ
ei

ffiffiffiffiffiffiffiffi
ω2−κ2

p
r

r1=2
− ðA2 − B2Þ

e−i
ffiffiffiffiffiffiffiffi
ω2−κ2

p
r

r1=2
: ð33Þ

We see that the asymptotic behavior of (30) is a particular
linear combination of the solutions in (33), namely with
B2 ¼ −A2. This is equivalent to setting very special mixing

1As for analyzing the ingoing or outgoing behavior, it is
necessary to inspect the solution in its form t� fðrÞ. To do so, it
is sufficient to look at the case κ ¼ 0.

2These Bessel functions actually reduce to elementary func-
tions, due to the fact that on AdS our problem reduces to that of a
scalar with the conformal mass m2l2 ¼ m2

confl
2 ¼ −3=4. For

arbitrary values of the mass the Bessel functions are replaced by
J�ν with ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p
.

GIRIBET, OLIVA, and STUARDO PHYS. REV. D 103, 126010 (2021)

126010-4



boundary conditions in the AdS3 region r ≪ 1=
ffiffiffi
λ

p
. This

makes a difference with respect to the AdS3 case λ ¼ 0.
Now, let us see what happens in the case κ2 − ω2 > 0,

where the solution is

φðrÞ ¼
�
r2λþ 1

r2

�
1=4

ðC1e−
ffiffiffiffiffiffiffiffiffi
κ2−ω2

p
χðrÞ þD1e

ffiffiffiffiffiffiffiffiffi
κ2−ω2

p
χðrÞÞ:

ð34Þ

As the wave function is now confined, we want the solution
to vanish at infinity; therefore, we set D1 ¼ 0. As before,
one can first take a look at the solution in the case λ ¼ 0,
namely

φλ¼0ðrÞ¼
C2

r
K1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2−ω2

p

r

�
þD2

r
I1
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2−ω2

p

r

�
; ð35Þ

and then rewrite the modified Bessel functions K1=2, I1=2 as

K1
2
ðxÞ ¼

ffiffiffi
π

2

r
e−xffiffiffi
x

p I1
2
ðxÞ ¼

ffiffiffi
2

π

r
sinhðxÞffiffiffi

x
p ð36Þ

to make contact with the solution for λ ¼ 0,

φλ¼0ðrÞ ¼
C2

r1=2
e−

ffiffiffiffiffiffiffiffi
κ2−ω2

p
r þ D2

r1=2
sinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − ω2

p

r

�
: ð37Þ

Expanding the λ ≠ 0 solution near r ¼ 0, one obtains

φðrÞ¼C1e
ffiffiffiffiffiffiffiffi
κ2−ω2

p
r

�
r−1=2e−

1
2

ffiffiffiffiffiffiffiffiffi
κ2−ω2

p ffiffi
λ

p
logðλÞ þOðr1=2Þ

�
; ð38Þ

so we see that (38) corresponds to the linear combination
C2 ¼ D2 above. Notice that, while (30) diverges as ∼r−1=2
when r tends to zero, (38) is exponentially divergent in that
limit. Condition C2 ¼ D2 also looks from the AdS3 view-
point (r ≪ 1=

ffiffiffi
λ

p
) as mixed boundary conditions which are

induced by the presence of the unusual asymptotic of the
deformed theory.

2. Free fermion

As the conformally coupled scalar, the Dirac action is
also Weyl invariant; therefore, it is natural to study a spin-
1=2 probe on the deformed, conformally flat background
(10). Explicitly, the Dirac equation is�

γaeμa∂μ þ
1

2
ωab
μ γceμcJab

�
Ψ ¼ 0: ð39Þ

The spinor Ψ will split in two components ΨT ¼ ðΨ1;Ψ2Þ.
The defomed metric (10) is of the form

ds2 ¼ −f2ðrÞdt2 þ g2ðrÞdr2 þ f2ðrÞdx2; ð40Þ

for which we can choose dreibein and compute the spin
connections, leading respectively to

e0 ¼ fdt; e1 ¼ gdr and e2 ¼ fdx; ð41Þ

ω01 ¼ f0

g
dt and ω12 ¼ −

f0

g
dx: ð42Þ

It is useful to use the explicit, real representation of the
Dirac matrices γ0 ¼ iσ2; γ1 ¼ σ1, and γ2 ¼ σ3. With these
expressions at hand, the Dirac equation leads to the coupled
system

1

f
∂tΨ2 þ

1

g
∂rΨ2 þ

1

f
∂xΨ1 þ

f0

fg
Ψ2 ¼ 0; ð43Þ

1

f
∂tΨ1 −

1

g
∂rΨ1 þ

1

f
∂xΨ2 −

f0

fg
Ψ1 ¼ 0: ð44Þ

Defining Ψiðt; r; xÞ ¼ e−iωtþiκxψ iðrÞ with i ¼ 1, 2, we can
integrate the radial profiles for the spinor as

ψ1ðrÞ ¼
�
r2λþ 1

r2

�
1=4

φðrÞ and

ψ2ðrÞ ¼
ω

κ
ψ1ðrÞ −

i
κ

1

gðrÞ
d
dr

ðfðrÞψ1ðrÞÞ; ð45Þ

where φðrÞ is given by (26) or (34) depending on the sign
of κ2 − ω2, as before. Consequently, the asymptotic behav-
ior for the fermion is inherited by that of the scalar. When
the momentum along the direction x vanishes, namely
when κ ¼ 0 the integration for the Dirac field is simpler and
leads to

ψ1ðrÞ ¼ C1

�
1þ r2λ

r2

�
1=2

ðr
ffiffiffi
λ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2λ

p
Þ−iω

ffiffi
λ

p
e
iω

ffiffiffiffiffiffiffi
1þr2λ

p
r ;

ð46Þ

ψ2ðrÞ ¼ C2

�
1þ r2λ

r2

�
1=2

ðr
ffiffiffi
λ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2λ

p
Þiω

ffiffi
λ

p
e−

iω
ffiffiffiffiffiffiffi
1þr2λ

p
r :

ð47Þ

The two independent solutions C1 ¼ 0 or C2 ¼ 0, respec-
tively describe an ingoing or outgoing flux of particles.
Again, from the perspective of AdS3, these would corre-
spond to mixed boundary conditions.

III. STRING THEORY

Now, let us study the string world sheet theory. The
world sheet action on the background (9) takes the form
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S ¼ 1

2π

Z
d2z

�
1

2
∂ϕ∂̄ϕþ 1

2
∂ū ∂̄ uðλþ e−

ffiffiffiffiffiffiffiffiffiffiffiffi
2=ðk−2Þ

p
ϕÞ−1

�
;

ð48Þ

together with an extra linear dilaton term
−ð1=2πÞ R d2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðk − 2Þp

Rϕ with R being here the world
sheet curvature. We see here that, provided λ ≠ 0, in the
limit ϕ → ∞ one recovers the free theory with a back-
ground charge term. In the case of λ ¼ 0, in contrast, the
theory at ϕ → ∞ exhibits a nontrivial coupling between ϕ
and the u; ū dependence. This can be regarded as an
effective potential in the ϕ-direction. This potential van-
ishes for holomorphic configurations such that ∂ū ∂̄ u ¼ 0.
These configurations are closely related to the so-called
long strings, which form a continuum in the spectrum
in AdS3.

A. Strings on AdS3 ×N

Let us begin by reviewing the undeformed theory
(λ ¼ 0), namely bosonic string theory on AdS3 ×N .
This theory corresponds to the level-k WZW model on
SLð2;RÞ, and so it has bslð2Þk affine Kac-Moody symmetry,
which is generated by local currents whose modes are
usually denoted J�n , J3n, along with their anti-holomorphic
counterparts. Virasoro symmetry follows from the
Sugawara construction. We consider primary operators
of the form

VhðpjzÞ¼Z0jpj2−2heipuðzÞþip̄ ūðz̄Þe
ffiffiffiffiffiffiffiffiffiffiffiffi
2=ðk−2Þ

p
ðh−1Þϕðz;z̄Þ×…

ð49Þ

where the ellipsis stand for the contributions of internal part
N . These are the vertex operators of the theory. p and p̄ are
the momenta conjugate to directions u and ū, while h is
related to the radial momentum. The factor Z0jpj2−2h stands
for a normalization. The world sheet conformal dimension
of these operators are

Δλ¼0 ¼
hð1 − hÞ
k − 2

þ ΔN þ N: ð50Þ

An analogous expression holds for Δ̄λ¼0 with Δ̄N and N̄.
ΔN stand for the conformal dimension of the operators
of the CFT on the internal space N , and N is the string
excitation number. As just said, p and p̄ represent the
momentum in the boundary, and they relate to the
momentum in (25) as follows:

κ ¼ pþ p̄
l

; ω ¼ p̄ − p
l

: ð51Þ

In the Euclidean theory, t → it and p̄ is the complex
conjugate of p. The index h labels the representations of

SLð2;RÞ. We focus on the long string states, which belong
to the continuous series representations, having

h ¼ 1

2
þ is; with s ∈ R: ð52Þ

These long strings can reach the boundary due to the
coupling to the B-field. They have a continuous energy
spectrum, which depends on the spectral flow variable w ∈
Z≥0 that accounts for the winding number of the string
around the boundary. To analyze the spectrum of the theory
on AdS3 ×N in the momentum space, it is convenient to
consider the operator basis

Vh;m;m̄ðzÞ ¼
ΓðhþmÞ

Γð1 − h − m̄Þ
Z

d2p
jpj2 p

−mp̄−m̄VhðpjzÞ: ð53Þ

Performing spectral flow transformation on the states
created by these operators, one obtains the states of the
sector w, whose conformal dimensions are

Δλ¼0 ¼
hð1 − hÞ
k − 2

−mw −
k
2
w2 þ ΔN þ N: ð54Þ

where the energy is given by mþ m̄þ kw and the angular
momentum by m − m̄.
The 2-point function in the theory on AdS3 ×N is

well-known. For long strings in the basis VhðpjzÞ, this
takes the form

hV1
2
þis1ðp1jz1¼0ÞV1

2
þis2ðp2jz2¼1Þiλ¼0

¼2s1
πk

Z2
0νðkÞ2is1 jp1j4is1δð2Þðp1þp2Þδðs1−s2Þe2iφ; ð55Þ

where

e2iφ ¼Γ=Γ�; with Γ¼Γð−2isÞΓð−2is=ðk−2ÞÞ ð56Þ

and

νðkÞ ¼ Γð 1
k−2Þ

Γð1 − 1
k−2Þ

: ð57Þ

The subscript λ ¼ 0 in (55) refers to the fact that the
quantity corresponds to the undeformed AdS3 ×N back-
ground. In the deformed theory, the 2-point function has
been computed in [15,16], yielding

hVh1ðp1jz1 ¼ 0ÞVh2ðp2jz2 ¼ 1Þiλ
¼ δð2Þðp1 þ p2Þδh1−h2 jp1j4h1−2Bðh1Þ ð58Þ

with
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Bðh1Þ ¼
νðkÞ2h1−1

π

Γð1 − 2h1ÞΓð1 − 2h1−1
k−2 Þ

Γð2h1 − 1ÞΓð2h1−1k−2 Þ
; ð59Þ

and where the spectrum of the theory is given by

h ¼ 1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðk − 2Þλjpj2 − s2

q
: ð60Þ

This reduces to the 2-point function of the SLð2;RÞk WZW
model in the limit λ ¼ 0. Equation (60) follows from
imposing the Virasoro constraint Δλ¼0 ¼ 1 on (50).
Equation (60) for the expression can be regarded as a

string theory analog of the mode mixing discussed when
we analyzed the scalar probes in the deformed background.
Of course, spectrum (60) exhibits purely stringy phenom-
ena; in particular, for λ ¼ 0 it reduces to the long string
theory spectrum (52). The long string states form the
continuous part of the spectrum and, being states that
escape to the asymptotic region, permit to define a
scattering matrix in AdS3. This is due to the coupling to
the B-field, and so have no particle analog. Still, we see in
(60) that a value λ > 0 change the spectrum of such states,
introducing, on the one hand, a p-dependence on the world
sheet dimension h, and, on the other hand, a λ-dependent
threshold for the continuous part of the spectrum. This is
the string theory analog to the mode mixing discussed
in Sec. II.

B. Turning on the deformation

To see in detail how to obtain the correlator (58)–(59)
and (60), we may first rewrite action (48) by adding
auxiliary fields v; v̄, yielding the equivalent action

Sλ ¼
1

2π

Z
d2z

�
1

2
∂ϕ∂̄ϕ − v∂̄u − v̄∂ū

− 2vv̄e−
ffiffiffiffiffiffiffiffiffiffiffiffi
2=ðk−2Þ

p
ϕ − 2λvv̄

�
; ð61Þ

where now the pair ðv; uÞ forms a commuting, dimension-
(1,0) ðβ; γÞ ghost system. As we work in the conformal
gauge, we are omitting here a background charge that
represents the dilaton term. For λ ¼ 0, equation (61) is,
indeed, the WZW model written in Wakimoto variables
[30]. Nevertheless, we prefer to keep the notation v, u
to make contact with the spacetime interpretation (9).
The action of the λ-deformed theory is thus given by
SSLð2;RÞWZW − 2λ

R
dz2vv̄. This corresponds to a current-

current deformation of the WZW model, with the defor-
mation being realized by the operator λvv̄. This is
consistent with the fact that the specific Kac-Moody current
in these variables reads J−ðzÞ ¼ vðzÞ.
When trying to compute a correlation function such

as hVh1ðp1jz1ÞVh2ðp2jz2Þiλ in the path integral approach,
namely

hVh1ðp1jz1ÞVh2ðp2jz2Þiλ
¼

Z
DϕD2uD2ve−SλVh1ðp1jz1ÞVh2ðp2jz2Þ; ð62Þ

the presence of the operator λ
R
d2zvv̄ induces a UV

divergent term in the effective action after integrating the
fields u; ū (see [16] for more details). This makes the
contribution of the correlators coming from the undeformed
theory to factorize, and the deformation ends up contrib-
uting with an exponential that contains the conformal
integral

I0 ¼
Z

d2zjz − z1j−2jz − z2j−2: ð63Þ

This divergent integral appears frequently in quantum field
theory calculations. For instance, it appears in the one-loop
computation of the anomalous dimension of the composite
operator ψ̄ψ in the Thirring model. The result of it is
logarithmically divergent and it can be regularized using
different methods. By introducing a regulator ϵ, this can be
resolved as3

Iϵ ¼ ð1þ 2ϵ log jz1 − z2j þOðϵ2ÞÞ
�
2π

ϵ
þOðϵ0Þ

�
; ð64Þ

and, after renormalizing the vertex operators by choosing
Zϵ ¼ e−2λjpj2=ϵ, one obtains

hVh1ðp1jz1ÞVh2ðp2jz2Þiλ ∼ jz1 − z2j−4Δ0−4λjp1j2 ð65Þ

From this, it is possible to read the anomalous dimension
induced by the deformation; namely

Δλ¼0 → Δλ ¼ Δλ¼0 þ λjpj2: ð66Þ

Finally, imposing the Virasoro constraint Δλ ¼ 1 and
writing it in terms of the quantities of the undeformed
theory that satisfiedΔλ¼0 ¼ 1, one gets (60), which reduces
to (52) in the case λ ¼ 0. We observe that h ∈ R provided
−4jpj ffiffiffiffiffi

kλ
p

≥ s ≥ þ4jpj ffiffiffiffiffi
kλ

p
; and h ∈ 1

2
þ iR provided

jsj > 4jpj ffiffiffiffiffiffiffi
kλ0

p
. The overall factor jp1j4h1−2 in the 2-point

function and the dependence of h1 on λ has been studied in
detail in [15] to investigate the properties of the dual theory,
especially its nonlocality encoded in a branch cut that the
2-point function of the λ-deformed theory exhibits.

IV. GENERALIZATIONS

The advantage of the computation of the anomalous
dimension described above is that it admits a

3Here Oðϵ0Þ stands for all constant terms that are independent
of the insertion points, as we can eliminate such terms by the
normalization of the vertex operators.
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straightforward generalization to other models, such as the
SLðN;RÞ WZW models or their supersymmetric exten-
sions. Despite not in all such cases one has a string σ-model
interpretation of the CFT, this is still interesting from the
CFT point of view as it provides a set of solvable nonra-
tional models. The simplest extension of this sort is the
SLðN;RÞ WZW model. In that case, the action can in
principle be written as a sum of a Gaussian piece and an
interaction piece SI; namely

SSLðN;RÞWZW

¼ 1

2π

Z
d2z

�
ð∂ϕ; ∂̄ϕÞ− XNðN−1Þ=2

a¼1

ðva∂̄uaþ v̄a∂ūaÞ
�
þSI:

ð67Þ
This involves a set of N − 1 scalars and NðN − 1Þ copies
of β, γ systems, which here we keep denoting by va, ua
with a ¼ 1; 2;…NðN − 1Þ=2. The scalars, ϕi, with i ¼
1; 2;…N − 1 form a vector in the space of roots of slðNÞ.
We denote (.,.) the product in this space of roots, which is
defined in terms of the Cartan matrix Kij ¼ ðei; ejÞ with
e1; e2;…; eN−1 being the simple roots, with the N − 1
fundamental weights wi satisfying ðwi; ejÞ ¼ δij. ρ is
the Weyl vector, i.e., the half-sum of all positive roots.
The Lagrangian also includes a background charge
term

R
d2zðρ;ϕÞR= ffiffiffiffiffiffiffiffiffiffiffiffi

k − N
p

.
As before, in the appropriate basis a solvable family of

current-current deformation of the theory is given by the
addition of the marginal operator

XN−1

i¼1

λi
π

Z
d2zviv̄i; ð68Þ

where the field J−i ðzÞ ¼ viðzÞ with i¼ 1;2;…N−1 corre-
spond to the Abelian subalgebra formed by N − 1 lowering
operators. If we denoteH ¼ ðJ31; J32;…J3N−1Þ the generators
of the Cartan subalgebra, and E ¼ ðJþ1 ; Jþ2 ;…JþNðN−1Þ=2Þ
and F ¼ ðJ−1 ; J−2 ;…J−NðN−1Þ=2Þ the raising and lowering
operators, respectively, then there exists an ordering such
that the first N − 1 elements F ⊃ ðJ−1 ; J−2 ;…J−N−1Þ form an
Abelian subalgebra. More importantly, there exists a free
field representation such that theseN − 1 fields are given by
J−i ¼ vi with i ¼ 1; 2;…N − 1. For the case AN−1 with
N ¼ 2, 3, 4, 5 these representations have been explicitly
constructed in the literature [31–33], and the generic case
has been extensively discussed [34–36]. Let us first show
how the argument goes for generic N and then consider an
illustrating particular case.
Consider the operators

Vhðp; zÞ ¼ Z0e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðk−NÞ

p
ðh;ϕðzÞÞei

P
NðN−1Þ=2
a¼1

ðpauaðzÞþp̄aūaðzÞÞ

ð69Þ

where h ¼ ðh1; h2;…hN−1Þ is the vector of the space of
roots, and p ¼ ðp1; p2;…pNðN−1Þ=2Þ are the momentum
associated to the directions ua; and consider the correlation
functions

hVhðp1jz1ÞVhðp2jz2Þiλ1;…λN−1

¼
Z YN−1

i¼1

Dϕi

YNðN−1Þ=2

a¼1

D2uaD2vae
−Sλ1 ;…;λN−1

×Vhðp1jz1ÞVhðp2jz2Þ: ð70Þ

After integrating in ui for some i (those that correspond to
the fields ui that do not appear other than in the kinetic
term) the action (67)–(68) being linear in these fields, one
obtains

∂̄vi ¼ 2πiðpi
1δ

2ðz − z1Þ þ pi
2δ

2ðz − z2ÞÞ; ð71Þ

The solution is

viðzÞ ¼
ipi

1

z − z1
−

ipi
1

z − z2
; ð72Þ

where we have used that, on the sphere, p1 þ p2 ¼ 0 in
virtue of the Riemann-Roch theorem. This can now be
inserted back in (68). When doing so, one observes that a
logarithmically divergent integral similar to (63) appears,
yielding an anomalous correction to the conformal dimen-
sion of operators (69). To see this in detail, let us consider
the caseN ¼ 3, in which the undeformed theory is given by
the WZW model on SLð3;RÞ, whose action reads

SSLð3;RÞWZW¼ 1

2π

Z
d2z

�
ð∂ϕ; ∂̄ϕÞ−X3

a¼1

ðva∂̄uaþ v̄a∂ūaÞ

þ jv2þv1u3j2e
ffiffiffiffiffiffiffiffiffiffiffiffi
2=ðk−3Þ

p
ðe2;ϕÞ

−v3v̄3e
ffiffiffiffiffiffiffiffiffiffiffiffi
2=ðk−3Þ

p
ðe3;ϕÞ−v1v̄1e

ffiffiffiffiffiffiffiffiffiffiffiffi
2=ðk−3Þ

p
ðρ;ϕÞ

�
;

ð73Þ

together with a background charge term
R
d2zðρ;ϕÞR=ffiffiffiffiffiffiffiffiffiffi

k−3
p

. As before, this action can be written in terms
of the Wakimoto variables in such a way that two
commuting currents take a simple form J−1 ðzÞ ¼ v1ðzÞ
and J−2 ðzÞ ¼ v2ðzÞ. Therefore, in the spirit of the defor-
mation for SLð2;RÞ, we deform the SLð3;RÞ WZW
model by adding to it two quadratic operators, for v1
and v2; namely

Sλ1;λ2 ¼ SSLð3;RÞWZW −
λ1
π

Z
d2zv1v̄1 −

λ2
π

Z
d2zv2v̄2:

ð74Þ
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We consider operators (69) with N ¼ 3, h ¼ ðh1; h2Þ
and p¼ðp1;p2;p3Þ, and the correlation function
hVhðp;z1ÞVhð−p;z2Þiλ1;λ2 . After integrating on ui, one
finds the solutions for v1 and v2 to be

v1ðzÞ¼
ip1ðz1− z2Þ

ðz− z1Þðz− z2Þ
; v2ðzÞ¼

ip2ðz1− z2Þ
ðz−z1Þðz− z2Þ

: ð75Þ

which, when replaced in the action, yields

Sλ1;λ2 ¼
1

2π

Z
d2zðð∂ϕ; ∂̄ϕÞ−v3∂̄u3− v̄3∂ū3

−v3v̄3eðϕ2−
ffiffi
3

p
ϕ3Þ=

ffiffiffiffiffiffi
k−3

p
þjp2þp1u3j2eðϕ2þ

ffiffi
3

p
ϕ3Þ=

ffiffiffiffiffiffi
k−3

p

− jp1j2e2ϕ2=
ffiffiffiffiffiffi
k−3

p
Þþ1

π
ðλ1jp1j2þλ2jp2j2Þjz1−z2j2I0;

ð76Þ

with I0 given by (63). Regularizing as in (64) and
renormalizing the vertices accordingly, one obtains the
corrected conformal dimension

Δλ1;λ2 ¼ Δλ1¼λ2¼0 þ λ1jp1j2 þ λ2jp2j2: ð77Þ
This follows from the last line in (76), which contains
the logarithmic dependence in (64). This manifestly
shows that the method of [16] can be straightforwardly
adapted to higher rank.
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