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Abstract We construct a broad family of thin-shell worm-
holes with circular symmetry in (2 + 1)-dimensional F(R)

theories of gravity, with constant scalar curvature R. We
study the stability of the static configurations under pertur-
bations preserving the symmetry. We present examples of
charged thin-shell wormholes which are asymptotically anti-
de Sitter at both sides of the throat. We show that stable solu-
tions are possible when suitable values of the parameters are
taken.

1 Introduction

Traversable Lorentzian wormholes [1,2] have been widely
studied in the context of General Relativity (GR) and also in
alternative models of gravity. They can represent shortcuts
in the same spacetime or connect two different universes. A
quite interesting feature is the fact that they are singularity-
free gravitational objects; moreover, wormhole throats can
replace black hole singularities in solutions within the frame-
work of some modified gravity theories (see [3,4] and refer-
ences therein).

It is well established that wormhole spacetimes within GR
always require the presence of exotic matter – which violates
at least one of the energy conditions – somewhere. This is not
necessarily the case outside of GR, so it is worth examining
the possible violation of the energy conditions by worm-
holes in different theories of gravity. The so-called thin-shell
wormholes have drawn the attention of the gravitational com-
munity, since the exotic matter can be reduced to a minimal
amount and be highly confined. In addition to this, the junc-
tion procedure also allows to analyze the wormhole dynamics
by focusing on the thin shell where the two geometries are
joined [5–14]. Mathematically speaking, these wormholes
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are built by cutting and pasting two geometries at the throat
(located at the shell), where the corresponding junction con-
ditions are accomplished; a geodesically complete manifold
is obtained after the matching. This formalism is also applied,
for instance, to study thin layers of matter [15–18] around
vacuum (namely, bubbles) or black holes.

The most straightforward generalization of the Einstein-
Hilbert dynamical action raises by taking an arbitrary func-
tion F(R) of the Ricci scalar R, which is usually named F(R)

gravity [19–21]. This theory, as well as many other alterna-
tives beyond GR, tries to deal with some of the shortcomings
of GR such that the physical meaning of the spacetime sin-
gularities and the phenomena associated to the dark sector of
the matter and the energy content of the Universe. From the
very beginning, F(R) gravity has generated a broad inter-
est; hence, there are many publications in this gravitational
framework. Here, we just mention some papers related to
the study of black holes by considering constant [22–25] and
non-constant [26–28] scalar curvature, branes [29,30], and
traversable wormholes [31–35].

It is well known that the study of thin shells follows in
GR the Darmois–Israel scheme [36,37]; its counterpart in
F(R) gravity is more restrictive [38,39]. Besides the conti-
nuity of the first fundamental form at the matching hyper-
surface, for any nonlinear function F(R) the conditions also
require the continuity of the trace of the extrinsic curvature
and the continuity of the scalar curvature there, with the only
exception of quadratic F(R), in which the Ricci scalar can be
discontinuous [39]. In this last case, three new contributions
– an external scalar pressure/tension, an external energy flux
vector, and a double layer energy–momentum distribution –
emerge in addition to the standard energy–momentum ten-
sor [39,40]. The theories with the most generic Lagrangian
containing terms quadratic in the curvature [41,42] share the
main attributes with quadratic F(R). Several works can be
found within F(R) gravity where the thin-shell formalism
is applied to bubbles, layers of matter enclosing black holes
[43–45], and also in the construction of traversable worm-
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holes [46–50]. The peculiar case of pure double layers in the
quadratic F(R) model is studied in Ref. [51]. A related paper
on thin shells within F(R, T ) gravity has recently appeared
[52].

The interest of (2 + 1) spacetimes dwells in some of the
features which could throw light on conceptual issues related
to high energy situations [53], present in the context of black
hole singularities, quantum gravity, and string theory. Differ-
ent three-dimensional geometries were investigated over the
years in relation to black holes [54,55] and wormholes [56–
60]. Thin shells of matter [61] as well as thin-shell wormholes
[62–66] were also widely examined. Black hole solutions
with (2 + 1) dimensions in F(R) gravity have been found
[67–70]. In the recent article [71], thin shells of matter in
(2 + 1) dimensions within F(R) theory have been analyzed
in detail and examples of stable configurations under radial
perturbations have been found.

In this paper, we use the junction conditions in F(R)

gravity to construct circular thin-shell wormholes in (2 + 1)

dimensions. The scalar curvature R is assumed to be con-
stant. We analyze the stability of the static configurations
under perturbations that preserve the symmetry. We consider
examples of anti-de Sitter spacetimes with a conformally
invariant Maxwell field as a source. In Sects. 2 and 3, we
introduce the general formalism, while in Sect. 4 we show the
examples. Finally, in Sect. 5 we discuss the results obtained.
We adopt units such that c = G = 1, with c the speed of
light and G the gravitational constant.

2 Junction formalism in (2+ 1)-dimensional F(R)
gravity

The junction formalism allows the construction of a mani-
fold M as the result of the union of two parts M1 and M2

through a hypersurface �, which corresponds to a bound-
ary hypersurface when the matter content vanishes or to a
thin shell of matter otherwise. We begin with a brief review
of this formalism within F(R) theories in order to apply it
to a manifold M with (2+1) dimensions, so that the hyper-
surface � is one-dimensional. We denote the first funda-
mental form (also known as induced metric) on � by h1,2

μν

and the second fundamental form (or extrinsic curvature)
by K 1,2

μν , where the superscripts label each part of M. The
jump of any quantity ϒ across the hypersurface � is defined
by [ϒ] ≡ (ϒ2 − ϒ1)|� . The matching between M1 and
M2 at �, should fulfill the so-called junction conditions.
In F(R) gravity [39], the continuity of the first fundamen-
tal form inherited from both M1,2 is required as in General
Relativity

[hμν] = 0, (1)

but when F ′′′(R) �= 0 (where the prime means the derivative
with respect to R) one has also to demand two additional
conditions [39]: the continuity of the trace of the second
fundamental form,

[Kμ
μ] = 0, (2)

and the continuity of the scalar curvature

[R] = 0. (3)

In this case, the dynamical equations at the joining hypersur-
face, with Sμν the energy–momentum tensor at �, read

κSμν = −F ′(R�)[Kμν] + F ′′(R�)[ηγ ∇γ R]hμν,

nμSμν = 0, (4)

where κ = 8π and ∇ denotes the covariant derivative. When
F ′′′(R) = 0, which corresponds to quadratic F(R) = R −
2	+αR2 gravity, the continuity of the scalar curvature, given
by Eq. (3), is no longer required. Now, the field equations at
� take the form [39–41]

κSμν = −[Kμν] + 2α([nγ ∇γ R]hμν − [RKμν]),
nμSμν = 0. (5)

However, in the quadratic case, the energy–momentum ten-
sor is not the only matter contribution at �, it is also necessary
to take into account three other ones (for more details, see
[39–41]): an external energy flux vector Tμ

κTμ = −2α∇μ[R], nμTμ = 0, (6)

with ∇ the intrinsic covariant derivative on (�, hμν); an
external scalar pressure or tension T

κT = 2α[R]K γ
γ ; (7)

and a two-covariant symmetric tensor distribution Tμν

κTμν = ∇γ

(
2α[R]hμνn

γ δ�
)
, (8)

with δ� denoting the Dirac delta with support on �, having
a resemblance with the dipole distributions in classical elec-
trodynamics [39–41]. These extra contributions are required
in order to obtain a well defined energy–momentum tensor
with null divergence, which is necessary for local conserva-
tion. When R has a null jump at �, all these extra contribu-
tions vanish and there is an ordinary thin shell if Sμν �= 0.
The typical scenario in quadratic F(R) corresponds to the
existence of a double layer besides a thin shell at the joining
hypersurface.

3 Wormholes with a circular throat: construction and
stability

We are interested in metrics with circular symmetry that,
adopting the time t1,2, the radial r > 0, and the angular
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0 ≤ θ ≤ 2π coordinates, have the form

ds2 = −A1,2(r)dt
2
1,2 + A1,2(r)

−1dr2 + r2dθ2, (9)

where the subscripts label the regions at the two sides of
the matching hypersurface �, defined as a circle with radius
a. We take the outer region r ≥ a of each geometry in
order to define the manifolds M1,2. The whole manifold
M = M1 ∪M2 represents a thin-shell wormhole, with the
throat at �, where the flare-out condition is satisfied. The
radius of the throat is taken large enough to avoid the pres-
ence of event horizons – if the original manifolds have them –,
in order to obtain a traversable wormhole. InMwe adopt the
coordinates Xα

1,2 = (t1,2, r, θ), while on � we use the coor-

dinates ξ i = (τ, θ), with τ the proper time. We let the radius
a(τ ) be a function of τ , and we denote its derivative with
respect to τ by an overdot. The proper time should be the same
at both sides of �, then dt1,2/dτ = √

A1,2(a) + ȧ2/A1,2(a),
in which the free signs are fixed by requiring that the times
t1,2 and τ all run into the future. The first fundamental form
at each side of the shell is given by

h1,2
i j = g1,2

μν

∂Xμ
1,2

∂ξ i

∂Xν
1,2

∂ξ j

∣∣
∣∣∣
�

, (10)

while the second fundamental form is determined by

K 1,2
i j = −n1,2

γ

(
∂2Xγ

1,2

∂ξ i∂ξ j
+ �

γ
αβ

∂Xα
1,2

∂ξ i

∂Xβ
1,2

∂ξ j

)∣∣
∣∣∣
�

, (11)

where the unit normals (nγ nγ = 1), which are chosen to
point from M1 to M2, read1

n1,2
γ = ±

⎧
⎨

⎩

∣∣∣∣∣
gαβ

1,2
∂G

∂Xα
1,2

∂G

∂Xβ
1,2

∣∣∣∣∣

−1/2
∂G

∂Xγ
1,2

⎫
⎬

⎭

∣∣∣∣∣∣
�

, (12)

with G(r) ≡ r − a (null at �) and the upper and the lower
signs corresponding to M1 and M2, respectively. On the
hypersurface �, we prefer to work in the orthonormal basis
{eτ̂ = eτ , eθ̂

= a−1eθ }, which allows an straightforward
interpretation of the results. Then, for the general geometries
(9), the first fundamental form is h1,2

ı̂ ĵ = diag(−1, 1), the
unit normals are

n1,2
γ = ±

(

−ȧ,

√
A1,2(a) + ȧ2

A1,2(a)
, 0

)

, (13)

and the only non-null components of the extrinsic curvature
at each side of � result

K 1,2
τ̂ τ̂

= ± A′
1,2(a) + 2ä

2
√
A1,2(a) + ȧ2

,

1 Note that the unit normal nμ to � is well defined without a jump,
but for computational purposes the expressions at both sides of � are
usually given.

K 1,2
θ̂ θ̂

= ∓1

a

√
A1,2(a) + ȧ2, (14)

from which we calculate their jumps

[K τ̂ τ̂ ] = − A′
2(a) + 2ä

2
√
A2(a) + ȧ2

− A′
1(a) + 2ä

2
√
A1(a) + ȧ2

,

[K
θ̂ θ̂

] = 1

a

√
A2(a) + ȧ2 + 1

a

√
A1(a) + ȧ2. (15)

The continuity of the trace of the extrinsic curvature at the
shell, i.e. Eq. (3), gives the following equation

2ä + A′
2(a)

2
√
A2(a) + ȧ2

+ 2ä + A′
1(a)

2
√
A1(a) + ȧ2

+1

a

(√
A1(a) + ȧ2 +

√
A2(a) + ȧ2

)
= 0, (16)

which, for the static configurations with a shell radius a0,
takes the form

A′
2(a0)

2
√
A2(a0)

+ A′
1(a0)

2
√
A1(a0)

+ 1

a0

(√
A1(a0) + √

A2(a0)
)

= 0. (17)

We now have all the ingredients to find the matter content at
the matching hypersurface and then to perform the stability
analysis of the thin shell. The energy–momentum tensor in
the orthonormal basis has the form Sı̂ ĵ = diag(σ, p), where
σ is the energy density and p = p

θ̂
is the transverse pressure.

In what follows, the scalar curvature is constant in each of
the regions at the sides of the throat, then [ηγ ∇γ R] = 0,
which simplifies Eqs. (4) and (5), while the so-called [39]
brane tension λ = F ′′(R�)[ηγ ∇γ R] has a null value at �.

3.1 General F(R) gravity with [R] = 0

For an arbitrary non-quadratic F(R) theory of gravity, there
are three junction conditions which must be satisfied, that is
Eqs. (1)–(3). Then, for a constant value R0 at both sides of
the throat, from Eq. (4) we obtain the energy density and the
pressure on the shell

σ = F ′(R0)

κ

(
2ä + A′

2(a)

2
√
A2(a) + ȧ2

+ 2ä + A′
1(a)

2
√
A1(a) + ȧ2

)

, (18)

p = − F ′(R0)

aκ

(√
A2(a) + ȧ2 +

√
A1(a) + ȧ2

)
. (19)

By using the expression (16), we rewrite the energy density
as

σ = − F ′(R0)

aκ

(√
A2(a) + ȧ2 +

√
A1(a) + ȧ2

)
, (20)

so that we can relate it with the pressure by σ − p = 0.
Since the stability analysis is done with respect to the static
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configurations, we show the corresponding expressions of
the energy density and the pressure

σ0 = F ′(R0)

κ

(
A′

2(a0)

2
√
A2(a0)

+ A′
1(a0)

2
√
A1(a0)

)
, (21)

p0 = − F ′(R0)

a0κ

(√
A2(a0) + √

A1(a0)
)

. (22)

Now we have that σ0 − p0 = 0. In quadratic F(R), when
[R] = 0 all these equations are also valid with F ′(R0) =
1 + 2αR0, as it can be easily seen from Eq. (5); the extra
contributions proportional to [R] vanish in this case.

3.2 Quadratic F(R) gravity with [R] �= 0

As it is was stated in Sect. 2, the particular case of quadratic
F(R) gravity is less restricted: the condition about the conti-
nuity of the scalar curvature (3) is no longer necessary, so we
can take constant values R1 �= R2 at the sides of the throat.
Then, we get from the dynamical equations (5) for this case

σ = 1 + 2αR2

κ

(
2ä + A′

2(a)

2
√
A2(a) + ȧ2

)

+1 + 2αR1

κ

(
2ä + A′

1(a)

2
√
A1(a) + ȧ2

)

, (23)

p = −1 + 2αR2

κ

(√
A2(a) + ȧ2

a

)

−1 + 2αR1

κ

(√
A1(a) + ȧ2

a

)

. (24)

The energy–momentum tensor should be completed by
the extra contributions. Namely, the external scalar pres-
sure/tension

T = 2αR2

κ

(
2ä + A′

2(a)

2
√
A2(a) + ȧ2

+
√
A2(a) + ȧ2

a

)

+2αR1

κ

(
2ä + A′

1(a)

2
√
A1(a) + ȧ2

+
√
A1(a) + ȧ2

a

)

, (25)

from which we obtain the relation σ − p = T ; while the
external energy flux vector results Tμ = 0 and the two-
covariant symmetric tensor distribution Tμν is proportional
to (2α[R]/κ)[R]hμν . The static values of the energy density
and the pressure read

σ0 = 1 + 2αR2

κ

(
A′

2(a0)

2
√
A2(a0)

)
+ 1 + 2αR1

κ

(
A′

1(a0)

2
√
A1(a0)

)
,

(26)

p0 = −1 + 2αR2

κ

(√
A2(a0)

a0

)
− 1 + 2αR1

κ

(√
A1(a0)

a0

)
;

(27)

the extra contributions adopt the form

T0 = 2αR2

κ

(
A′

2(a0)

2
√
A2(a0)

+
√
A2(a0)

a0

)

+2αR1

κ

(
A′

1(a0)

2
√
A1(a0)

+
√
A1(a0)

a0

)
, (28)

which satisfies σ0 − p0 = T0; while T (0)
μ = 0 and T (0)

μν is
proportional to (2α[R]/κ)hμν .

3.3 Stability

In order to analyze the stability of the static circular throats,
we employ the standard potential analogy method. By using
ä = (1/2)d(ȧ2)/da, we can rewrite Eq. (16) to obtain
the equivalent equation az′(a) + z(a) = 0 where z =√
A2(a) + ȧ2 +√

A1(a) + ȧ2, which represent a differential
equation for ȧ2 in terms of an effective potential ȧ2 = −V (a)

given by

V (a) = − a2 (A1(a) − A2(a))2

4a2
0

(√
A1 (a0) + √

A2 (a0)
)2

−a2
0

(√
A1 (a0) + √

A2 (a0)
)2

4a2

+ A1(a) + A2(a)

2
.

(29)

Since V (a0) = 0 and V ′(a0) = 0, the stability of the con-
figurations under radial perturbations is determined by the
positive sign of V ′′(a0), which reads

V ′′(a0) = −3
(√

A1 (a0) + √
A2 (a0)

)2

2a2
0

−
(√

A1 (a0) − √
A2 (a0)

)2

2a2
0

−
(
A′

1(a0) − A′
2(a0)

)2

2
(√

A1 (a0) + √
A2 (a0)

)2

−2 (A1(a0) − A2(a0))
(
A′

1(a0) − A′
2(a0)

)

a0
(√

A1 (a0) + √
A2 (a0)

)2

− (A1(a0) − A2(a0))
(
A′′

1(a0) − A′′
2(a0)

)

2
(√

A1 (a0) + √
A2 (a0)

)2

+ A′′
1(a0) + A′′

2(a0)

2
. (30)

Now we are in position to explore some concrete examples.
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4 Anti-de Sitter thin-shell wormholes with charge

In F(R) = R + f (R) gravity2 coupled to nonlinear electro-
dynamics, the (2 + 1)-dimensional action reads

I = 1

16π

∫
d3x

√−g
(
R + f (R) + (−FαβF

αβ
)s)

, (31)

with s an arbitrary positive nonlinearity parameter (s �= 1/2)
and FαβFαβ the Maxwell invariant, where Fμν = ∂μAν −
∂ν Aμ is the electromagnetic tensor field, being Aμ the gauge
potential. The corresponding energy–momentum tensor has
the formTμν = 1/(4π)

[−sFμγ F
γ

ν (−FαβFαβ)s−1 − (1/4)gμν

(−FαβFαβ)s
]
. In the case with s = 3/4, the conformally

invariant Maxwell field as a source is obtained [67], having
a traceless Tμν . The field equations in the metric formalism
are

Rμν(1 + f ′(R)) − 1

2
gμν(R + f (R))

+(gμν∇γ ∇γ − ∇μ∇ν) f
′(R) = 8πTμν, (32)

∂μ

(√−gFμν(−FαβF
αβ)−1/4

)
= 0. (33)

By considering a constant scalar curvature R0, these field
equations have a solution of the form (9), with the metric
function [67]

A(r) = −M −
(
2Q2

)3/4

2 (1 + f ′(R0)) r
− r2R0

6
, (34)

being M the mass and Q the charge. The only non-null inde-
pendent component of the electromagnetic field is Ftr =
Q/r2. When Q = 0, the well-known vacuum static BTZ
geometry [54,55] of General Relativity is obtained, which is
also a solution in F(R) gravity [68] with constant scalar cur-
vature. The spacetime is asymptotically anti-de Sitter since
it requires that R0 < 0. The geometry has a curvature sin-
gularity at r = 0 because the Kretschmann scalar diverges
there [67]. The trace of the field equations

R0
(
1 + f ′(R0)

) − 3

2
(R0 + f (R0)) = 0, (35)

allows to define the effective cosmological constant 	e

R0 = 3 f (R0)

2 f ′(R0) − 1
≡ 6	e. (36)

We can also define an effective charge by

Z =
(
2Q2

)3/4

2 (1 + f ′(R0))
, (37)

which can be positive or negative, depending on the sign
of F ′(R0) = 1 + f ′(R0). The effective Newton constant
Geff = G/F ′(R) = 1/F ′(R) is positive when F ′(R) > 0,

2 Here use the nomenclature in which the first term corresponds to
General Relativity.

preventing in this case the graviton to be a ghost [19–21] (see
also Ref. [72]). Note that the sign of Z is fixed by the choice of
the F(R) theory and the value R0, while the squared charge
Q2 can only modify the absolute value of Z . As usual, the
radii of the horizons are determined by solving A(r) = 0 and
taking the real and positive solutions.3 Then, there are three
possible cases:

– If Z ≥ 0, there is only a solution with rh the radius
of the event horizon; in particular, for Z = 0 (which
corresponds to a quadratic equation) one gets rh =√−6M/R0.

– If Zc < Z < 0 (Zc = (−2M/3)
√−2M/R0) there are

two solutions, one corresponds to the radius of the event
horizon rh , and the other to the radius of the inner horizon
ri < rh ; when Z = Zc both horizons merge into one.

– If Z < Zc, there are no horizons and the singularity at
the origin is naked.

In the following, we study some examples by taking into
account the metric function (34). We construct static thin-
shell wormholes with radius a0 by applying the junction for-
malism, and we analyze their stability under radial perturba-
tions which preserve the symmetry. We also determine the
kind of matter (ordinary or exotic) located at the thin-shell
by checking the weak energy condition (WEC).4

4.1 Wormhole symmetric across the throat

We proceed with the construction of a thin-shell wormhole
symmetric across the throat, that is, with equal values of the
scalar curvature R1 = R2 = R0, the mass M1 = M2 = M ,
and the charge Q1 = Q2 = Q, so that the metric functions,
given by Eq. (34), are the same A1(r) = A2(r) = A(r)
in both regions. When Z ≥ Zc = (−2M/3)

√−2M/R0,
the value of the throat radius a0 is taken larger than rh in
order to remove the region inside the horizon correspond-
ing to the original geometry, while for Z < Zc any value
a0 > 0 removes the naked singularity. The proper matching
at � requires that a0 can only take values satisfying Eq. (17).
The energy density σ0 and the pressure p0 are obtained by
replacing the metric functions in Eqs. (21) and (22), respec-
tively. A configuration is stable under radial perturbations
when the second derivative of the potential evaluated at a0,
obtained by replacing the metric functions and their deriva-
tives in Eq. (30), is positive.

Some representative results are shown in Fig. 1. In all
plots, the meshed zones represent normal matter satisfying
the weak energy condition (exotic matter otherwise) and the

3 For Z �= 0 the analytic expressions for the solutions of the cubic
equations are cumbersome, hence it is meaningless to show them here.
4 In the orthonormal basis, it takes the form σ0 ≥ 0 and σ0 + p0 ≥ 0.
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Fig. 1 Wormhole with the same value of the scalar curvature R0, mass
M , and charge Q at the sides of the throat with radius a0, in a gen-

eral F(R) theory. The parameter Z = (
2Q2

)3/4
/
(
2

(
1 + f ′(R0)

))
has

the same sign as F ′(R0) = 1 + f ′(R0) (see text). The meshed zones

represent normal matter (exotic otherwise) and the gray ones have no
physical meaning (see text). Left: M = 0.5; right: M = 1. The solid
lines correspond to the stable configurations while the dotted lines to
the unstable ones

gray areas have no physical meaning, corresponding to the
removed part of the original manifold. The solid lines corre-
spond to stable static solutions, while the dotted lines to the
unstable ones. In the left plot we have adopted M = 0.5 and
in the right one M = 1. We see that there exist two solutions
made of normal matter for a short range of

√|R0|Z , corre-
sponding to negative values of Z thus requiring the presence
of ghost fields. The solution with the largest radius is stable
while the other one is unstable under radial perturbations.
A modification in the value of the mass M only results in a
change of scale, without affecting the qualitative behavior of
the solutions.

4.2 Wormhole asymmetric in the mass and the charge

Now we construct a wormhole with the same value R1 =
R2 = R0 of the scalar curvature, but different masses M1

and M2, and charges Q1 and Q2 that can be equal or differ-
ent at the sides of the shell. The metric functions A1(r) and
A2(r) are given by Eq. (34), in which we use the definitions

Z1,2 =
(

2Q2
1,2

)3/4
/(2

(
1 + f ′(R0)

)
). In order to prevent

the presence of horizons and singularities, we take the radius
of the throat a0 larger than the horizon radii r (1)

h and r (2)
h –

when present – of the original manifolds. The solutions with
radius a0 have to satisfy the Eq. (17), and the energy density
σ0 and the pressure p0 result by replacing the metric func-
tions in Eqs. (21) and (22), respectively. A configuration is
stable under radial perturbations when the second derivative
of the potential V ′′(a0), shown in Eq. (30), is positive.

In Fig. 2 we show the most illustrative results. Again, in
all plots the meshed zones represent normal matter (exotic

otherwise) and the gray areas have no physical meaning, cor-
responding to the removed parts of the original manifolds.
The solid lines correspond to stable static solutions, while
the dotted lines to the unstable ones. In all plots the values
of the masses are M1 = 0.5 and M2 = 1, while the rela-
tionship between the charges is Z1 = ηZ2, with η taking the
values 0.4, 0.7, 1, and 1.3, respectively. We can see that in all
cases there exist two solutions made of normal matter for a
short range of negative values of the charge Z2. This means
that solutions are only possible under the presence of ghosts.
Regarding their stability, in all cases the solution with the
smallest radius is unstable, while the one with the largest one
is stable. When the value of η increases, the range of Z2 for
which the solutions exist becomes smaller. A modification
in the values of the non-null masses M1 and M2 causes a
change of scale without affecting the qualitative behavior of
the solutions.

4.3 Wormhole asymmetric in the scalar curvature

As a final example, we analyze a thin-shell wormhole
with equal values of the mass M1 = M2 = M and the
charge Q1 = Q2 = Q for both regions, but with dif-
ferent values of the scalar curvature R1 �= R2, so that
we have to work in quadratic F(R). The metric functions
A1(r) and A2(r) are then given by Eq. (34), with R1 or
R2 as appropriate. For convenience, we define the aver-
age value RA = (R1 + R2)/2, which will be useful in
the presentation of the results. We introduce the parame-
ter Z = (

2Q2
)3/4

/ (2 (1 + 2αRA)), which has the same
sign as F ′(RA) = 1 + 2αRA. With this definition, we have
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Fig. 2 Wormhole with the same value R0 of the scalar curvature, but
different values of mass M1 �= M2 at the sides of the throat with radius

a0, in any F(R) theory. The parameters Z1,2 =
(

2Q2
1,2

)3/4
/F ′(R0),

with Q1,2 the values of charge, have the same sign as F ′(R0) (see text).

The solid and dotted lines, and the style of the different zones have the
same meaning as in Fig. 1. In all plots M1 = 0.5 and M2 = 1. Upper
row, left: Z1 = 0.4Z2; upper row, right: Z1 = 0.7Z2; lower row, left:
Z1 = Z2; lower row, right: Z1 = 1.3Z2

that Z1,2 = Z (1 + 2αRA) /
(
1 + 2αR1,2

)
. As it was pre-

viously explained in detail, the throat radius a0 should be
larger than the radius of any of the horizons r (1)

h and r (2)
h

of the original manifolds in order to remove them and the
regions inside, and also satisfy Eq. (17). The energy den-
sity σ0, the pressure p0, and the external scalar pressure or
tension T0 are calculated by replacing the metric functions
in Eqs. (26), (27), and (28), respectively; while – as shown
above – there is a null external energy flux vector Tμ and

the double layer energy–momentum distribution T (0)
μν is pro-

portional to (2α[R]/κ)hμν . A configuration is stable under
radial perturbations when the second derivative of the poten-
tial, shown in Eq. (30), fulfill the inequality V ′′(a0) > 0.

Some representative results are displayed in Fig. 3. The
styles of the different regions and the lines have the same

meaning explained above. We have taken M = 1 in all plots,
while the values of the scalar curvature are R1 = 0.9RA

and R2 = 1.1RA in the upper row, and R1 = 0.8RA R2 =
1.2RA in the lower one. In the left column we have adopted
αRA = −0.1 for Z > 0 and αRA = −0.9 for Z < 0;
while in the right one the values are αRA = −0.2 for Z > 0
and αRA = −0.8 for Z < 0. In the plots, we find two
solutions for a short range of negative values of

√|RA|Z , the
one with the largest radius is stable under radial perturbations
while the other is unstable; both of them are made of normal
matter with the presence of ghost fields. We can also see that
the larger the absolute value of the difference between the
scalar curvature R1 and R2 across the throat, the smaller the
range of values of

√|RA|Z where these solutions exist. A
similar behavior can be seen when increasing the difference
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Fig. 3 Wormhole with different values R1 �= R2 of the scalar curva-
ture, and the same values of mass M and charge Q, at the sides of the
throat with radius a0, only in quadratic F(R) theory. The parameter

Z = (
2Q2

)3/4
/ (2 (1 + 2αRA)), with RA = (R1 + R2)/2, has the

same sign as F ′(RA) = 1 + 2αRA (see text). The solid and dotted

lines, and the style of the different zones have the same meaning as in
Fig. 1. In all plots M = 1. Upper row: R1 = 0.9RA and R2 = 1.1RA;
lower row: R1 = 0.8RA and R2 = 1.2RA. Left column: αRA = −0.1
for Z > 0 and αRA = −0.9 for Z < 0; right column: αRA = −0.2 for
Z > 0 and αRA = −0.8 for Z < 0

between the values of the theory parameter α at the sides
of the shell, which reduces the range of values of

√|RA|Z
where the solutions can be found. A variation in the mass M ,
not illustrated in the figure for brevity, leads again only to a
scale change.

5 Discussion

In this work, we have presented a wide class of (2+1)-
dimensional thin-shell wormholes with circular symmetry,
within the framework of F(R) theories of gravity with con-
stant scalar curvature R. We have analyzed the matter con-
tent at the throat where the thin shell is located and we have

studied the stability of the static configurations under pertur-
bations preserving the symmetry.

We have considered three examples of wormholes in F(R)

gravity coupled to conformally invariant nonlinear electro-
dynamics, which are asymptotically anti-de Sitter at both
sides of the throat. In the first example, the spacetime is
symmetric across the throat, in the second one is asymmetric
in the mass and the charge, and in the third one – only in
quadratic F(R) – is asymmetric in the scalar curvature. We
have obtained that, in all cases, solutions are present only
for negative values of F ′(R), which means that the presence
of ghost fields is always required. In the first example, for
symmetric wormholes with fixed (negative) scalar curvature
R0, we have found two solutions made of normal matter –
satisfying WEC – for a short range of the squared charge
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Q2. The solution with the largest radius is stable while the
other is unstable under radial perturbations. Any change in
the mass M is reflected as a change of scale conserving the
general behavior of the solutions. In the second example, cor-
responding to the wormhole with the same scalar curvature
R0 at both sides of the shell but asymmetric in the mass and
the charge, we have also found two solutions with normal
matter having the same stability characteristics displayed in
the symmetric case. Adopting M1 < M2, if we increase the
ratio Q2

1/Q2
2, the solutions exist for a smaller range of values

of charge. Instead, when we modify the masses (maintain-
ing that M1 < M2) we only see a change of scale without
altering the qualitative behavior of the solutions. Finally, in
the third example where the wormhole is only asymmetric in
the scalar curvature, there are two solutions made of normal
matter, with the same stability behavior as in previous exam-
ples. When the absolute value of the difference between the
constant (negative) scalar curvatures R1 and R2 of the two
regions grows, the range of Q2 where these solutions exist
becomes smaller. Analogous behavior can be observed when
we decrease the value of the quadratic parameter α of the the-
ory; as it happens with the symmetric case, any change in M
results in a change of scale.

Summarizing, we can say that in our examples of symmet-
ric and asymmetric wormholes across the throat – whether
we consider general theories or only quadratic ones –, a pair
of solutions, made of normal matter but requiring the pres-
ence of ghost fields, exists for a certain set of the parameters
of the theory. We have found that under radial perturbations
one of these solutions is stable while the other is unstable.

Acknowledgements This work has been supported by CONICET and
Universidad de Buenos Aires. C. B. thanks the partial support of the
John Templeton Foundation.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
work in which no experimental data were used.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988)
2. M. Visser, Lorentzian Wormholes (AIP Press, New York, 1996)
3. C. Bejarano, G.J. Olmo, D. Rubiera-Garcia, Phys. Rev. D 95,

064043 (2017)
4. C. Bejarano, F.S.N. Lobo, G.J. Olmo, D. Rubiera-Garcia, Eur. Phys.

J. C 77, 776 (2017)
5. E. Poisson, M. Visser, Phys. Rev. D 52, 7318 (1995)
6. E.F. Eiroa, G.E. Romero, Gen. Relativ. Gravit. 36, 651 (2004)
7. E.F. Eiroa, Phys. Rev. D 78, 024018 (2008)
8. N. Montelongo Garcia, F.S.N. Lobo, M. Visser, Phys. Rev. D 86,

044026 (2012)
9. S.D. Forghani, S. Habib Mazharimousavi, M. Halilsoy, Eur. Phys.

J. C 78, 469 (2018)
10. T. Berry, F.S.N. Lobo, A. Simpson, M. Visser, Phys. Rev. D 102,

064054 (2020)
11. E.F. Eiroa, C. Simeone, Phys. Rev. D 81, 084022 (2010) [Erratum-

ibid. 90, 089906 (2014)]
12. S. Habib Mazharimousavi, M. Halilsoy, Z. Amirabi, Phys. Rev. D

89, 084003 (2014)
13. E.F. Eiroa, E. Rubín de Celis, C. Simeone, Eur. Phys. J. C 79, 272

(2019)
14. S.D. Forghani, S. Habib Mazharimousavi, M. Halilsoy, J. Cosmol.

Astropart. Phys. 10, 067 (2019)
15. P.R. Brady, J. Louko, E. Poisson, Phys. Rev. D 44, 1891 (1991)
16. M. Ishak, K. Lake, Phys. Rev. D 65, 044011 (2002)
17. F.S.N. Lobo, P. Crawford, Class. Quantum Gravity 22, 4869 (2005)
18. E.F. Eiroa, C. Simeone, Phys. Rev. D 83, 104009 (2011)
19. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)
20. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)
21. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep.692, 1 (2017)
22. T. Multamäki, I. Vilja, Phys. Rev. D 74, 064022 (2006)
23. S. Capozziello, A. Stabile, A. Troisi, Class. Quantum Gravity 25,

085004 (2008)
24. A. de la Cruz-Dombriz, A. Dobado, A.L. Maroto, Phys. Rev. D 80,

124011 (2009) [Erratum-ibid. 83, 029903 (2011)]
25. T. Moon, Y.S. Myung, E.J. Son, Gen. Relativ. Gravit. 43, 3079

(2011)
26. L. Sebastiani, S. Zerbini, Eur. Phys. J. C 71, 1591 (2011)
27. S. Habib Mazharimousavi, M. Halilsoy, T. Tahamtan, Eur. Phys. J.

C 72, 1851 (2012)
28. E. Elizalde, G.G.L. Nashed, S. Nojiri, S.D. Odintsov, Eur. Phys. J.

C 80, 109 (2020)
29. S. Chakraborty, S. SenGupta, Class. Quantum Gravity 33, 225001

(2016)
30. N. Dimakis, A. Giacomini, A. Paliathanasis, Phys. Lett. B 777, 361

(2018)
31. A. DeBenedictis, D. Horvat, Gen. Relativ. Gravit. 44, 2711 (2012)
32. T. Harko, F.S.N. Lobo, M.K. Mak, S.V. Sushkov, Phys. Rev. D 87,

067504 (2013)
33. J.L. Rosa, J.P.S. Lemos, F.S.N. Lobo, Phys. Rev. D 98, 064054

(2018)
34. H. Golchin, M.R. Mehdizadeh, Eur. Phys. J. C 79, 777 (2019)
35. F.S.N. Lobo, G.J. Olmo, E. Orazi, D. Rubiera-Garcia, A. Rustam,

Phys. Rev. D 102, 104012 (2020)
36. G. Darmois, Mémorial des Sciences Mathématiques, Fascicule

XXV, Chap. VV (Gauthier-Villars, Paris, 1927)
37. W. Israel, Nuovo Cimento B 44, 1 (1966) [Erratum-ibid. 48, 463

(1967)]
38. N. Deruelle, M. Sasaki, Y. Sendouda, Prog. Theor. Phys. 119, 237

(2008)
39. J.M.M. Senovilla, Phys. Rev. D 88, 064015 (2013)
40. J.M.M. Senovilla, Class. Quantum Gravity 31, 072002 (2014)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  668 Page 10 of 10 Eur. Phys. J. C           (2021) 81:668 

41. B. Reina, J.M.M. Senovilla, R. Vera, Class. Quantum Gravity 33,
105008 (2016)

42. V.A. Berezin, V.I. Dokuchaev, Y.N. Eroshenko, A.L. Smirnov,
Class. Quantum Gravity 38, 045014 (2021)

43. E.F. Eiroa, G. Figueroa-Aguirre, Eur. Phys. J. C 78, 54 (2018)
44. E.F. Eiroa, G. Figueroa-Aguirre, Eur. Phys. J. C 79, 171 (2019)
45. E.F. Eiroa, G. Figueroa-Aguirre, Eur. Phys. J. Plus 135, 774 (2020)
46. E.F. Eiroa, G. Figueroa-Aguirre, Eur. Phys. J. C 76, 132 (2016)
47. E.F. Eiroa, G. Figueroa-Aguirre, Phys. Rev. D 94, 044016 (2016)
48. M. Zaeem-ul-Haq Bhatti, A. Anwar, S. Ashraf, Mod. Phys. Lett.

A 32, 1750111 (2017)
49. S. Habib Mazharimousavi, Eur. Phys. J. C 78, 612 (2018)
50. S. Habib Mazharimousavi, M. Halilsoy, K. Kianfar, Eur. Phys. J.

Plus 135, 440 (2020)
51. E.F. Eiroa, G. Figueroa-Aguirre, J.M.M. Senovilla, Phys. Rev. D

95, 124021 (2017)
52. J.L. Rosa, Phys. Rev. D 103, 104069 (2021)
53. S. Carlip, Living Rev. Relativ. 8, 1 (2005)
54. M. Bañados, C. Teitelboim, J. Zanelli, Phys. Rev. Lett. 69, 1849

(1992)
55. M. Bañados, M. Henneaux, C. Teitelboim, J. Zanelli, Phys. Rev. D

48, 1506 (1993)
56. G.P. Perry, R.B. Mann, Gen. Relativ. Gravit. 24, 305 (1992)
57. S.W. Kim, H.J. Lee, S.K. Kim, J. Yang, Phys. Lett. A 183, 359

(1993)
58. M.S.R. Delgaty, R.B. Mann, Int. J. Mod. Phys. D 4, 231 (1995)

59. W.T. Kim, J.J. Oh, M.S. Yoon, Phys. Rev. D 70, 044006 (2004)
60. M. Jamil, M.U. Farooq, Int. J. Theor. Phys. 49, 835 (2010)
61. E.F. Eiroa, C. Simeone, Phys. Rev. D 87, 064041 (2013)
62. F. Rahaman, A. Banerjee, I. Radinschi, Int. J. Theor. Phys. 51, 1680

(2012)
63. A. Banerjee, Int. J. Theor. Phys. 52, 2943 (2013)
64. C. Bejarano, E.F. Eiroa, C. Simeone, Eur. Phys. J. C74, 3015 (2014)
65. S. Habib Mazharimousavi, M. Halilsoy, Eur. Phys. J. C 75, 81

(2015)
66. P. Bhar, A. Banerjee, Int. J. Mod. Phys. D 24, 1550034 (2015)
67. S.H. Hendi, B. Eslam Panah, R. Saffari, Int. J. Mod. Phys. D 23,

1450088 (2014)
68. S.H. Hendi, Int. J. Theor. Phys. 53, 4170 (2014)
69. S.H. Hendi, R. Ramezani-Arani, E. Rahimi, Phys. Lett. B 805,

135436 (2020)
70. T. Karakasis, E. Papantonopoulos, Z.-Y. Tang, B. Wang, Phys. Rev.

D 103, 064063 (2021)
71. E.F. Eiroa, G. Figueroa-Aguirre, Phys. Rev. D 103, 044011 (2021)
72. K.A. Bronnikov, M.V. Skvortsova, A.A. Starobinsky, Gravit. Cos-

mol. 16, 216 (2010)

123


	Thin-shell wormholes in (2+1)-dimensional F(R) theories
	Abstract 
	1 Introduction
	2 Junction formalism in (2+1)-dimensional F(R) gravity
	3 Wormholes with a circular throat: construction and stability
	3.1 General F(R) gravity with [R]=0
	3.2 Quadratic F(R) gravity with [R]neq0
	3.3 Stability

	4 Anti-de Sitter thin-shell wormholes with charge
	4.1 Wormhole symmetric across the throat
	4.2 Wormhole asymmetric in the mass and the charge
	4.3 Wormhole asymmetric in the scalar curvature

	5 Discussion
	Acknowledgements
	References




