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M. F. Torres∗1,2 and R. C. Buceta†1,2

1Instituto de Investigaciones F́ısicas de Mar del Plata, UNMdP and CONICET
2Departamento de F́ısica, FCEyN, Universidad Nacional de Mar del Plata

Funes 3350, B7602AYL Mar del Plata, Argentina

June 11, 2021

Abstract

When a growing interface belonging to the KPZ universality class is tilted with average slope
m, its average velocity increases in Λ

2 m2, where Λ is related to the nonlinear coefficient λ of the
KPZ equation. Nevertheless, a necessary condition for this association to hold true is that the
mean square height-gradient increases in bm2 when the interface is tilted. For the continuous KPZ
equation b = 1 and the relation Λ = λ is achieved. In this work, we study the local fluctuations of
the height gradient through an analysis of the values of b. We show that, for 1-dimensional discrete
KPZ models, b has a power-law dependence with the discretization step s chosen to calculate the
height gradient and b goes to 1 as s increases. Its power-law exponent γb matches the exponent
associated with the finite-size corrections of the interface average velocity, i.e. γb = 2(ζ−1), where
ζ is the global roughness exponent. We also show how, for restricted (unrestricted) growth models,
the value of b goes to 1 from below (above) as s increases.

Keywords:

growth processes, interfaces in random media, kinetic roughening, classical Monte Carlo
simulations

1 Introduction

The tilt method was introduced by Krug [1, 2] to show that discrete models of growing interfaces
that belong to a universality class can be characterized not only by the exponents and laws of
scaling, but also by the nonlinearities present in the system. Usually, to tilt the interface in the
simulation of these models, helical boundary conditions are applied [3], i.e. hm(L + 1) = mL +
hm(1), where hm is the tilted interface height, L is the lateral size, and m = 〈∇hm〉 is the average
slope. Periodic boundary condition corresponds to a non-tilted interface, i.e. m = 0. Models
that belong to the Kardar-Parisi-Zhang (KPZ) universality class show a dependency between the
saturation average velocity and the slope of the tilted interface like [3]

V
(m)
sat = V

(0)
sat +

Λ

2
m2 , (1)
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for |m| ≪ 1, where Λ is a non-zero real constant and the label (m) refers to an interface with
average slope m. Otherwise, if Λ = 0 the models are included in the Edwards-Wilkinson (EW)

universality class. The linear behaviour of V
(m)
sat as function of m2 is strictly valid for |m| ≪ 1;

otherwise, other behaviours occur. If the dependency of the average saturation velocity with the
slope is different from Λ

2m
2, the studied model does not belong to the KPZ or EW universality

classes.
The quadratic constant Λ in equation (1) is associated with the nonlinear constant λ of the

KPZ equation [4]
∂h

∂t
= F + ν∇2h+

λ

2
|∇h|2 + η(x, t) , (2)

where h(x, t) is the interface height of the d-dimensional substratum at the position x and time
t. The real constants F , ν and λ describe the growth force, the surface relaxation intensity, and
the lateral growth, respectively. The noise η(x, t) is Gaussian with zero mean and covariance
〈η(x, t) η(x′, t′)〉 = 2D δ(x − x′) δ(t − t′), where D is the noise intensity. The average velocity for
the tilted KPZ equation (2) is

V
(m)
KPZ =

〈∂hm
∂t

〉

= F +
λ

2

〈

|∇hm|2
〉

, (3)

which is a function of the average slope m. Notice that the noise average is zero and, if the tilted
system is sufficiently large or helical boundary conditions are chosen, the Laplacian average is
negligible or zero, respectively. In the saturation, the equation (3) is independent of time, thus,
it is only a function of m. The solution for the Fokker-Plank equation associated with the one-
dimensional continuous KPZ equation indicates that the local gradients in the interface follow a
normal distribution [5]. Therefore, tilting the interface only changes the mean value in the gradient
distribution. Then, the expansion of the mean square height-gradient (MSHG) is

〈|∇hm|2
〉

= 〈|∇h0|
2
〉

+m2 +O(m4) . (4)

This is the main argument that supports that Λ from equation (1) is equal to λ. Although for
d > 1 the assumption that the local gradient follows a normal distribution is wrong, it was found
that, in models belonging to the KPZ universality class, the equation (1) still holds [3].

While the tilt method is a powerful tool to find the nonlinear coefficient λ of a given model, there
are other possible techniques to obtain it. For example, there are several inverse methods [6, 7]
that search the coefficients used in the discrete integration of the KPZ that best predict the
evolution of the interface in the simulation of the KPZ models. Also, λ can be obtained from the
scaling parameter of the height moments Γ = |λ|A1/ζ , representing the non-stationary fluctuations
amplitude of the interface, where A is the amplitude of the stationary height-difference correlation
function and ζ is the global roughness exponent [8, 9]. These methods usually reproduce a value
close to Λ. For some models, like the single step model, λ can be obtained directly from the
evolution rules, assuming that the boundary conditions of the tilt method are applied [3].

The discrete nature of many of the KPZ models and the finite size of the simulations have an
impact in measurements over the interface [9–15]. For example, in the saturation of KPZ models,
the measured average velocity of a non-tilted interface verify [10]

V
(0)
sat − V

(0)
sat⌋∞ ∼ −λL2(ζ−1) , (5)

for t ≫ Lz, where L is the system size, V
(0)
sat⌋∞ is the velocity value in the thermodynamic limit, and

z is dynamic exponent. For the KPZ universality class, the roughness exponent ζ < 1. Assuming
that the relationship between the average velocity and the mean square height-gradient is given
by equation (3), derived from the continuous KPZ equation, we obtain

〈|∇h0|
2
〉

− 〈|∇h0|
2
〉

∞
∼ −L2(ζ−1) , (6)

2



where 〈|∇h0|
2
〉

∞
is the MSHG value in the thermodynamic limit.

In this work, we focus on the study of local properties of the MSHG in KPZ models. We
measure the MSHG by discretizing the height gradient, over the interface, with fix-length step s.
We show that the MSHG of a tilted interface, for models belonging to the KPZ universality class,
verify

〈|∇hm|2
〉

= 〈|∇h0|
2
〉

+ bsm
2 , (7)

being the coefficient bs a function of the discretization step s given by

bs = 1± ab s
γb , (8)

where the minus sign corresponds to a restricted growth model (e.g. step model), the plus sign to
an unrestricted one (e.g. ballistic deposition model), and ab > 0 . We also obtain a similar result
for the numerical integration of the KPZ equation with restrictions to avoid divergences [16].

2 Method basics

The height gradient ∇hm of a tilted growing interface is subjected to fluctuations that depend on
the interface slope and the non-tilted height gradient, which in mean value must be zero, so that
〈∇hm〉 = m. The most obvious proposal for this dependence is

∇hm = m+ F (m,∇h0) , (9)

where F is a generalized function that indicates the fluctuations of the tilted height gradient and
verifies 〈F (m,∇h0)〉 = 0 and F (0,∇h0) = ∇h0. A simple calculation allows us to obtain

〈

|∇hm|2
〉

= m2 +
〈

[F (m,∇h0)]
2
〉

, (10)

where the mean square fluctuation (MSF) 〈F 2〉 is a function of m.
To measure the square gradient we took a simple centered discretization [17]:

∇hm(i, s) =
hm(i+ s)− hm(i− s)

2 s
, (11)

where i = 1, . . . , L is the position in the interface where the gradient is measured and s is a natural
number. A larger step s indicates a wider observation window.

For tilted interfaces, it is easy to prove that the height-difference correlation function of second
order is

Gm
2 (2 s) =

〈

(2s)2 [∇hm(i, s)]2
〉

. (12)

This correlation, for a non-tilted interface with Family-Vicsek scaling like the KPZ models, behaves
as G0

2(2 s) ∼ (2 s)2 ζ . Then, the MSHG of a non-tilted interface is

〈[∇h0(i, s)]
2〉 =

G0
2(2 s)

(2 s)2
= a0 s

2(ζ−1) . (13)

3 Results for several models and equations

RSOS model. The interface evolution of the (1+1)-dimensional restricted solid-on-solid (RSOS)
model is established by the following rule: after choosing a random column, if the height of its
two first-neighbouring columns is greater or equal to the chosen one, it grows one unit. Symboli-
cally, if h(i+ 1)− h(i) ≥ 0 and h(i− 1)− h(i) ≥ 0, where i is the column chosen at random, then
h(i) → h(i) + 1.

Plot (a) of Figure 1 shows 〈[∇h0(s)]
2〉 as a function of the discretization step s for several sizes L.

As expected, they show a power-law behavior with a measured roughness exponent ζ approaching
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the theoretical value 0.5 of the KPZ equation as the system size L increases. The measured values
of ζ are presented in Table 1. Plot (b) of Figure 1 shows the linear dependence of the MSHG
with the square average slope m2 of the tilted interface. Notice that, as the discretization step
s increases, the mean square value of the height-gradient fluctuation becomes less relevant. Plot
(c) of Figure 1 shows the calculated value bs , the coefficient of the linear dependence between
〈

[∇hm(s)]2
〉

and m2, as a function of the step s. It is observed that as s approaches 1, the values
of bs move away from 1, an indication of the increase of height-gradient fluctuations. In contrast,
large steps s make the values of bs ≈ 1. The behavior becomes closer to the one expected for
the continuous KPZ and the height-gradient fluctuations diminish. The inset plot (c) shows that
1− bs follows a power-law with s, according to equation (8). The measured exponent γb is shown
for several system sizes in Table 1.

Ballistic deposition model. The evolution of the (1+1)-dimensional BD model is given by
the following rule: the height of the chosen column h(i) grows to max[h(i − 1), h(i) + 1, h(i + 1)].
The BD model is known for having finite-size dependencies in its exponents due to its unrestricted
nature. We repeat the measurements made for the RSOS model, but now for the BD model. The
results are plotted in Figure 2.

The main difference with respect to the RSOS model is that bs goes to 1 from above. This is
indicated with a plus sign in the equation (1). The measured value of γb presented in Table 1 is
very close to the ones from the RSOS model.

L
RSOS BD

ζ (δζ) γb (δγb) ζ (δζ) γb (δγb)
2000 0.468(3) −1.055(3) 0.438(1) −1.135(3)
4000 0.486(2) −1.020(3) 0.458(2) −1.098(1)
8000 0.494(1) −1.036(5) 0.469(2) −1.081(2)

Table 1: The second and fourth columns show the measured values of the global roughness
exponent ζ for RSOS and BD respectively. The third and fifth columns show the measured
values of the exponent γb associated with the linear coefficient bs from equation (7) for RSOS
and BD, respectively. The values inside parentheses are their respective regression errors.

Discrete integration of the KPZ equation. The numerical integration of the KPZ equa-
tion has divergences caused by the uncontrolled growth of pillars (or grooves) over the interface.
To avoid these divergences, some type of modification of the equation is needed. This modification
usually implies the replacement of the nonlinear term in the equation for a function f((∇h)2).
Dasgupta et. al. [18,19] successfully take f((∇h)2) = 1

c

(

1− e−c(∇h)2
)

, where the length c is chosen
in a way that avoids the divergences by smoothing the nonlinearities while maintaining all the
scaling properties of the equation. Another way is to restrict the value of (∇h)2 to a length ε [16],
chosen just to eliminate the values of the nonlinearity that trigger the divergence. Here, we use
the latter method with a first neighbor discretization of the KPZ equation, for which we replace
(∇hi)

2 for f = min
(

(hi+1 − hi−1)
2/4 , ε

)

.
For the integration we take λ2D/ν3 ≈ 15 , for which the roughness shows the longest power-

law behaviour [16, 20]. In Figure 3 we show the calculated value of bs (the linear constant of
〈[∇hm(s)]2〉 as a function of m2) as a function of s for several values of ε. Obviously, because we
already put a first-neighbor discretization, bs is already very close to 1 for s = 1, but bs gets closer
to 1 in the same way that the discrete models do. In the inset plot of Figure 3 we can see that
bs − 1 follows a power law, like the BD model. This is because the restriction is over the value
of the nonlinearity in the integration; unlike the RSOS model, where the restriction is over the
interface. The value of γb measured is presented in Table 2.
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Figure 1: RSOS model. (a) For a non-tilted interface, MSHG as a function of the discretization
step s for several system sizes L. The doted-line indicates the power-law dependence. The
measured values of ζ, presented in Table 1, are close to the theoretical value 0.5. (b) For a
tilted interface, MSHG as a function of the square average slope m of the interface, for size
L = 8000 and several values of s. The colored curves indicate the linear regression. (c) The
plot shows how the coefficient bs as a function of the discretization step s rapidly converges to 1
from below for several values of size L. The inset plot shows how the difference between 1 and
bs follows a power law as a function of s, with the measured exponent γb presented in Table 1.

As an interesting remark, the measured Λ (see Table 2) is not equal to the value λ that we
input in the integration, although it is close. This result was reached by integrating a modified
version of the KPZ equation, not its original version. We recover the input value λ with great
precision if we take Λ/bf , where bf is the linear coefficient of 〈f((∇h)2)〉 as a function of m2. These
results are presented in Table 2.
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Figure 2: BD model. (a) For a non-tilted interface, MSHG as a function of the discretization
step s for several system sizes L. The doted-line indicates the power-law dependence. The
measured values of ζ, presented in Table 1, are close to the theoretical value 0.5. (b) For a
tilted interface, MSHG as a function of the interface slope m for size L = 8000 and several
values of s. The colored curves indicate the linear regression. (c) The plot shows how the
coefficient bs rapidly converges to 1 from above as a function of the discretization length s for
several values of size L, in agreement with the equation (7). The inset plot shows how the
difference between 1 and bs follows a power law as a function of s, with the measured exponent
γb presented in Table 1.

4 Discussions

We show that γb ≅ −1 for RSOS and BD models. Then, for KPZ models in one dimension,
through equations (8), (10), and (13), the MSF of a tilted interface is

〈

[F (m,∇h0)]
2
〉

=
〈

|∇hm|2
〉

−m2 =
(

a0 ± ab m
2
)

sγb , (14)
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Figure 3: Restricted numerical integration of the KPZ equation. Plot of the linear
coefficient bs as a function of the discretization step s for several values of the restriction ε. The
parameters chosen for the integration are: λ = 7.746, ν = 0.5, D = 0.0312, ∆t = 0.1, ∆x = 1,
and L = 2000. The semi-log inset plot shows the power-law behavior of bs − 1 as a function of
s. The measured value of γs is presented in Table 2.

ε γb (δγb) bf (δbf ) Λ (δΛ) Λ/bf
0.5 −1.023(3) 0.992(9) 7.682(8) 7.744(78)
0.75 −1.105(7) 1.033(1) 8.006(10) 7.746(18)
1 −1.104(13) 1.042(4) 8.078(4) 7.745(34)

Table 2: Restricted integration of the KPZ equation in d=1. The integration parameters
chosen are λ = 7.746, ν = 0.5, D = 0.0312, ∆t = 0.1, ∆x = 1, and L = 2000. Second column:
measured values of the exponent γb associated with the linear coefficient bs from equation (7),
which shows a small dependency with the restriction parameter ε. Third column: the linear
constant bf associated with the restriction function. Fourth column: value of Λ measured from
the tilt method. Fifth column: shows the value of Λ/bf , which recover the value of λ taken over
the integration. The values inside parenthesis are their respective errors.

with the height gradient discretization of equation (11). We see that for, at least, one dimensional
models γb = 2(ζ−1). It should be relevant to see if this relationship still holds for higher dimensions.

5 Conclusions

In this work we show that, for discrete growth models with tilted interfaces that belong to the
KPZ university class, the mean square fluctuation (MSF) of the height gradient is a linear function
of m2, where m is the average slope of the tilted interface. Because this is a main feature of the
continuous KPZ equation, we show how, aside from the scaling exponents, this equation and
the discrete models are related. Furthermore, the MSF follows a power law as a function of the
integration step used, with exponent 2(ζ − 1), the same as in other quantities of interest in the
saturation (e.g. equation (6)). This is because the mean square height-gradient (MSHG) increases
in bsm

2 when the interface is tilted. We show that, for 1-dimensional discrete KPZ models, bs
has a power-law dependence with the discretization step s, with the same exponent of the MSF.
Moreover, the coefficient bs goes to 1 when s increases, reaching the result of the continuous KPZ
equation. We also show how the nature of the growth rules (restrictive or non-restrictive) affect
the way that bs goes to 1. These important results emphasize that any study that tries to obtain
properties of the discrete growth models should take into account these local dependencies [6,7,10].
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