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Emergent parametric resonances and time-crystal phases in driven
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We study the out-of-equilibrium dynamics of a Bardeen-Cooper-Schrieffer condensate subject to a periodic
drive. We demonstrate that the combined effect of drive and interactions results in emerging parametric
resonances, analogous to a vertically driving pendulum. In particular, Arnold tongues appear when the driving
frequency matches 2�0/n, with n being a natural number and �0 being the equilibrium gap parameter. Inside
the Arnold tongues we find a commensurate time-crystal condensate which retains the U(1) symmetry breaking
of the parent superfluid/superconducting phase and shows an additional time-translational symmetry breaking.
Outside these tongues, the synchronized collective Higgs mode found in quench protocols is stabilized without
the need of a strong perturbation. Our results are directly relevant to cold-atom and condensed-matter systems
and do not require very long energy relaxation times to be observed.

DOI: 10.1103/PhysRevResearch.3.L042023

Periodic driving of a many-body system allows the manip-
ulation of the equilibrium phase diagram through phenomena
such as dynamic localization [1–3] and the creation of new
out-of-equilibrium states of matter such as time crystals [4–7]
which exhibit time-translational symmetry breaking (TTSB).
Related effects have been found in solids, often in connection
with an enhanced stability of broken-symmetry phases [8–13].
These phenomena can be described using mathematical tech-
niques developed by Floquet in the nineteenth century [14]
and referred to as Floquet engineering [15].

An interesting Floquet engineering technique is to exploit
parametric resonances and the associated parametric amplifi-
cation allowing, for example, intrinsic losses to be overcome
[16]. Quite generally, parametric resonances require a non-
linear medium whose intrinsic parameters can be modified
periodically by a drive. This can be achieved in metamaterials
as an array of Josephson junctions [17–19] or a structured
superconducting waveguide [20]. Parametric resonances can
also be generated in a single material such as, for example,
a layered superconductor with intrinsic Josephson coupling
between planes [21–23], a superconductor with surface al-
lowed nonlinear coupling with the electromagnetic field [24],
a charge-density wave [25] with nonlinear coupling between
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amplitude and phase modes, or a semiconductor with nonlin-
ear coupling between the electric field and phonons [26].

In this Letter we show that parametric resonances emerge
naturally in any system whose dynamics is described by
the Bardeen-Cooper-Schrieffer (BCS) Hamiltonian at times
short with respect to the energy relaxation time (the so-called
prethermal regime). Furthermore, we show that parametric
resonances stabilize a discrete time-crystal phase [27–35]
which retains the U(1) gauge symmetry breaking of the equi-
librium BCS condensate.

We consider a weak-coupling fermionic condensate with
s-wave pairing described by the BCS model and subject to
a periodic drive that couples with the order parameter. The
system is treated in the Anderson pseudospin formulation
[36]. The Hamiltonian takes the form

ĤBCS = −2
∑

k

ξkŜz
k − λ(t )

∑

k,k′
Ŝ+

k Ŝ−
k′ . (1)

Here, ξk = εk − μ measures the energy from the Fermi level
μ and the pairing interaction is taken periodic in time with
the driving strength α and the frequency ωd as λ(t ) = λ0 [1 +
α sin(ωdt )]. The modulation in the pairing interaction drives
the system out of equilibrium. Possible realizations are dis-
cussed below and in Ref. [37]. The 1

2 -pseudospin operators
are given by

Ŝx
k = 1

2
(ĉ†

k↑ĉ†
−k↓ + ĉ−k↓ĉk↑),

Ŝy
k = 1

2i
(ĉ†

k↑ĉ†
−k↓ − ĉ−k↓ĉk↑),

Ŝz
k = 1

2
(1 − ĉ†

k↑ĉk↑ − ĉ†
−k↓ĉ−k↓),
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and ĉ†
kσ

(ĉkσ ) is the usual creation (annihilation) operator
for fermions with momentum k and spin σ . The operator
Ŝ±

k ≡ Ŝx
k ± iŜy

k creates or annihilates a Cooper pair (k,−k).
Due to the all-to-all interaction in Eq. (1), a mean-field treat-
ment becomes exact in the thermodynamic limit and the
dynamics can be obtained by solving for each pseudospin
in a self-consistent field. The BCS mean-field Hamilto-
nian can be written as ĤMF = −∑

k Ŝk · bk, where bk(t ) =
(2�(t ), 0, 2ξk ) represents an effective magnetic field vector
for the 1

2 -pseudospin operator Ŝk = (Ŝx
k, Ŝy

k, Ŝz
k). Here, without

loss of generality, we have assumed a real equilibrium BCS
order parameter (�0), a condition that remains valid over time
due to electron-hole symmetry. The instantaneous BCS order
parameter is given by

�(t ) = λ(t )
∑

k

Sx
k, (2)

where symbols without a hat denote the expectation value of
operators in the time-dependent BCS state.

At equilibrium, in the absence of periodic perturbations,
the 1

2 -pseudospins align in the direction of their local fields
b0

k = (2�0, 0, 2ξk) in order to minimize the system’s energy.
This is used as an initial condition and once the pairing inter-
action is modulated, the pseudospins evolve in time obeying
the equation of motion dSk

dt = −bk(t ) × Sk (h̄ ≡ 1). In contrast
with Refs. [22,37,38], we focus on subgap frequencies (ωd �
2�0) and weak driving amplitude (α < 0.2). We consider
N = 104 pseudospins equally spaced in energy ξk, within an
energy range of W = 40�0 around μ [39].

To characterize the dynamical phase transitions (DPT),
we use � as the dynamical order parameter, defined as the
average of the order parameter �(t ) over a large time win-
dow in the stationary regime. Figure 1(a) shows a map of
� as a function of the driving strength α and the driving
frequency ωd . There are two distinct main regions in the phase
diagram, one in which � ≈ 0 (green area), and another one
in which the temporal average is close to the initial equi-
librium value �0 (orange area). We see resonant behavior
(i.e., the average order parameter close to zero), each time the
drive frequency matches ωd = 2�0/n, with n being a natural
number, within a region that becomes larger as the driving
strength α grows, forming so-called Arnold tongues. Since
these features emerge by varying an internal parameter of the
system, they may be called parametric resonances. Even more
substantially, the phase diagram is remarkably similar to that
in Fig. 1(c) corresponding to the archetypal model of a para-
metric oscillator, namely, a vertically forced pendulum with
a pump frequency, ωp, as shown schematically in Fig. 1(b).
This analogy requires the following: (i) identification of the
natural frequency as ω0 = 2�0, (ii) identification of the pump
frequency of the pendulum as ωp = 2ωd , (iii) inclusion of a
small damping constant η in the pendulum [39], and (iv) iden-
tification of the regions with large deviation from equilibrium
in the pendulum (resonances) with the regions of zero average
gap. Thus, the usual parametric resonances at ωp = 2ω0/n
correspond one-to-one to the resonances we observe in the
BCS system.

In the damped pendulum, the Arnold tongue starts at a
sharp value of the driving strength [40], satisfying the power

FIG. 1. (a) Dynamical phase diagram obtained as a false color
plot of � as a function of α and ωd . The order parameter was aver-
aged in the interval t�0 ∈ [0, 200]. Parametric resonances occur at
2�0/n with n being a natural number similar to the vertically driven
pendulum (b). The phase diagram of the latter is shown in panel
(c) by plotting the mean-square amplitude of oscillation as a function
of the pump frequency ωp and the amplitude h (in the harmonic
approximation). The black curves in panels (a) and (c) show a power
law delimiting the Arnold tongues in the presence of damping. Small
discrepancies in panel (c) are finite time-window effects. In the case
of the BCS system, we found that α = 0.45ηωd /2�0 with η = 0.005
approximately describing the numerical results. The dashed black
line in panel (a) indicates a weak first-order DPT. The open symbols
indicate the parameters for which the rigidity of the Higgs mode
(circles) and time crystal (triangles) has been checked [39].

law hc = η1/n. This is approximately verified for the BCS sys-
tem [thin black line in Figs. 1(a) and 1(c)] but the behavior is
more complex. The upper boundary of the Arnold tongue has
a fractal-like structure similar to the chaotic dynamics found
in related systems [41,42]. In contrast, the lower boundary
does not finish at the tip of the Arnold tongue but continues
until α = 0 as a weak first-order DPT where � changes dis-
continuously [Fig. 1(a), dashed line for n = 2), producing a
sharp edge.

Notice that, for simplicity, in the case of the pendulum we
solved a linear model [39] and resonances appear as a diver-
gence of the amplitude. In the case of a real pendulum, these
divergences are cut off by nonlinearities. In the superconduc-
tor, the full nonlinearity of the BCS dynamics is included in
the computations so analogous divergences are replaced by
different nonlinear phenomena as discussed below.

To characterize the different dynamics outside and in-
side the Arnold tongues, in the following we analyze in
more detail two representative examples. Figure 2 shows
the dynamics away from the Arnold tongues [solid circle in
Fig. 1(a)]. After some transient oscillations, the supercon-
ducting order parameter decreases in average and oscillates
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FIG. 2. The dynamics outside the Arnold tongues [correspond-
ing to the solid circle in Fig. 1(a)] is characterized through �(t ),
Sx

k (t ), and nk(t ). Panels (a), (c), and (e) show the transient dynamics
(left) and the steady-state dynamics (right). Panels (b), (d), and (f)
show the log of the FT. Black dots in panels (d) and (f) mark 
L

and 
L ± ωd . The cross at the right of panels (c)–(f) indicate the
boundary of the 2ωd -resonance regime. Panel (g) illustrates schemat-
ically the pseudospin precessions around the pseudomagnetic field
b(t ), which has a time dependence through �(t ) (k label dropped
for clarity). The chosen pseudospin with ξk/�0 = 0.3 is in the
2ωd -resonance regime, so its Larmor frequency is nearly twice the
periodicity of �(t ) and the modulus of b(t ) as shown on the right.

around a new value, � < �0 [Fig. 2(a)]. We have also plot-
ted the x component of the pseudospin texture over time
Sx

k(t ) [Fig. 2(c)], which is associated to the superconduct-
ing response through Eq. (2), as well as the time-dependent
quasiparticle distribution nk(t ) = 1 − 2Sz

k(t ) [Fig. 2(e)]. The
Fourier transforms (FT) in Figs. 2(d) and 2(f) show that the
same set of frequencies appear in the dynamics of nk and
Sx

k. As illustrated in Fig. 2(g), this is a simple consequence
of the fact that pseudospins (green) make a tilted preces-
sion around the self-consistent pseudomagnetic field (red). As
could be expected, the pseudospin Larmor frequency 
L is
determined by the average gap (as opposed to the equilib-
rium gap). Indeed, the large dots in Figs. 2(d) and 2(f) mark

ω = 
L(ξk) ≡ 2
√

ξ 2
k + �

2
. Also, Floquet sidebands appear at


L ± ωd (small dots).
The cross at the right of Figs. 2(c)–(f) indicate the value

ξ ∗
k satisfying 2ωd = 
L(ξ ∗

k ). Quasiparticles with ξk � ξ ∗
k are

driven strongly out of equilibrium, creating a sharp separation
in ξk among quasiparticles that respond strongly and weakly
to the drive. We refer to this as 2ωd -resonant behavior to
distinguish it from parametric resonances.

The peak at ωd and higher harmonics, shown in Fig. 2(b),
can be explained from linear response theory and weak non-
linearities. In contrast, an unexpected oscillation occurs with
a frequency ωH which is not commensurate with the driving
frequency but instead satisfies ωH = 2�. Thus, it is an internal
mode of the many-body system that spontaneously emerges
in the dynamics (Higgs mode). Being the time analog of an
incommensurate charge-density wave in a solid, these states
are dubbed time quasicrystals in other contexts where they
have been identified both experimentally [6] and theoreti-
cally [22,43,44]. Here, we find that its frequency is robust to
changes in the drive [39] when measured in units of 2� which
is a general requirement defining time-crystal behavior. On
the other hand, since a time crystal is often associated with a
subharmonic response, we use the conventional denomination
of “synchronized Higgs mode,” keeping in mind that it shares
many characteristics of time-crystal behavior.

The vertical features in Figs. 2(d) and 2(f) at ω = ωH reveal
that the origin of the synchronized Higgs mode is not a simple
consequence of the Van Hove singularity of the BCS density
of states, but rather of a synchronization between a group of
pseudospins. A similar oscillation emerges spontaneously in
BCS quench protocols in which the attractive interaction is
suddenly increased by a large amount [45–48]. There, also,
the frequency of this Higgs mode is determined by the average
gap [49]. Here, the synchronized Higgs mode emerges with a
continuous wave pump and without the need of large driving
amplitudes, a protocol which is much easier to implement
experimentally [50].

Excitation of the Higgs mode by a periodic drive above
the equilibrium gap was found in a layered Ginzburg-Landau
model without quasiparticle excitations [22]. Our result ap-
plies to general BCS systems for driving frequency below the
gap (where heating effects are expected to be minimized) and
takes into account the full BCS dynamics including the effect
of quasiparticle excitations.

We now switch to the typical dynamics inside the Arnold
tongues (solid triangle in Fig. 1). Remarkably, we find that
a new commensurate time-crystal condensate phase emerges.
Indeed, as shown in Fig. 3, after a short transient, � becomes
zero [Fig. 3(a)] and the instantaneous order parameter oscil-
lates with half of the drive frequency [Fig. 3(b)] as found in
other models showing discrete time-translational symmetry
breaking [4,5,29,51–57].

It has become customary to reserve the term “time crystal”
for TTSB satisfying certain criteria [28,58], which ensures a
many-body origin. In our case, the terminology is justified by
the fact that there is long-range order in time, in the sense
that the symmetry breaking persists for at least thousands
of Floquet cycles in our numerical calculations. In addition,
we have checked [39] that the effect is not accidental, but
there is “rigidity” in the TTSB. Changing the amplitude of
the drive, the frequency response remains locked, which in-
dicates a self-generated collective mode. Figure 3(d) shows
that the subharmonic response is shared by a wide range of
pseudospins as witnessed by the vertical feature at ωd/2. The
sum of all these contributions leads to the macroscopic TTSB
response of the order parameter.

Figure 3(b) show that �(t ) can be well approximated
by only two Fourier components: �(t ) = �1 cos(ωdt/2) +
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FIG. 3. Same as Fig. 2 but inside the Arnold tongue showing sub-
harmonic dynamics [parameters corresponding to the solid triangle
in Fig. 1(a)]. After a short transient, the average order parameter
is driven to zero and oscillates with twice the periodicity of the
drive [panels (a) and (g)]. Panel (g) schematizes the behavior of
a quasiparticle with ξk/�0 = 1.8. The pseudomagnetic field (red)
oscillates with a time-dependent length |b| reminiscent of the ver-
tically driven pendulum setting; i.e., the length is minimum each
time the field is vertical (t = Td/2, 3Td/2) (red line in the lower right
panel). The pseudospin (green) precesses and follows b(t ), making
an “∞-shaped” loop. Sx has 2Td periodicity and self-consistently
builds �(t ) with the same periodicity. The dots in panel (d) are the
result of a Floquet computation [39]. The dashed blue lines are the
bare dispersion ω = |2ξk| (more intense) and associated Floquet side
bands |2ξk ± nωd |, with n = 1, 2, 3, . . . Notice that the Floquet spec-
trum appears shifted by ωd/2 in the charge response (f) in relation to
panel (d).

�2 cos(3ωdt/2), with �1 = 0.58�0 and �2 = 0.156�0.
Considering this self-consistent order parameter as an exter-
nal drive acting on each pseudospin, it is possible to use
the Floquet theory to compute analytically the spectrum of
frequencies determining the dynamics [39]. This results in the
dots shown in Figs. 3(d) and 3(f) which agree very well with
the structures seen in the numerical simulations.

Near ξk/�0 ≈ 0.4 a large gap of size 2�1 appears in the
spectrum of Fig. 3(d) as the remnant of the superconducting
pairing. However, rather than being centered at ω = 0 [as for
a conventional superconducting phase, cf. Fig. 2(d)], it is cen-
tered at ωd/2. Such a finite frequency gap can be understood
as the avoiding crossing among the bare dispersion ω = |2ξk|
and the first Floquet replica ω = |ωd ± 2ξk| (dashed blue
lines). Avoiding crossings involving higher Floquet replicas
explains the smaller gaps of size 2�2 around ξk/�0 ≈ 1.3.

Figure 3(g) schematizes the dynamics at high energy,
where the subharmonic response is strong. Pseudospins pre-

cess and follow the time-dependent field that they contribute
to create. Because the z axis coincides with a symmetry axis
of the dynamics, different frequencies appear in the pairing
[Fig. 3(d)] and charge [Fig. 3(f)] fluctuations, in contrast to
Fig. 2 where such symmetry does not hold. Notice that charge
fluctuations [Fig. 3(f)] respond at the drive frequency, in con-
trast to the subharmonic response of the pairing fluctuations
[Fig. 3(d)].

Due to the gauge invariance of the equations, multiplying
the real �(t ) by an arbitrary time-independent phase factor,
�(t )eiφ , yields another solution of the time-dependent BCS
problem. In other words, the dynamical phase breaks both
discrete time-translational symmetry and U(1) symmetry. The
latter symmetry breaking characterizes also an equilibrium
BCS condensate; thus, the new state is dubbed a “commen-
surate time-crystal condensate.”

For classical systems it has been proposed to use paramet-
ric oscillators as a building block of a time crystal [54,55]. In
contrast, our building blocks, noninteracting pseudospins, do
not show parametric resonances. The resonances and the time-
crystal phase emerge as a result of the interactions between
quasiparticles.

Heating and decoherence are often a concern for observing
subtle out-of-equilibrium effects in condensates. As shown
in Fig. S3 of Ref. [39], Arnold tongues are visible even if
we restrict to relatively few decades of t�0. This can be
compared with quasiparticle relaxation times τ of the order
of microseconds measured in aluminium-based solid-state
superconducting devices [59] (τ�0 ≈ 106). While the out-
of-equilibrium dynamics may strongly affect this coherence
time, the gentle perturbation represented by a subgap drive
suggests that the present effects could be observable in solid-
state superconductors.

The phase diagram is also robust with respect to differ-
ent driving methods. Indeed, we find similar results with a
periodic drive of the density of states or driving with an
external pairing field which will be shown elsewhere [60].
The former driving can be implemented with ultracold atoms,
cavity QED, or THz radiation in condensed-matter systems
with suitable polarizations [22,37,38,61–65].

Periodic λ-driving can be naturally implemented in ultra-
cold atomic gases by using a small time-dependent magnetic
field modulation in a Feshbach resonance. An alternative pro-
tocol has been implemented in cold fermionic lithium atoms
[50]. Parametric resonances, time-crystal phases, and DPTs
can be detected through magnetic sweep to the BEC side,
giving access to the BCS condensed fraction and the in-
stantaneous order parameter [50]. Additionally, in solid-state
superconductors, a phonon-assisted λ-driving mechanism has
been proposed [37] which could also be useful to test the
prediction discussed here.

Very recently, an optical-cavity QED platform to simulate
the BCS system has been proposed [66]. Such a setting is
also promising to observe our predictions since it allows for
a significant control of Hamiltonian parameters with long co-
herence times, as already demonstrated in related experiments
[67,68].

The BCS formalism, originally developed for super-
conductivity, also applies to weak-coupling charge- and
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spin-density waves. Therefore, our results are also relevant to
these types of order at times short enough for the energy re-
laxation process to be neglected. Integrability breaking terms
[47], residual many-body interactions, and coupling with a
bath [69] should help us to understand the thermalization of
the found dynamical phases and are an attractive topic for
further studies.

Periodically driven dynamics have been studied in Joseph-
son junction arrays with magnetic fields [70,71]. This is an
interesting platform to search for parametric resonances and
time-crystal features taking into account that such systems
present also analogies with the driven pendulum.

To conclude, we have found that the dynamical phase
diagram of a periodically driven BCS condensate is sur-
prisingly rich: it shows Arnold tongues corresponding to
parametric resonances mimicking the behavior of a verti-
cally excited pendulum. The dynamics is highly nontrivial,
showing commensurate (incommensurate) time-translational

symmetry breaking inside (outside) the Arnold tongues. This
calls for an experimental exploration of the phase diagram.
Furthermore, our findings suggest exploring potential appli-
cations in parametric amplification, frequency converters, and
sensing.
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