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de Buenos Aires, Buenos Aires, Argentina, 2 CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad
de Buenos Aires, Buenos Aires, Argentina, 3 Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquı́mica,
Universidad de Buenos Aires, Buenos Aires, Argentina

Pancreas ductal adenocarcinoma is a highly aggressive cancer with an incredible poor
lifespan. Different chemotherapeutic agents’ schemes have been tested along the years
without significant success. Furthermore, immunotherapy also fails to cope with the
disease, even in combination with other standard approaches. Autophagy stands out as a
chemoresistance mechanism and is also becoming relevant as responsible for the
inefficacy of immunotherapy. In this complex scenario, exosomes have emerged as a
new key player in tumor environment. Exosomes act as messengers among tumor cells,
including tumor microenvironment immune cells. For instance, tumor-derived exosomes
are capable of generating a tolerogenic microenvironment, which in turns conditions the
immune system behavior. But also, immune cells-derived exosomes, under non-
tolerogenic conditions, induce tumor suppression, although they are able to promote
chemoresistance. In that way, NK cells are well known key regulators of carcinogenesis
and the inhibition of their function is detrimental for tumor suppression. Additionally,
increasing evidence suggests a crosstalk between exosome biogenesis and the
autophagy pathway. This mini review has the intention to summarize the available data
in the complex relationships between the autophagy pathway and the broad spectrum of
exosomes subpopulations in pancreatic cancer, with focus on the NK cells response.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor with a survival of 4-6 months
after diagnosis (1, 2). Besides the lack of early diagnosis, the rapid development of chemoresistance
makes PDAC one of the highest deadly cancers (3). PDAC cells show high levels of basal autophagy
(4–6) and an immunosuppressive tumor microenvironment (TME) conditioned by the presence of
immunosuppressive cells, i.e., regulatory T lymphocytes (Tregs), tumor-associated macrophages,
and myeloid-derived suppressor cells (MDSCs) widely present in the early stages of the disease
(7, 8). Immunotherapy against CTLA4 and PD-L1, with remarkable results on several solid tumors
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(9, 10), was unsuccessful in PDAC patients (11), even in
combination with other standard approaches (12).

Macroautophagy, hereafter named simply as autophagy, is a
catabolic process with the capacity to degrades cellular constituents
including whole organelles (13, 14). Briefly, upon autophagy
induction the serin kinase activity of ULK1 complex induces a
successive recruitment of autophagy proteins to discrete areas of
ER membrane. This includes a complex with phosphatidyl-inositol
3-kinase activity (PI3K), composed of Beclin-1, ATG14, Vps150
and Vps34, which in turn deposit phosphatidyl-inositol 3-
phosphate (PI3P) which is recognized by further autophagic
proteins (13, 14). These events let to evolution of the isolation
membrane followed by WIPI1/2-mediated recruitment of ATG5-
12-16L complex, needed for the incorporation of the lipidated form
of LC3B to the budding membrane. Isolation membrane
invaginates over the cargo in a LC3-decorated double membrane
vesicle denominated the autophagosome. Eventually, the
autophagosome fuses with a lysosome where cargo is degraded
(13, 14). Literature is contradictory about the role of autophagy in
cancer and then it is accepted to be a context dependent factor (6,
15). In vitro, gemcitabine which is the standard chemotherapeutic
agent against PDAC increases the autophagic flux in PDAC cells in
order to avoid its deleterious effects (4). Then, autophagy inhibition
increases the sensitivity of PDAC cells to gemcitabine, but also to
other treatment such as inhibitors of the NF-kB and MAPK
pathways (5).

Extracellular vesicles (EVs) can be classified by size as small
(sEVs - <200 nm) or medium/large (m/lEVs - >200 nm), but they
can also be discriminated by density, membrane markers and cell
type origin (16). From that plethora of different types of EVs,
exosomes are those sEVs with an endosomal origin and a size
ranging from 30 to 200 nm (17). The biogenesis of these vesicle is
produced by inward budding of the membrane of late
endosomes/multivesicular bodies (MVBs) (18), These particles
are secreted by most cells, including tumoral cells, and can exert
an effector response in distant tissues (19, 20). Exosomes transfer
their content specifically to target cells, through mechanisms
including ligand/receptor recognition, direct fusion with the
recipient cells, phagocytosis, endocytosis (21–24). Moreover,
they can transfer receptors from the plasma membrane (25)
and deliver, to target cells, proteins (26), mRNAs, miRNAs (27,
28) and reporters genes (29). The mechanism that controls the
inclusion of specific molecules within the exosomes remains to
be clarified, and in addition, a cell can secrete diverse exosome
populations each one with a unique content. The so-called
tumor-derived exosomes or TEXs often bear tumor associated
antigens and in some cases they can activate and stimulate
immune cells (30, 31). However, the effect of TEXs over the
immune system is not always activation (32). Hence, TEXs can
induce apoptosis of effector T cells (33–37), inhibit the cytotoxic
activity of natural killer (NK) cells (38–40), activate
immunosuppressive functions in myeloid cells (24, 41, 42),
impair differentiation of dendritic cells (43), and induce the
response of Tregs (44, 45).

NK cells are a class of innate lymphocytes cells with the ability
to rapidly eliminate infected and tumor cells. There are two main
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subclasses of NK cells, phenotypically and functionally different.
Phenotypically they can be classified according to the level of
CD56 and CD16 expression and functionally according to their
cytotoxic potential (46). The CD56dimCD16bright NK cells subset
is highly cytotoxic and expresses high levels of perforin and
granzyme B. This subpopulation does not migrate to secondary
lymphoid organs, but they express chemokine receptors that
allow them to migrate to inflamed tissues, can mediate ADCC
processes, and have low cytokine secretion capacity. By contrast,
CD56brightCD16dim NK cells are the cytokine secreting subset, do
not migrate to inflamed tissues and their cytotoxic capacity is
limited (46). Opposite to LT CD8+, mature NK cells do not need
previous activation to exert their functions. Moreover, NK
functionality is independent of the presence of non-self-
antigens presented by MHC molecules to CD8+ lymphocytes.
Hence, NK cells can eliminate target cells without previous
sensitization. Nonetheless, it is now well-known that previous
activation enhances NK cell activity by regulating the expression
of cytotoxic mediators, as well as several receptors (47).
Furthermore, previous exposure to haptens, viral infection
(HCMV) or cytokines (IL12, IL15, and IL18) generates
adap t i v e NK ce l l s w i t h immuno log i c a l memory
(47).Nevertheless, the potent immunosuppressive TME in
PDAC impairs NK function and cytotoxicity by different ways
such as downregulation of effector molecules and activation
receptor (48). Altogether, NK cells are serious candidates to
develop therapeutic strategies to eliminate tumors that are
invisible for T cells.

The last few years have seen little or no progress in the
development of more effective treatments for patients with
PDAC. In this review, we aim to analyze the complex
relationships between autophagy and the broad spectrum of
exosomes in TME of PDAC, with focus on NK cell response.
PANCREATIC CANCER CELLS ARE
MODULATED BY TME-DERIVED
EXOSOMES

There is a complex and dynamic relationship among tumor
autophagy, immune response and TME. TME is a complex
system that is affected by several factors including hypoxia,
acidosis, and immune and inflammatory responses. Moreover,
TME influences cell adhesion, invasion, angiogenesis, and even
tumor autophagy which in turn can promote tumor growth and
enhance metastasis. TME is responsible for release of the
chemoattractant factors that recruit the immune effector cells.
The response of tumor autophagy to the inflammatory
components is unpredictable and the generation of a pro-
inflammatory environment may not always be effective against
the tumor. For example, IL-1 can inhibit the cyclooxygenase 1
(COX-1) signaling pathway, and phosphorylation of the kB
inhibitor (IkB), promoting tumor development and metastasis.
In contrast, inhibition of IL-1 expression in tumor cells induces
overexpression of p21 and p53, leading to tumor suppression
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(49). At the pancreatic level, IL-1b induces autophagy in acinar
pancreatic cells (50). In the case of pancreatic tumors, they are in
hypoxic TME which induces autophagy. In this setting, tumors
were reported to increase their autophagy levels in order to
selectively degrade granzyme B released by NK cells, thereby
inhibiting one of the cytotoxic mechanisms of NK cells (51, 52).

One important member of TME are the cancer-associated
fibroblasts (CAFs) which foster proliferation (53) and
chemoresistance (54) in PDAC. CAFs are innately insensitive
to gemcitabine and a key player in the development of
chemoresistance in tumor cells. Exosomes released by
gemcitabine-treated CAFs increase proliferation and survival of
PDAC cell lines by carrying the chemoresistance-inducing
factors, Snail, and miR-146a, which in turn also induce its own
expression in the recipient cells (54). Moreover, CAFs-derived
exosomes contain the miR-106b which promote gemcitabine
resistance in PDCA cells by targeting TP53INP1 (55).

Recently, the exosomes from bone marrow mesenchymal
stem cell (BMSC), residents of the TME, raised attention in
PDAC. The over-expression of miR-126-3p in BMSC-derived
exosomes not only inhibits the proliferation, invasion and
metastasis of PDAC cells, but also promotes apoptosis in vitro
and in vivo by down-regulation of disintegrin and
metalloproteinase-9, ADAM9 (56). Furthermore, the amount
of miR-1231 in those sEVs was significantly correlated with the
TNM stage of PDAC in the clinic. The proliferation, migration,
invasion, and adhesion to the matrix of PDAC cells were
negatively regulated by BMSC-derived exosomes transfected
with miR-1231 oligonucleotides. Then, the exosomes extracted
from BMSCs, with high levels of miR-1231, inhibit the
proliferation of pancreatic cancer cells and induce cell cycle
arrest (57). Finally, similar results can be observed in exosomes
from the tumor-associated stroma (TAS) cells, which are
enriched in miR-145 and possess tumor suppressive properties
by inducing apoptosis of PDAC cells (58).

The studies carried out suggest that the ability of exosomes to
induce or suppress the proliferation, invasion, metastasis and/or
chemoresistance of pancreatic cancer cells, depend on the cell
type where those vesicles come from. Different sources of
exosomes have different effects on pancreatic cancer cells
activity, or even the opposite, which needs further clarification
and in-depth study.
RELATIONSHIP BETWEEN AUTOPHAGY
AND EXOSOMES BIOGENESIS

Alternative to the direct fusion with lysosomes (see
Introduction), autophagosomes can previously fuse with some
endocytic compartments such as early and late endosomes, and
the MVBs. These merged structures, called amphisomes,
eventually fuses with lysosomes where sequestered material is
finally degraded (59). Therefore, autophagy induction has been
shown to cause recycling of the MVBs, which, instead of fusing
with the plasma membrane, enter the autophagic pathway.
Furthermore, it was observed in some cell lines a relationship
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between exosomes release and the induction level of the
autophagy pathway (60–63). Consequently, it is not surprising
to find evidence of autophagic pathway cross-linking with
exosome biogenesis (64). Starvation-induced autophagy
reduces the release of exosomes in K562 cells (63). Starvation
cou ld increase in the fus ion between MVBs and
autophagosomes, thus directing the MVBs toward the
degradative pathway. Similarly, inhibition of PIKfyve kinase,
essential for endolysosomal vesicular trafficking, increases
exosome release and reduces the degradative process via
autophagy, probably due to reduced fusion of lysosomes with
MVBs and autophagosomes (65). In line with this, the lysosomal
dysfunction, provoked by ammonium chloride or bafilomycin
A1, increases sEVs secretion of SH-SY5Y cells (66). Nevertheless,
we cannot discard that those results are due to vesicular
trafficking interference.

There is data supporting that at least part of the autophagy
machinery contributes to the biogenesis of exosomes, in a
process where completion of the autophagic process itself
seems to be dispensable (67, 68). In non-autophagic functions,
ATG5 and ATG16L1 proteins have been associated with the
biogenesis of exosomes (67). ATG5 participates in the
dissociation of the vacuolar proton pump (V1V0-ATPase)
from the MVBs preventing its acidification, and this is believed
to allow the fusion with the plasma membrane and consequent
exosomes releasing. Accordingly, depletion of ATG5 or
ATG16L1 significantly reduces exosome release and attenuates
exosomal enrichment in LC3B-II. Moreover, lysosomal or V-
ATPase inhibitors rescue the release of exosomes in ATG5
depleted cells further supporting the role of luminal pH to
define the fate of MVBs. It is interesting to note that while
ATG5 decreases the acidification of the MVBs, it increases the
acidification in those LC3 positive intracellular compartments,
such as autolysosome, phagosomes associated with LC3 and
endosomes, all of them destined for degradation. A proposed
model indicates that in MVBs, LC3 can remove ATP6V1E1 from
intraluminal vesicles/exosomes and decrease acidification, while
it recruits ATP6V1E1 or stabilize V1V0ATPase in the
aforementioned degradative vesicles to promote acidification
(67). The complex of two other autophagy proteins, ATG12
and ATG3, interacts with ALIX and ESCRT-associated proteins,
crucial in exosomes biogenesis (68). Hence, loss of ATG12-
ATG3 alters the morphology of MVBs, impedes late endosome
trafficking, and reduces exosome biogenesis. Worth note that
decreased ALIX expression reduces basal autophagic flux,
demonstrating reciprocal regulation between both pathways.
Interestingly, the lack of ALIX or the ATG12-ATG3 complex
impairment do not affect starvation-induced autophagy,
suggesting different regulatory machinery for basal and stress-
induced autophagy, as well as the interaction of these pathways
with endocytic compartments (68).

Highly desmoplastic and poor vascularized, PDAC stroma
imposes a hypoxic condition to most cancer cells into pancreatic
tissue. It was described that hypoxia, an autophagy inductor,
promotes the release of EVs in several PDAC cell lines. The effect
seems to be quite specific since a significant increase of sEVs,
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without or minimal release of mEVs and lEVs, is observed.
Moreover, changes in size distribution among the sEVs is
observed with a shift toward smaller average size under
extreme hypoxia (69). Furthermore, the GAIP C-terminal
interaction protein (GIPC) acts as a scaffold to control
receptor-mediated trafficking (70–72). After receptor
internalization, GIPC is transiently associated with the pool of
endocytic vesicles that are close to the plasma membrane (73). A
regulatory role of GIPC on autophagy, via the glucose-dependent
metabolic pathway, and on biogenesis and release of exosomes
has been described in AsPC-1 and PANC-1 pancreatic tumor
cells (74). GIPC depletion in these cell lines generates metabolic
stress with autophagy induction and increased exosome release.
Lack of GIPC increases LC3-II expression and biogenesis of
autophagosomes and at the same time leads to increased
secretion of exosomes by the PDAC cells. Mechanistically, the
absence of GIPC increases exosomes released by higher
expression levels of ALIX, TSG101 and CHMP4B. Noteworthy
is that exosomes from GIPC-depleted cells lack the drug
resistance associated molecule ABCG2, suggesting that this
molecule might be a sEVs cargo (74).

Altogether, several molecules that belong from the autophagy
pathway seem to play important roles in exosomes biogenesis.
However, we still have a long way to precisely define how deeply
the autophagy and exosomes biogenesis are crisscrossed. In
addition, the stroma profile, for instance through its hypoxic
status, let us glimpse that influences of TME over cancer cells in
PDAC could be even far more complex that speculated some
time ago.
PDAC-DERIVED EXOSOMES INFLUENCE
TUMOR BEHAVIOR

Among the cells with different grades of malignancy that
compose the PDAC, highly invasive cell-derived exosomes
promote the migration and invasion of weakly invasive cells
(75). ZIP4, a zinc transporter, is the most up-regulated exosomal
protein and promotes the growth of recipient cells (76).
Moreover, exosomes derived from highly invasive cells are rich
in miR-125b-5p which promotes migration and invasion and is
associated with metastasis in PDAC through MEK2/ERK2
signaling (77). Likewise, the miR-5703 present in exosomes
from primary cultures of pancreatic stellate cells is capable of
fostering proliferation of PDAC cells by activation of the PI3K/
Akt pathway. This has been shown to be due to miR-5703
downregulated CMTM4 where CMTM4 suppresses the PI3K/
Akt pathway (78). In a different aspect of tumor biology, TEXs
can also transfer chemoresistance by a paracrine action.
Gemcitabine, being one of the most commonly used
chemotherapeutic agents in pancreatic cancer (79), upregulates
miR-155 expression in PDAC cells which is transferred, through
exosomes, to the neighboring cells. This microRNA confers
chemoresistance to receptor cells by upregulation of SOD2 and
CAT, involved in ROS detoxification, and downregulation of
DCK, a gene related to gemcitabine metabolism (80).
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Additionally, miR-155 induces the biogenesis and secretion of
exosomes leading to a positive feedback loop of drug resistance
(80, 81).

The composition, biogenesis and secretion of exosomes are
finely regulated processes, influenced by changes in the TME. In
this context, exosome secretion is an efficient adaptive
mechanism by which cells modulate intracellular stress
situations and modify their microenvironment (82). PDAC
cells are usually exposed to hypoxia, which is an important
autophagy inductor, as commented above. This situation induces
adaptation mechanisms that promote endothelial activation,
angiogenesis, proliferation, and cell survival (83). Noteworthy,
concomitantly to autophagy flux induction, cells under hypoxic
or anoxic stress increase the secretion of exosomes rich in CD63,
CD9, and miR-210 in breast cancer cells (84). Furthermore, in
this situation, secreted exosomes contain proteins associated
with cell migration, degradation of the extracellular matrix,
growth signaling molecules, clathrin-mediated endocytosis, and
molecules of the endothelial and vascular growth factor signaling
pathway (85, 86). Acid conditions are common in the tumor
microenvironment. This factor also modulates the release,
charge, function, and trafficking of exosomes released by the
tumor cell. An acidified microenvironment increases the release
of exosomes, but with a different lipid composition. These
exosomes are enriched in sphingomyelin and GM3 ganglioside,
thus increasing their rigidity and fusion efficiency with the target
cell (87). It has been shown that situations such as oxidative and
thermal stress can increase the release of immunosuppressive
exosomes from leukemia cells and T and B lymphomas (32).
Besides, the effects of pancreatic cancer-derived sEVs on T
lymphocytes are far from be elucidated. The promotion of
Treg expansion and impairment of T lymphocytes cytotoxicity
against PDAC cells by pancreatic cancer-derived sEVs was
recently described. In these lymphocytes, the up-regulation of
FOXP3 and the consequent Treg promotion was mediated by the
ATM-AMPK-SIRT1/2/6- FOXO1A/FOXO3A axis, suggesting
an induction of autophagy pathway by PDAC TEXs (88).

In the TME, the exosomes from hypoxic PDAC cells are
capable of activating the PTEN/PI3K pathway, inducing the
shifting of macrophages toward the M2 phenotype. This
process is dependent on HIF1a or HIF2a, and accelerates
invasion, migration and epithelial-mesenchymal transition
(EMT) of PDAC cells (89). Moreover, CD151−/tetraspanin 8
containing exosomes support the EMT of non-metastatic PDAC
cells for a motile phenotype (90). Furthermore, exosomes
bearing VEGF and TGF-b promote angiogenesis enhancing the
invasiveness and the establishment of a metastatic TME. PDAC
also releases TEXs bearing c-Met (proto-oncogene
mesenchymal-epithelial transition factor) and PD-L1
(programmed cell death 1 ligand 1) (91). The tyrosine kinase
receptor c-Met controls key signaling cascades including MAPK,
STAT, NF-kB and PI3K/Akt pathways, which overall provide
proliferation, migration and an anti-apoptotic status of tumor
cells (92). On the other hand, PD-L1 is a ligand of the PD-1
receptor which prevents from excessive immune response and
guarantees the tolerance of harmless antigens and self-tissues.
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Tumor cells take advantage of this mechanism by expressing PD-
L1 in order to evade immune control (93). In this context, TEXs
from PDAC bear both c-Met and PD-L1 on their surface
enhancing the carcinogenesis. Importantly, detection of c-Met
and PD-L1 may have diagnostic or prognostic relevance when
are detected jointly with the marker CA 19-9 used in PDAC (91).

Finally, PDAC-derived TEXs composition results from
activation of several survival pathways which confers
aggressiveness, chemoresistance and even immune evasion to
neighboring tumor cells.
NATURAL KILLER CELLS IN PDAC
MICROENVIRONMENT

NK cells are central in the immunological fight against tumor
and infected cells. Although NK cells are expected to play
an important role in the immune surveillance against
tumors, suppressive components in the TME dampen their
efficacy. Several studies proposed Tregs as the responsible in
suppressing tumor-infiltrating NK cells (94, 95). However, TEXs
have gained attention as key players for immunosuppression
in the TME. The exposure of phosphatidylserine (PS) is
perhaps the most representative “eat-me” signal which is
recognized by opsonins and other serum proteins for removal
of apoptotic bodies by phagocytic cell. Physiologically, the
externalized PS functions as a dominant immunosuppressive
signal, promoting tolerance and preventing local and systemic
activation of immune system. Pathologically, the innate
immunosuppressive effect of externalized PS has been
commandeered by numerous microorganisms to facilitate
infection, and in some cases to establish infection latency. In
TME, PS is also profoundly dysregulated and inhibits the
development of tumor immunity. The exposure of PS is
favored by the hypoxic stress, but also PS is exposed in TEXs
where it binds to PS-receptors (e.g., TIM-receptors on immune
cells), triggering the immune-suppressive signals (i.e. enhanced
TGF-b and IL-10 secretion) and leading to an impaired immune
activation (96).

NK cells exert their cytotoxic function directly by contact with
tumor cells, but also through the action of their own secreted
exosomes. Interestingly, the exosomes released by the NK cells
seem to be independent of its activation state. Activated and
resting NK cells release almost the same number of exosomes,
which contain typical protein markers of NK cells such as FasL
and perforin. Moreover, these exosomes exert cytotoxic activity
against several tumor cell lines in vitro (97). In this sense, NK-
derived exosomes can regulate tumor cells suppression by two
mechanisms: Fas-FasL interaction between exosomes and
tumoral cells membrane, and cytotoxicity triggered by
excessive uptake of exosomes in the target cells (98). Recently,
the presence of miR-3607-3p in EVs was associated with
suppression of pancreatic cancer (99). EVs derived from NK
cells, enriched in miR-3607-3p, could suppress PDAC
development and malignant transformation. The amount of
miR-3607-3p in NK cells and its EVs is higher than in PDAC
Frontiers in Oncology | www.frontiersin.org 5
cells, but this miRNA increases significantly in these last when
they are cultured in presence of NK-derived EVs (99). IL-26 is a
member of the IL-10 cytokine family with unknown function in
human tumors. Compared to healthy tissue IL-26 in highly
expressed PDAC, miR-3607-3p directly suppresses its
expression in these tumoral cells. In sum, there is a significant
negative correlation between the expression levels of miR-3607-
3p and IL-26 in pancreatic cancer tissues. However, in gastric
cancer cells it was reported that over-expression of IL-26
facilitates proliferation and survival by regulation of STAT1/
STAT3 signaling (100). Worth to note, that characteristics of
cytokine composition in the surroundings where NK cells are
activated determine the fate of those immune cells. For instance,
survival of NK cells is promoted in presence of IL-15, an innate
cytokine, or IL-2, an adaptive cytokine. However, NK cells
activated in presence of IL-2 die by apoptosis after contact
with vascular endothelium, a key step for their extravasation
(101). Further work will elucidate whether the exosomes present
in the TME could be mediators of this phenomenon.

NK cells represent a significant attempt of the immune system
to fight against PDAC. Nevertheless, cancerous cells, through the
PDAC-derived TEXs, can inhibit the functionality of NK cells. In
response, NK cells release exosomes which contain FasL and
perforin and seem to exert cytotoxic activity against tumor cells.
More evidence is needed to completely understand the role of
NK-derived exosomes over the PDAC as a whole and vice versa.

Finally, those data could give us the basis to design strategies
where this game of different intratumorally exosome populations
are exploited for the well-being of patients.
CONCLUSIONS AND PERSPECTIVES

Indeed, the development of specific immunotherapy protocols
based on NK cells to treat cancer has been dampened by the
complexity of the mechanisms that regulate NK cell function and
elimination of target cells. Luckily, times are changing and, at
present, in the era of cancer heterogeneity and immunotherapy,
NK cells are emerging as the golden effectors to eliminate non-
antigenic tumor cell clones. A perfect duet in the symphony of
destruction, LTc and NK cells destroy immune “visible” and
“invisible” cancer cells to overcome immunogenic tumor
heterogeneity. A better understanding of autophagy and
exosome pathways and their interrelationships seems to be key
for controling these events, where we could find the way of
successfully using the immune system against the deadly PDAC.

Available data suggest that exosomes, EVs in general, are
changing the communication paradigm within the TME
(Figure 1). These tiny vesicles can modulate both the immune
and therapeutic responses in complex and difficult-to-treat
pathologies such as the PDAC. The scientific community is
just beginning to understand the mechanisms that govern the
intricate and complex interactions among the different actors
into the TME. In this scenario, autophagy seems to play a key
role in exosomal biogenesis regulation and probably also in cargo
selection. We still have a long way to go but is for sure that a
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FIGURE 1 | Schematic diagram depicting a proposal model of the complex relationship between autophagy and exosomes in the context of pancreas ductal
adenocarcinoma (PDAC) and its environment. The autophagy pathway and exosomes biogenesis are suggested to be highly interconnected. Both pathways share
several structures of the endo-lysosomal system. In the context of PDAC and its tumor microenvironment, autophagy and exosomal processes are mutually
influenced and condition tumor behavior responding to the pressure of the immune system. (1) – violet arrows - Cancer-associated fibroblasts (CAFs) foster
proliferation and chemoresistance. Exosomes bearing miR-106b are released by gemcitabine-treated CAFs increasing proliferation and survival of PDAC cell lines.
The effector response is traduced in cancer cells as induction of chemoresistance-inducing factors, Snail, and miR-146a, and TP53INP1. (2) – light blue arrows -
Bone marrow mesenchymal stem cell (BMSC)-derived exosomes contain miR-126-3p and miR-1231, which in turn inhibit proliferation, invasion and metastasis and
promotes apoptosis by down-regulation of disintegrin and metalloproteinase-9 (ADAM9). (3) – brown arrows - Vesicles from tumor-associated stroma cells (TASC)
are enriched in miR-145. This molecule possesses tumor suppressor action on target cells by inducing apoptosis. (4) – green arrows - NK-derived exosomes
mediate tumor cells suppression by two mechanisms. One of them is Fas-FasL interaction between exosomes and tumoral cells. The other mechanism is mediated
by excessive uptake by cancer cells of exosomes carrying miR-3607-3p which possess tumor suppressive qualities and decrease IL-26 expression. (5) – purple
arrows – PDAC tumor exosomes (TEXs) bearing c-Met and PD-L1 enhance carcinogenesis. c-Met provides proliferation, migration, and an anti-apoptotic status in
recipient cancer cells. PD-L1 guarantees evasion of immune control. (6) – black arrow – TEXs from highly invasive cells carry ZIP4, miR-125b-5p and miR-5703
towards weakly invasive cancer cells enhancing the aggressiveness of these last and promoting an increased invasive potential. (7) – orange arrows – In response to
gemcitabine treatment, chemoresistant PDAC cancer cells are capable of transferring their resistance properties to neighboring cells through exosomes. They release
TEXs bearing miR-155 and induce upregulation of SOD2 and CAT meanwhile DCK, a gene related to gemcitabine metabolism, is downregulated. Furthermore,
exosomes from different cell types of tumor microenvironment condition autophagy response and affect PDAC behavior. EE, Early endosomes; LE/MVB, Late
Endosomes/Multivesicular bodies; ER, endoplasmic reticulum; TEX, Tumor-derived exosomes.
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future with an exciting new comprehension about tumor biology
is waiting.
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