PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: March 9, 2020
REVISED: September 3, 2020
ACCEPTED: September 22, 2020
PUBLISHED: October 23, 2020

N = 1 supersymmetric Double Field Theory and the
generalized Kerr-Schild ansatz

Eric Lescano® and Jestis A. Rodriguez’
@ Instituto de Astronomia y Fisica del Espacio (IAFE-CONICET-UBA),
Ciudad Universitaria, Pabellon IAFE, 1428 Buenos Aires, Argentina

b Departamento de Fisica, FCEyN, Universidad de Buenos Aires (UBA),
Ciudad Universitaria, Pabellon 1, 1428 Buenos Aires, Argentina

E-mail: elescano@iafe.uba.ar, jarodriguez@df .uba.ar

ABSTRACT: We construct the A/ = 1 supersymmetric extension of the generalized Kerr-
Schild ansatz in the flux formulation of Double Field Theory. We show that this ansatz is
compatible with N/ = 1 supersymmetry as long as it is not written in terms of generalized
null vectors. Supersymmetric consistency is obtained through a set of conditions that
imply linearity of the generalized gravitino perturbation and unrestricted perturbations
of the generalized background dilaton and dilatino. As a final step we parametrize the
previous theory in terms of the field content of the low energy effective 10-dimensional
heterotic supergravity and we find that the perturbation of the 10-dimensional vielbein,
Kalb-Ramond field, gauge field, gravitino and gaugino can be written in terms of vectors,
as expected.

KEYWORDS: String Duality, Superstrings and Heterotic Strings

ARrRX1v EPRINT: 2002.07751

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP10(2020)148


mailto:elescano@iafe.uba.ar
mailto:jarodriguez@df.uba.ar
https://arxiv.org/abs/2002.07751
https://doi.org/10.1007/JHEP10(2020)148

Contents

1 Introduction 1
1.1 Main results

2 N =1 supersymmetric Double Field Theory 5
3 The N = 1 supersymmetric generalized Kerr-Schild ansatz 9
3.1 Finite perturbations on the background fields 9
3.2 Supersymmetric consistency conditions 11
3.3 Perturbed action and equations of motion 12
4 Reduction to N = 1 supergravity 13
4.1 Parameterization of the background field content 13
4.2 Parameterization of the perturbations 15
5 Application of the model 18
5.1 Supergravity solutions 18
5.2 Gaugino condensation 18
5.3 Fundamental charged heterotic string 19
6 Conclusions 20
A Background equations of motion 22

1 Introduction

General Relativity is a very non-linear theory and many efforts were made in order to find
exact solutions. The rotating black hole solution (the Kerr black hole) [1] was the initial
construction of a very simple and powerful ansatz called the Kerr-Schild ansatz [2, 3]. This
ansatz consists in an exact and linear perturbation of a background metric tensor g, of
the form,

Juv = Gopw + ’flulz/ ) (1'1)
such that x is an arbitrary parameter that allows to quantify the order of the perturbation
and [, is a null vector with respect to g, and go, i.e.

glwlulu = ggylylu =0. (1.2)
With this assumption, the exact inverse to (1.1) is

gt =gt — kIMIV . (1.3)



If we ask for linearity in the e.o.m of g, [4], then [, is also a geodesic vector with respect
to the background metric

gul/luvoulp = 07 (14)

where V, is a compatible and torsion-free covariant derivative using the Levi-Civita con-
nection that depends on g .

The Kerr-Schild formalism has been successful in different contexts of theoretical
physics. It can be used to describe not only the Kerr black hole but also the Myers and
Perry black hole [5-7], Einstein-Gauss-Bonnet gravity [8], Einstein-Lovelock gravity [9],
a perturbative duality between gauge and gravity theories referred as Classical Double
Copy [10-14] and it has recently been applied [15, 16] in the context of Double Field
Theory (DFT). In this work DFT [17-27] is understood as a rewriting of a classical d-
dimensional supergravity in a more general way such that the generalized version of the
supergravity is manifestly invariant under the action of G = O(d, d). As G is closely related
to a symmetry of String Theory, DFT is often applied to reformulate supergravities whose
bosonic field content includes a 2-form b, (or Kalb-Ramond field) and a scalar field ¢ (or
dilaton) in addition to the metric tensor. These fields conform the universal NS-NS sector
of all the formulations of String Theory. The generalized field content of DF'T can accom-
modate the supergravity field content in multiplets of the duality group and a generalized
notion of geometry can be defined.

One of the most distinctive features of DFT is that the space-time coordinates of the
d-dimensional supergravity must be doubled,

XM= (2t 7,), (1.5)

where M = 0,...,2d — 1 and XM is a generalized coordinate in the fundamental repre-
sentation of G. The addition of the coordinates Z, forces the appearance of the strong
constraint,

oy x0Mx=0,  Mayx=0 (1.6)

where x means any combination of fields or parameters of the theory and the contrac-
tions are done with the G-invariant metric np;y. From a stringy point of view, the con-
straint (1.6) is related to the Fourier transformation of the Level Matching Condition when
winding modes are admitted, and written in a duality covariant way [28]. The dynamical
background metric of DFT is the generalized metric H,psny, which is a multiplet and an
element of G, i.e.

Hornpn"“Hong = nun (1.7)
parametrized by the background metric tensor g,,, and the background Kalb-Ramond
field by .

The generalized Kerr-Schild ansatz was defined by K. Lee in [15, 16] as an exact and
linear perturbation of the generalized background metric with the following form

HMN:HOMN+I€KMKN+I€KMKN, (1.8)



where Ky; = Py/N Ky and Ky = Py/N Ky are a pair of generalized null vectors
nMNKMKN = HMNKMKN = UMNKMKN =0 (19)
that satisfy

KPV,pKM + KpVMKY - KPV,pEM =0,
KPVp KM + KpVYKP — K'YV, pKM =0, (1.10)

where Pyy = %(T]MN + Hyy) and Pyy = %(TIMN — H)n) are used to project the O(d, d)
indices and V, s is a generalized covariant derivative. Relying on the previous conditions,
the e.o.m of the generalized metric can be linearized in a similar fashion to (1.4). The
ansatz (1.8) and the conditions (1.9) and (1.10) were proposed and analyzed in the semi-
covariant formalism of DFT and a perturbation for the generalized dilaton d (parameterized
by the 10-dimensional dilaton ¢) was also considered.

1.1 Main results

The main goal of this work is to construct the N' = 1 supersymmetric extension of the
ansatz (1.8) in the flux formalism of DFT [29-35]. As we include generalized fermionic
degrees of freedom, we are forced to work in the generalized background frame formalism
and fix the space-time dimension. Particularly we consider d = 10. Since we are dealing
with the same degrees of freedom as the supergravity limit of Heterotic String Theory,
we let the inclusion of gauge fields in our setup and the starting point is a NV = 1 DFT
with G = O(10,10 + n) invariance, where n = 496 is the dimension of the heterotic
gauge group [24]. We consider the leading order terms in fermions and show that N' =1
supersymmetry is compatible with the generalized Kerr-Schild ansatz as long as it is not
written in terms of generalized null vectors.

The most general linear perturbation of the generalized frame is,

— — 1 —
EMA = OMA + §HEOM§A§A
1 —
EyvA = B2 — 5m@oz\ffAf“—]B (1.11)

where A = (A, A) are indices in O(9,1)7, x O(1,9 + n)g respectively and A4? is a mixed-
projected perturbation that satisfies,

AE — AA73 — 0,
AnT'A=0, (1.12)

in order to be consistent with the constraints of DFT. We find that (1.11) cannot be
written in terms of generalized null vectors when supersymmetry is considered and therefore
conditions (1.10) are not available to simplify the perturbation of the generalized Ricci
scalar and/or the e.o.m of the generalized frame. We perturb the generalized background



dilaton, gravitino and dilatino in the following way,

d=d,+rf, f=Y_K"fa (1.13)
\IIZ = \IIOZ + Iﬁ@z, @Z = Z Iﬂ?n@nz (114)
p=potrg, 9= K'gn, (1.15)

where n > 0. With the previous setup we find that A/ = 1 supersymmetry only restricts
the generalized gravitino expansion,

©0,=0 , n>1, (1.16)

while the perturbations of the generalized dilatino and dilaton remain unrestricted. Con-
dition (1.16) forces the following supersymmetric consistency conditions,

5. 6(01)=6--0(0) =0, (1.17)

with ¢ a generic symmetry transformation.
As a final step we parametrize the generalized perturbations in terms of the heterotic
supergravity field content and we find,

= Gop + ————1,I
Guv = Gopv 1+%/{l‘l—(pu)
K - 1 .
bl/:bou_ifl ly_i.iAuZ
o = o= (1= i)
¢:¢o+’€f
/{ —
a — oa_iflal bv
Va = Woa = 5 g tale Vo
)\:)\04—%9, (1.18)

where e,, is a 10-dimensional vielbein, lo = e“al_u and I, = e#4l, are a pair of vectors
and ¥, and A are the 10-dimensional gravitino and dilatino of the effective heterotic super-
gravity. The indices ¢ =0...9 and a = 0...9 are space-time and O(1,9) Lorentz indices
respectively. In (1.18) n is not fixed by supersymmetry as happens in DFT. The ordinary

Kerr-Schild ansatz is recovered when [, = [,. The remaining fields of the effective heterotic
supergravity are

1 K
H V21 + Lkl nli
K. .
Xi = Xoi — §lb]z’¢2, (1.19)

where A,; is a 10-dimensional gauge connection, x is a 10- dimensional gaugino and j;
parameterizes the perturbations when gauge fields are included. For the parametrization



of the generalized perturbations we consider

2 - .
A= | ——1lp) 0%, Agid™ 1.20
AB <1+ Lpll @0 ab a%) (1.20)
1 7 bca )
Ogx = <_Wl(alb)¢05aa 90i5;> : (1.21)
where Ay; = l,j; and N = 1 supersymmetric consistency forces ©g; = —%lb jﬂpg.

A very interesting aspect of (1.20) is that the supersymmetric extension of the gen-
eralized Kerr-Schild formalism can be parametrized in terms of a pair of vectors. The
supersymmetric consistency constraints of DFT (1.17) can be understood as some extra
conditions on the expansion of 1,. The transformation rule of I, and I, is

Oly = EFOuly + 1A, (1.22)
6y = €10l + A%, (1.23)

where Ay, parametrizes a O(1,9) Lorentz symmetry and &, parametrizes 10-dimensional
diffeomorphisms. The previous conditions are stronger than the usual geodesic equation,
but in this case the e.o.m of g, is no more linear in x due to the 10-dimensional dilatonic
and fermionic perturbations.

This work is organized as follows: in section 2 we introduce the field content, the
symmetries and the action principle of A/ = 1 DFT for background fields. Section 3 is
dedicated to explore the supersymmetric extension of the generalized Kerr-Schild ansatz.
First we include finite perturbations on the background field content. Then we discuss
the supersymmetric consistency conditions and write schematically the action principle
and the equations of motion. In section 4 we parametrize the theory in terms of the field
content of the 10-dimensional heterotic supergravity and find the extra supersymmetric
conditions that are necessary for consistency. We discuss about the kind of solutions that
can be found with the present formalism in section 5. As an explicit example we analyze
the d = 10 gaugino condensation in the fundamental charged heterotic string. Finally, in
section 6 we present the conclusions of the work and some future directions to explore.

2 N =1 supersymmetric Double Field Theory

N = 1 supersymmetric DFT is defined on a double space with coordinates X which
transforms under the fundamental representation of the symmetry group G = O(10,10+n),
with M =0,...,194n, and n the dimension of the gauge group. For instance n = 496 if we
want to encode a low energy description of heterotic supergravity in a T-duality covariant
framework. The theory is invariant under a global G symmetry which infinitesimally reads

ocVy = VNhNM, (2.1)

where V) is a generic G-multiplet and h € O(10,10+n) is the G-parameter. The invariant
metric of G is vy € G and G-invariance imposes

hMN = —hNM, (2.2)

Lin order to lower and raise all the G-indices.

where we use n and 7~



Another symmetry of the theory are generalized diffeomorphisms, generated infinites-
imally by € through the generalized Lie derivative, defined by

LV = ENON Vi + 0N — Ve Viy + faunpeNVT + 10N (2.3)

where Vi is an arbitrary generalized tensor, t is a weight constant and fy;nyp are the
generalized version of the structure constants that satisfy

funpe = flune, fiun"fpr? =0. (2.4)

The theory is also invariant under a local double Lorentz H = O(9,1)r, x O(1,9+n)g
symmetry generated infinitesimally by a generalized parameter I' 4p where A = (4,4
splitting into O(9, 1), and O(1,9 + n)g vector indices, A =a =0,...,9 and A = (a,i) =
0,...,9+n, e,

ouVa=VeI'By, (2.5)

for a generic H-vector. The H-invariance of nap imposes 'ap = —I'pa .

Supersymmetry is parameterized by an infinitesimal generalized Majorana fermion e
which behaves as a spinor of O(9,1);. We work at leading order in fermions, such that
supersymmetric transformation of bosons are at most quadratic in fermions, and super-
symmetric transformation of fermions are linear in fermions. The explicit transformation
rules will be discussed later.

The fundamental background fields of the theory consist in a generalized frame Eyj;4
0(10,10+n) and a generalized dilaton field d,. The

971)L XO(1,9+’VL)R ’
action of the symmetry groups on these fields is

parameterizing the coset % = o

G Hr, Hpr Diff
Eon? G-vector H-vector H gr-vector tensor
do G-invariant ~ Hp-invariant Hp-invariant scalar(t = —3)

Consistency of the construction requires constraints which restrict the coordinate de-
pendence of fields and gauge parameters. The strong constraint

oMk =0,  Oyux Mx=0, funTOpx=0, (2.6)

where x refers to products of fields, will be assumed throughout. This constraint locally
removes the field dependence on 10 + n coordinates, so that fermions can be effectively
defined in a 10-dimensional tangent space.

The frame-formulation of DFT demands the existence of two constant, symmetric and
invertible H-invariant metrics nap and H4p. The former is used to raise and lower the
indices that are rotated by H and the latter is constrained to satisfy

H,CHB =65 (2.7)

The generalized background frame Eéw A is constrained to relate the metrics nap and nyn
and defines a generalized background metric H,psny from Hap

nag = EM anunENp,  Homn = Eop HapEon® . (2.8)



H,pwv is also an element of O(10,10 4 n), i.e.
Honpn O Hogn = nuw - (2.9)

It is convenient to introduce the projectors

1 — 1
P,un = B (MmN — Homn) and Poyny = B (N + Hoymn) (2.10)

which satisfy the usual properties

POMQPOQN = FOMN ) POMQPOQN = Poymn,

POMQFOQN =PorioPo% =0,  Poyn + Poyn = nun (2.11)

and the same can be done with n4p and H4p to define P,4p, Poap. We use the convention
that P,sp, P,ap and their inverses lower and raise projected indices. Since n4p and Hap
are invariant under the action of £, G and H we find, I'zp = 0, where I'yp was defined
in (2.5), and B

I'ip =PaPs"Teop.

A crucial object for the consistency of the theory is the Lorentz covariant derivative.
Acting on a generic vector this derivative is defined as

VoaVe = EouVp + wOABCVc (2.12)
where E, u = /2FE, AM Oy and wog 5% is a spin connection that satisfies

WoABC = —WoACB and  w, 50 =Woage =0, (2.13)

in order to be compatible with nap and H 4p respectively.

Unlike general relativity, DFT consists of a generalized notion of geometry and there
are not enough compatibility conditions to fully determine the generalized spin connection.
Only the totally antisymmetric and trace parts of w,apc can be determined in terms of
E 4 and d,, i.e.

V2 1
woiapc] = —EoaE) 8E,nc) — ?fMNPEéV[AEéVBEfc = _gFoABCa (2.14)
wopa® = —\/562%8]\4 (Eé\/[Ae_Qdo) =—Foa, (2.15)

the latter arising from partial integration with the dilaton density.

The N = 1 supersymmetric extension of DFT is achieved by adding a couple of
generalized background spinor fields that act as supersymmetric partners of the bosonic
fields: the generalized gravitino W 7 and the generalized dilatino p,. Under the action of
the symmetry groups these fields behave as

G Hi, Hr Diff

U+ G-invariant Hp-spinor ~ Hpg-vector  scalar(t = 0)

po  G-invariant Hp-spinor Hp-invariant scalar(t = 0)




The covariant derivative of spinor fields acquires an additional term in order to derive
the spinor indices. For instance, the covariant derivative of the generalized background
gravitino and generalized background dilatino are

ol 1
VOA\I]OE = EOA\I/OE + woAPC\I/oé B ZwOAE7&Q0§7

1
Vorpo = Eonpo — ZWOAE’YE%- (2.16)

The gamma matrices satisfy a Clifford algebra for H

{7A7 7B} = —2pAB (2.17)

and we use the standard convention for antisymmetrization of y-matrices y4-E=~4  ~Bl,

The generalized supersymmetry transformations of the fundamental fields are param-
eterized by an infinitesimal Majorana fermion ¢, that is a spinor of O(1,9)r. These trans-
formations can be written as

55E0MA = E’Y[B\IIIOL‘]E’OMB y

55@02 = VOZE7
1
(Sedo = —ngo,
Sepo = —Y2V €. (2.18)

If we now include all the symmetries described in the previous subsection, the background
fields transform as

1 —
5Eéwé = fpapEé\/[A—i- (8M§p — 8pr) Efé + EéVIEFEA — iEVA\IffE(]}VIE,
= 1
SEM = PopEM + (0Mep — 0peM) BV + EM TP + izfyﬁqfﬁE(ﬂ” B,
1 1
ody, = P 0pd, — §ap§P — 4o (2.19)

5 1
60 5 = Moy 5+ TP30 5 + 1
1
4

Lpey?,7 + Ve

5po = EM0npo + ~TcvECp0 — 1AV ac€ .

It is straightforward to show that the previous transformation close off-shell'! with the
following parameters

1
72Eév[457462a

7

1
[ioap = 2553131“2],43 — 214 “Toop + Eopa (G175)€2) — B (e17%€2) Foanc, (2.20)

&l = €1, &6, —

1
€12 = —§F[1@’7&62] + 255%62} ;

'In case of considering the full-order fermion transformations, the closure is given only on-shell.



where the C'y-bracket is defined as
(€1, 608, = 26k 0pE)] — oM gn + froMEles (2:21)

The transformation rules of the background fields discussed in the previous subsection
leave the following action invariant (up to leading order terms in fermions)

Sn—1 = / d* X e (R + L,,F)
_ —A _ —A
_ /dQOXe 2d, (RO + W, VQVOQ‘I’OZ — poyévoépo +2v, Vozpo) , (2.22)
where L,p is the fermionic part of the Lagrangian and R, is the generalized Ricci scalar,

1 1 =
Ro = 2B, g FA + F,4FA — 6F0ABCF;‘LC — §FOZEFAB—C. (2.23)

o

We can notice that the previous expression is written in terms of determined components
of the generalized spin connection, even when it is obtained from a T-duality invariant cur-
vature tensor R,apcp which is not fully determined. Moreover, the covariant derivatives
appearing in L,r are also fully determined and therefore the full A/ = 1 action is fully
determined.

The NV = 1 DFT action is invariant under G, H, generalized diffeomorphisms and
supersymmetry. The equations of motion obtained from (2.22), up to leading order terms
in fermions, are

Roﬁz + \Ilg’yﬁEozkpoé o ﬁoVEEoZP - Q@OZEOQPO =0,

Ro =0,
YVonW 5+ Vapo =0,
YAV papo + V 7V =0, (2.24)

where Rz is the bosonic part of the e.o.m of the generalized frame and the e.o.m of the
fermionic fields have been used to simplified the equations.

Up to this point, we have described the basics of N' = 1 DFT for generalized back-
ground fields. In the next section we perturb these background fields, asking for a linear per-
turbation of the generalized frame. This perturbation is compatible with A/ = 1 supersym-
metry and reduces to a generalized Kerr-Schild ansatz when supersymmetry is turned off.
Then we inspect how A/ = 1 supersymmetry is accomplished in the other fields of the theory.

3 The N = 1 supersymmetric generalized Kerr-Schild ansatz

3.1 Finite perturbations on the background fields

We consider the most general linear perturbation for the generalized frame in the flux
formalism of DFT. We start defining,
— — 1 —
EMA = OMA + §I€EOM§A§A

1 J—
By = B2 — §I€EOMBAA‘B (3.1)



with & an arbitrary parameter and AP a mixed-projected perturbation that satisfies

Aqp =0, (3.2)
Aap =0,
AntA =0, (3.3)

in order to be consistent with the constraints of DFT. There is no ambiguity in the
contractions in (3.3). The inclusion of a finite perturbation on the generalized background
frame satisfying (3.2) and (3.3) only deforms the curved version of the projectors,

PMN = EMAENA = PoMN - KEO(MZAEAEON)E

Pun = Ev*Eyg = Poun + HEO(MAA%EON)B
Pap=EyaEMp = Poag
Pip = Eyab" 5= Pag . (3-4)

The ansatz (3.1) is compatible with A/ = 1 supersymmetry and reduces to the generalized
Kerr-Schild ansatz introduced in [15, 16] when one considers

A,p=EKuKnvEY AEN . (3.5)

The perturbation A 4p is a G-singlet, H-vector and a generalized scalar with weight ¢ = 0
with respect to generalized diffeomorphisms. The generalized background dilaton can be
perturbed with a generic x expansion,

d=do+rf, f=> K"fa, (3.6)
n=0

with n > 0. The function f is a G-singlet, a H-invariant and a scalar with weight ¢ = 0 un-
der generalized diffeomorphisms. The previous expansion was introduced in [15, 16] in the
context of heterotic DFT but the expansion of the fermionic fields were not considered. As
we are interested in this last point, we mimic the structure of the generalized perturbation
of the generalized dilaton and propose

(o]
U=V 3+k07, Oz=> k"0, (3.7)
n=0
and
(o]
p=potrg, g=Y K'gn. (3.8)
n=0

Using the conventions of the previous section it is possible to find that © is a G-singlet, a
spinor of O(9,1)r, a vector of O(1,9+4n)g and a scalar with weight t = 0 under generalized
diffeomorphisms, and g is a G-singlet, a spinor of O(9,1)r, an invariant of O(1,9 + n)g
and a scalar with weight ¢ = 0 under generalized diffeomorphisms.

In the next part of this work we explicitly show how supersymmetry truncates the x
expansions for some of the generalized background fields in order to be consistent with the
supersymmetric extension of the generalized Kerr-Schild ansatz defined in (3.1).

~10 -



3.2 Supersymmetric consistency conditions
We start analizing the supersymmetric transformation of A AB- Considering
6By = ey BOAEy 5 (3.9)
and proposing the x expansions discussed in the previous section we find,
0D 5 = €1405, (3.10)

where we have used
§---6(AntA) =0, (3.11)

with 0 a generic transformation. The expression (3.10) forces
On=0 , n>1. (3.12)

On the other hand (3.10) is correct up to a generalized Lorentz transformation that can
be reabsorbed in the generalized Lorentz parameter. Let us observe that the decomposition
of A 5 in terms of null vectors Kp7,Kp is not allowed since (3.10) cannot be solved for
both vectors.

The supersymmetric transformation of O is

1 1 -
5€@Z == *ABiAEBE + 7FZBC’)/&€ (313)
2 = 4 2=
where
FZ@ = FoZ& + FZ@' (3.14)

Since the perturbations on the fluxes are cubic in k, we need to impose some supersymmet-
ric consistency constraints on the generalized gravitino transformation. Explicitly we have,

1 1/1 5
0857 = ;A% Epe + <2ADAF0DBC — A" Fape + Bo(Agz)

2
+ \}ifDBCADA + \@fACDABD> vECe, (3.15)

36,4 = (iABDACEFoDEA - %FoBEQAQEA DA (3.16)
+ %Agﬁ(EﬁAgz) + \{ffADWEABDACE - \}i‘f DBEADAAC'E> v,

5.0,7 = <éABEAcFADAFODEF V2 fDEFADAABEACF> ZBCe (3.17)

where we have used the following notation fapc = funpEMAEN gEY . Therefore we
impose the following supersymmetric consistency constraints,

5. 6(01)=0-5(03) =0, (3.18)

- 11 -



in order to reproduce a linear x expansion for the generalized perturbed gravitino. This
requirement cannot be solved invoking (3.11) and thus (3.18) must be treated as extra
constraints on the theory. The conditions (1.10) can be rewritten with the help of (3.5) as

0= FypeA%5A5"7 = FapcApt APy,

0= fupeA?5AB" = fapc A APy, (3.19)
and therefore the remaining supersymmetric constraints are
0= A" (AP F,ppa + V2 fapeba” + 2B580p7) - (3.20)
By a similar argument we seek constraints in the generalized background dilatino
transformation,
0g = —EVAALEEE - iFABCVABLCG — LFB’YEE (3.21)
2=~ B 125~ =52 2K 7
where
Fapc = Foupc + Fapc
Fp=Fop+Fa, (3.22)
and

. 3K D) D
Fapc = -~ (A[ADFOELC} T *@fﬁ[@AQ1D>
3k2

T (A[AEAEEF vpE|C) T V2], [AIWAEBAQ}E>

33 5. FT. T 5. F. T
_?(AADABEAQFFDDEF+\/QfDEFAADAEEAQF>7

~ H = =
5 = —2Eopf + 5 (A5 woue? + EgsC) - (3.23)

Because of the appearance of f in the last expression, we have an infinite x expansion for the
generalized dilatino that can be solved once the generalized dilaton is solved. The previous
statement means that the x expansion of these fields are not restricted by supersymmetry.

3.3 Perturbed action and equations of motion

Up to this point, we have perturbed the field content of N' =1 DFT in a consistent way.
The action of the perturbed theory must be of the same form as (2.22), i.e.

Syq = / dXe MR + @Ayﬁvﬁxyz — YAV 4p + 2@’4va , (3.24)
and the equations of motion up to leading order terms in fermions, are

RBZ + \I/CVQEX\Ifé — ﬁ’yQEZp — Q\T/ZEEp =0,

R =0,
VBV U5+ V4p =0,
VAV 4p + V104 = 0. (3.25)

- 12 —



Since the generalized geodesic equations introduced in (1.10) cannot be defined in
terms of Ap, Rz has cubic contributions of the perturbation parameter x coming from
the generalized fluxes.2 As a consequence, the generalized equations of motions are no
longer quadratic in k even if f = g = 0, unlike the result obtained in [15, 16].

In the next section we proceed to parametrize the previous field content and find the
necessary conditions to obtain the A/ = 1 supersymmetric extension of the ordinary Kerr-
Schild ansatz in the context of the low energy effective heterotic field theory. We start
reviewing the parametrization of the background field content and then we go straightfor-

wardly to the perturbative theory.

4 Reduction to N = 1 supergravity

4.1 Parameterization of the background field content

We start by splitting the G and H indices as M = (,,,*,4) and A = (A, A) with A = q,
A = (a,1), respectively, ,,/,a,@a = 0,...,9, i,t = 1,...,n. The parametrization of the
fundamental background fields of N' = 1 DFT must respect all the constraints of the
theory. The generalized background frame is an O(d,d 4 n) element, so it is parametrized
in the following way,

EOMQ Eg@ EZQ 1 —€oua — Copuega e'ga _Aoplega7
M i — — _ i
Ey A= | Boya Eoa Eta | = 7 | o — Coppha Tha —Aopeha | (4.1)
_ H_ i _ ot i_
Eoui Eoi Eoi \/iAo/ue 7 0 \/§€ 7

where €4, and €, satisfy

ab = ab-
€opall  €ovb = €ouall €ovb = YJouv » (42)

with 74, the ten dimensional flat metric, a,b = 0,...,9, Copp = bopr + %Afonm-, with
Aiou being the gauge connection. The invariant projectors of DFT are parametrized in the
following way

Py = *77ab5g5gv P = nab(sgc%, Pﬁ = egimjejj =K (4.3)

where r;; and k;; are the Cartan-Killing metrics associated with the SO(32) or Eg x Eg
heterotic gauge group. The gauge fixing (4.2) imposes

d€opa = 0€opa, (4.4)

and therefore the parametrization of the components of the generalized Lorentz parameters

are not independent

Tud% = (—Aap + aot]) >
opd% = Aab (4.5)

2Higher order terms are identically null.
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where A, denotes the generator of the O(1,9) transformations. We also impose §E'z = 0
and 0 E#; = 0 which leads to

. 1 )
I = fijkgkag(g and I =-Tp = ﬁmxm' 52 6L, (4.6)

where we have parameterized the generalized gravitino field as

1 .
\IIOA = <07 e'gawom ﬁelion) . (4-7)

The structure constants are trivially incorporated,

;% for  M,N,P=1i,jk
fun® = fig" for M, N, b (4.8)
0 otherwise.
In addition we parameterize
M= (¢ M, 6, (4.9)
where the parameter £ is associated with the usual Lie derivative, defined as
Levt = £70,0" + (0,610, (4.10)

with v a generic vector. The parameter )\, parameterizes the abelian gauge symmetry of
the background Kalb-Ramond field,

oy = 20,0, (4.11)

while &; is the non-abelian gauge parameter. On the other hand, the parametrizations of
the generalized background dilaton and dilatino are

1
d:¢o*§10g\/*907
P =2X +7"Yoq - (4.12)
The v-functions v¢ = y%dg verify the Clifford algebra
{77} =29 (4.13)

and the supersymmetric transformation rules of the background field content are

1 1
5eeoua = §€7awou ) 5ewou = 8u6 - wa):ibVabev
_ 1_ . 1 1
6ebo,ul/ = 6'7[;177/)01/} + 567[/LX’LOAOV]i ; 55)\0 = _5’)’aaoa¢o€ + ﬂHoabc’Yabcea
1 A 1 A 1 . ,
56¢O = _56)\07 5€A20u = 567;“)(?)7 6€Xf) = _1F<§MV7M € (414)
where
(&) WV nwoov W v 1 v o_p
Wopab = €6 [a€ob]OuCove + €5[a€0 Oulort + €5 1€0 | Oplova + inl,peoaeob ,

Fa;wi = 28[quu]i - fzjkAZ)uAlrj )

. 1 o
Hoabc = 3€gaegbegc (8[,uboup} - AZ[“aVAop]i + SfijkAfwAjouAlép> :
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The transformations (4.14) leave the low energy effective heterotic action invariant

1 1
S, = / d¥z e, e~ 2% [RO — ﬁHOW,Hg“/P + 40,000" o — Ztr(EWFyV)

_ _ - 1
- wo,u'YMVpDuwop + 4)‘07MVDM¢OV + 4)‘07MDLL)‘O - §tr(>_CoDXO)
_ _ 1 - 1
+ 4oV VAL G0 — 200p Vg Ou o — Z)_(oi'YH’YVngup <¢ou + 3'Yu)\o>

+ 3 Hopor (wow[“vf’“»y"]woy + 4y Ao = 437 A + ;xzvf’“xoiﬂ - (4.15)
The conventions for the Riemann tensor are
R = €o5” Ropwab = €5 €00’ (=200, Woplab + 2Wolpa Wolueb) - (4.16)
and therefore the Ricci scalar is
Ry = R et el (4.17)
4.2 Parameterization of the perturbations

In section 3 we introduce the supersymmetric extension of the generalized Kerr-Schild
ansatz in the flux formalism of DFT. Now we proceed with the parametrization of the
perturbations of the generalized fields.

We start by considering that both components of the generalized frame

K B
Eya=FEya+ §A§ZE0M*
p _
Enva = Eova — §AA§EOMB (4.18)

are O(10,10 + n) elements. So we can parametrize them as

E.. BE*y By | [ ema - ou€la ey —AytePy
EMA == E;UE E‘U'E E’L.E - ﬁ Elw' - Cp“épa E“a —Apié'pa (419)
E; EV; EY; V2Aue; 0 V2

where e, and €, satisfy
e,uanabeub = éuanabéyb = Guv - (420)
Condition (4.4) forces
Ayp= (Aabagg,Aaiag;) , (4.21)
where Agp is a symmetric perturbation that verifies
A" Dea + Dok Aej = 0, (4.22)
and
Auig™ Ay =0,
AaigabAbc = 07
Auig™Ay; = 0. (4.23)
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The previous parametrization can be decomposed in the following way,

1 _
Ay = | ——— | 1y, 4.24
’ <1+;m1> ’ (4.24)

1
Ngi = —1— | laji 4.25
<1+;m1> g (4.25)

where [, = e/,l, is the rotation of the null vector associated to the perturbation of the
metric (1.1), that satisfies
Lan®l, =0, (4.26)

and [, is an auxiliary vector that satisfies a relaxed null condition,
lan ™l + jik"j; = 0. (4.27)

A very interesting aspect of (4.25) is that the supersymmetric extension of the Kerr-
Schild formalism can be done in terms of a pair of vectors, as we are going to verify.
Using (4.19) and recalling that the generalized frame is an element of O(10,10 + n) it is
straightforward to find,

= Gopr + ————=1(,,
Guv = YGouv 1t %Hll_ (utv)

K

_ 1 .
bl/:bou_i—l lu_iAz/Z'i
: "1 Lkl “L( N ”)

1 K .
wi = Ao,ui + —=—=,7; (428)

A _
V21+ ikl

From the previous expression we note that the standard Kerr-Schild ansatz can be obtained

in the case [, = l,. On the other hand, the perturbation of the 10-dimensional gravitino is

¢a = ¢oa + kKO0 - (4.29)

The supersymmetric transformation of I, and [, in terms of Ay, can be read from (3.10).
When we parametrize it we find,

1
56Aab = E’}/(JLG)OI) + 5A0b67a1/1007 (430)

where the second term comes from the gauge fixing (4.5) of the double Lorentz parameters.
In this point we redefine

60‘1 = (l_alb + Zbla)wg + éoaa (4.31)

4(1+ kLD

to finally obtain
5Aab = &7aO0p - (4.32)

In this work we are interested in the A/ = 1 supersymmetric extension of the generalized
Kerr-Schild ansatz with a vectorial decomposition of Ay in terms of [ and [. Considering
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a phenomenological scenario the most interesting fermionic contributions are related with
gaugino condensation [36—38]. For this reason it is enough to impose ©, = 0. The general
case (O, # 0) would be relevant to construct fermionic condensates related to the ten
dimensional gravitino field, since ©,, can be thought as its perturbation.

In this framework the transformation rule of the vectors is,

Oly = "0l + LAY, (4.33)
Oy = E1O 1, + A", (4.34)

In the previous expressions we recognise a scalar transformation with respect to diffeomor-
phisms and a local Lorentz transformation. It is important to remark that even in the
general case with ©, # 0 only one of the vectors could receive a supersymmetric trans-
formation. If we want both of them to receive a supersymmetric transformation, then we
would not be able to explicitly write 6./ and ./, and then we were forced to work with a
A,y perturbation as happens in the DFT scheme.

As we discussed in the previous section, the perturbation of the dilaton and dilatino
are not constrained by supersymmetry,

¢:¢o+"<‘7fa
)\:)\oJrgg. (4.35)

However here we remark that these fields cannot be perturbed separately or using different
orders in k for each perturbation. Using é.j; = 0, the perturbation of the gaugino is
constrained in the following way

K, .
Xi = Xoi — §lb]ﬂ/12- (4.36)

As a final check we need to probe that the supersymmetric constraints (3.20) are satisfied
after imposing the field parametrizations. Using that

1
oaij — —ei;-ej}euaAukfiJkdg’

Fom= \/ie%e%e%fijk , (4.37)

it is straightforward to show that first and the second term in (3.20) vanish. Moreover using
the geodesic condition for [,, the supersymmetric constraints turn out to be an identity.
Explicitly,

"V a(lgla) = 1pl*Va(lg)la = 0. (4.38)

From a DFT point of view, these constraints are not trivial since they are written in terms
of A ;5 and the (generalized) geodesic equation cannot be imposed.

17 -



5 Application of the model

5.1 Supergravity solutions

The generalized Kerr-Schild ansatz is a powerful tool which consists in an exact pertur-
bation of a background metric tensor g,.., a background gauge field A,,;, a background
antisymmetric tensor b,,,, and a background scalar field ¢, using a pair of null vectors [,
and l,,? that coincides with the ordinary Kerr-Schild ansatz when

lo=1,. (5.1)

As discussed before this scheme can be written in terms of multiplets of O(d, d+n) doubling
the coordinates of the space and imposing the strong constraint. Here we present the
N = 1 supersymmetric extension of this formalism considering d = 10. The latter provides
a formulation that can be solved to extend supergravity solutions.

The N = 1 supersymmetric extension of a generic supergravity solution consist in
an exact perturbation of the supersymmetric degrees of freedom. For instance, a generic
perturbation of a gravitino field is

Yo = o + KBOoa (52)

where ©, is a generic spinorial proposal. In principle, the compactification of these kind of
solutions in a 7% cannot be written in terms of O(k, k) multiplets [28] and therefore the DF'T
rewriting cannot be performed in arbitrary circumstances. If we are interested in obtaining
such rearrangement of the field content, then ©, must be related with [ and [ through

-1 _ _
Opa = ——————(laly + la) Y2, 5.3
0 4(1+%;—<l.l)( b+ lpla)V (5.3)

as we computed in the previous section. In other words, the perturbations of a supergravity
model can be strongly constrained by T-duality before compactification, and DFT provides
a systematic method to obtain these constraints.

5.2 (Gaugino condensation

It is well known that Poincaré invariance requires the expectation values of the individual
fermions to vanish, which does not need to be the case for fermion bilinears such as

Yuwp = ctr ()_(’Y;pr> , (5.4)

with ¢ a constant. These kind of terms can be considered as a deformation of the H-flux
in heterotic supergravity. The gaugino bilinear (5.4) does not change the Bianchi identity
of the H-flux up to order o/,* [36-38],

dH — %(tr(R_y —u(F) =0, (5.5)

3In Kerr-Schild heterotic supergravity [ is a relaxed null vector cf. (4.27).
4Note that in this work we have used units such that o = 1.
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where R~ is a Riemann tensor constructed with the torsionful spin-connection [39]. With
a non-trivial gaugino bilinear the natural definition for the H-flux is,

Hup=Hup+Zpp - (5.6)

A generic Kerr-Schild ansatz for these kind of models admits perturbations in the gaugino
field. However, if we are interested in rewriting the theory using DFT, the gaugino cannot
be perturbed

O =0, (5.7)

since duality forces (4.36). Equation (5.7) partially simplifies the supersymmetric contri-
butions to the action and equations of motion of the fields.

The dynamics of the fermionic sector of the heterotic supergravity when the general-
ized Kerr-Schild ansatz is considered, is dictated by the equations of motion which can be
obtained from (4.15) as we show in appendix A. We work with background gaugino conden-
sation, i.e. x; = Xo; when bilinears of this field appears and we consider exact perturbations
in the bosonic degrees of freedom.

Let us start by considering the b, e.0.m admitting gaugino condensation,

1 1 1,
Abuu = _Dp¢oHpuV + iDpprV + ZDPQS <2X2’Ypul/Xoi>

1 1_;
- gDP <2X07puVXoi> . (58)
In view of (5.4) we set ¢ = —% and the 3-form now is defined as
. 1 /.
Hy,p=Hup— gtl"<Xo’Y;pro) i (5.9)

Next we write the e.o.m of the dilaton, gauge field and metric in terms of the curvature (5.9),
1~ - 1
Ap=R— EHW[,H’“’” +40,00"p — Ztr(F“,,FW) ,
. . 1~ . . .
AA = A) AV, + iHul”’F,,pZ —-2D"9F,,'+ D"F,,",
1 - 1 .
Agu = Ry, +4D,¢Dy¢ — ZHWHJP -3 i (5.10)

We stress that other bilinear combinations also preserve Lorentz invariance, making possible
different kind of fermionic condensation in heterotic supergravity. In the next section
we explore the supersymmetric extension of the fundamental charged heterotic string in
d = 10. In this solution the gauge field mimics a generalization of the Coulomb potential,
and a non-trivial gaugino condensation is the most simple supersymmetric extension to the
formalism.

5.3 Fundamental charged heterotic string

In order to include the gaugino condensation in a particular generalized Kerr-Schild solu-
tion, let us elaborate on the N' = 1 supersymmetric extension of the fundamental charged
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heterotic string solution [40],

1
1+ NH(r)

¢*H(r)

ds* = AN(1 + NH(r))?2

(—dt? + (dz%)%) + (dt 4 dz®)* + Z dzidz®, (5.11)

where H(r) is a Green function and N is a constant. The non-vanishing components of
the two form and gauge field are

NH(r)

byt = ——————~ 5.12

T 1+ NH(r) (5:12)

Ab=ab = 5.13

0 T 1+ NH (r)’ ( )

with ¢ a charge and ¢ = —3In(1 + NH(r)). If we want to write this solution in its

generalized Kerr-Schild form we need to introduce the ¢ function in the ansatz redefining
kprr — K. Then we identify,

| =dt +da?,
_ 4N2 q2 9
l= dt+4N2+ sdr”,
4qN
= .14
Y PR (5.14)
and )
(AN* +q*)H
1
K v (5.15)

The identification (5.15) is related with the effective charge of a higher-dimensional gener-
alization of the Coulomb potential for the single copy of this solution [15, 16].

We can consider a fermionic condensation for this setup computing the curvature of
the 2-form and including the contribution (5.4) for this model,

~ 1 B

Hig = 0ibig — gtf(Xo%‘tho) - (5.16)
Dynamics for this geometry is dictated by equations (5.10) and the A/ = 1 supersymmetric
DFT rewriting is possible in this scenario, where the background generalized metric is the
only generalized perturbed field, since the generalized dilaton remains unperturbed.

6 Conclusions

In this work we present the supersymmetric extension of the Generalized Kerr-Schild ansatz
in the flux formulation of N/ = 1 supersymmetric DFT. This ansatz is compatible with
N = 1 supersymmetry as long as it is not written in terms of generalized null vectors.
We find that imposing a set of supersymmetric consistency conditions the perturbation of
the generalized gravitino is linear in k. The perturbations of the generalized dilaton and
dilatino have no restrictions.
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When we parametrize the theory in terms of the field content of the low energy ef-
fective heterotic supergravity, we find linear perturbations for the 10-dimensional vielbein,
Kalb-Ramond field, gauge field, gravitino and gaugino in terms of a pair of vectors and an
unrestricted perturbation for the 10-dimensional dilaton and dilatino. Moreover, the su-
persymmetric conditions found in the A/ = 1 DFT framework must be supplemented with
extra consistency conditions. However linearity in the e.o.m of g,, cannot be achieved
when supersymmetry is turned on.

The present results open the door to future directions:

e o Corrections. Finding all the 2-derivative deformations to the DFT action was ad-
dressed in [41] and then fully studied in several works [42-45]. In [41], a biparametric
family of duality covariant theories was introduced. Some of them are low energy
effective field theories of string theories but some of them are not (the main example
is the so-called HSZ theory [46-48]). Exploring the Generalized Kerr-Schild ansatz
in all these theories is straightforward with the results of this work.

e FEzxtended Kerr-Schild. Extended Kerr-Schild (xKS) [49-52] is a possible deformation
of the Kerr-Schild anzast which consists in a linear perturbation using 2 null vectors
and the inverse metric tensor receives an exact and second-order perturbation. Im-
plementing this kind of more general but exact ansatz in the context of N'=1 DFT
would allow to describe a wide range of heterotic supergravity solutions in a duality

covariant way.

o Classical Double Copy. The conventional Kerr-Schild formalism is used to extend
the double copy structure of gravity scattering amplitudes to the level of the classical
equations of motion [10-14]. In [15, 16] the massless sector of supergravity is included
based on the generalized Kerr-Schild ansatz and some aspects of the compatibility of
the classical double copy and supersymmetric flat backgrounds were discussed. The
present work introduces a way to explore the relation between the classical double
copy and general supersymmetric backgrounds associated with the field content of

heterotic supergravity.

o Maximal supersymmetry. The proper framework to address the generalized Kerr-
Schild ansatz in duality covariant theories with maximal supersymmetry is FExcep-
tional Field Theory (EFT) [53-55]. In this context it would be possible to consider
a generalized and maximal supersymmetric Kerr-Schild ansatz in a d = 3 space-time
with E8(8) duality, a d = 4 space-time with E7(7) duality or a d = 5 space-time with
E6(6) symmetry. The way to uplift the formalism considered here to the maximal
theory is not straightforward since the field content of these kind of theories are not
multiplets of the exceptional groups and compatibility between dualization and the
generalized Kerr-Schild ansatz must be firstly studied.
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A Background equations of motion

Here we present the equations of motion for the background field content of heterotic

supergravity obtained from generic variations of (4.15). We start with the bosonic sector.

Ao = —2L+8Y 0,7 7 XoDydo—4Dy 10, v Y Xo =40 0,7 Y D Mo — 4D, V' 0l Dy

+2D, o by 200,V Doy
1

1
4go,uVA¢o+Ro;Lu+4Dp,¢o oy¢o o,u)\pHou/\ -

1 .
7Fo,u/\iFou/\l

AGou = 5

(A1)

_2gO/Ll/¢op’y Y )‘0D>\¢o+go;wD/\¢op'Y Vp)‘o"'gouud)opﬂ)/)\'pr)\)\o+go;w¥op7pw3\D>\¢o

1 1 —
QQOMUDAwop’pr go,uuwopfy Dkqu 1;[} ;L’Yu) D)\wop‘i’q;[}o)\FY(u)\pDu)wop

_ _ _ _ 1_,
*woAfY(ul prl/fow) +4)\0’Y(MPDV)wop*4)\07(p\pr¢o|u) +4>\07(;LDV))‘0 - §X07(HDV)Xoi

+4@(,ﬁp%) )‘on¢0 +4Eop7(u\7p /\OD\ v) (b - 2@(;/71/) ¢5Dp¢o - 2Eop7p'¢)o Du) ¢0

1 _ ) 1 1
—1X0¢7(u|’7ApFoAp’ (¢o|u)+37|u))\o> 2Xoﬂ Yl Folvyp <¢OA+3%/\>

8
1 " oT A oT A oT
+ﬂHOpO"T (1/Jo,ﬂ[ﬂp %Wﬁ _qpo,y[y,yp P)’A]¢ou +4¢O,ﬂup )\o)

1
Abo;,u/ = _-Dpd)oHop/u/"_ §DpHopu,V

1 — . —A Y 1
+ ZDP(ZSO (Q/JOA’Y[’\’YMWV ]'l/}ocr +4¢o ’)//\p,uv)\o _4)\07/3#1/)\0 + 2X07P#VXoi>

1 — o —A — 1_,
- gDp (¢OA7[A7p;Lu7 ]'L/)oa +4v, YAppv Ao— 4/\07plw Ao+ 2X07p,quoi>

AAAO,LLZ = AopZAbplL+ HOMVpFoZl/p DV¢0 oz/,u+DVFoll/,u7 §Yé7HX§fzjk

' 1 1 . 1
—D", (xéww <¢§ + 37”Ao> ) +5 D" (xéww (Wj + 3%%) )

v " o i By 1,
gFo p (1/]00'7[ ’Yuup')/)\]'(/)ok 49, YouvpAo = 4AoVuwpro+ QX?)'YquXog)

The equations of motion of the (adjoint) fermionic fields are
AE!OL = _’Y“prul/}op - Q’YlwplbouD/ﬂbo + ’Y“Vprq/}ou + 4y Xo Dy o
1 .
— 4’7MVDV)\0 — 2’7M¢VDV¢0 + 2’7V¢OVD“¢0 - Z'Y#’YVpXOiF;Vp

- 'YVXoiFou'u 16H5pg (’Yupawo + S’Yoqpop)
1
- ZSHOPUT (Ay"POTH gy, — 3yTTHYPL — 8YHPTTN,)

AXo = 4’7'“VDM¢0V + 8’7uDu)\o - 8'7“>\0Du¢o + 4’}/#’7V'¢ouDu¢o
2

I oupi’YVpXoi +

1
3 —Hopor (7upaT¢op = 29777 X,)

6
y . 1 S|
AXo = 1"Xo Do = V" DuXo = 37" " YouFoup = 57705 Fouy
1 poT
— g,yup)\ F;up + 24Hopm"7 Xi)
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