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1 Introduction

Lie algebras are vector spaces equipped with an antisymmetric bracket satisfying the Ja-
cobi identity. Many interesting physical theories can be cast in this language, but others
require a suitable generalization of this program. This is the case of Double Field Theory
(DFT)1 [1–7], a proposal to incorporate T-duality as a symmetry of a field theory, since it
contains a non-trivial Jacobiator and therefore satisfies the Jacobi identity up to homotopy.
For this reason its algebraic structure requires a set of brackets defined on a graded vector
space satisfying a generalized notion of the Jacobi identities. Such structures are known
as L∞ algebras and were initially described in the context of closed string field theory [11]
and, in the mathematics literature, in topology [12–14].

One way of organizing the algebraic structure of DFT in an L∞ structure turns from
noticing that the Courant algebroids can be cast in this language [15], as well as their
duality covariant counterparts [16–18]. Moreover, when dynamics is taken into account
the full DFT, written in the generalized metric approach, also fit in an L∞ structure, as
described in [19, 20].

1For reviews check [8–10] and references therein.
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In this work we are interested in Gauged Double Field Theory (GDFT) [21–23] with
O(D,D + n) as global duality group, where n is the dimension of a gauge group. This
formalism is a generalization of DFT and requires a frame [24] or flux formalism [25] in
order to introduce the generalized version of the structure constants fMNP . Additionally,
the generalized Lie derivative acting on a generic vector VM with M = 0, . . . , 2D − 1 + n

is consistently deformed,
L̂ξVM = LξVM + fMNP ξ

NV P , (1.1)

and the closure is given by a deformed bracket

[ξ1, ξ2]M(Cf ) = 2ξP[1∂P ξ
M
2] − ξ

N
[1 ∂

Mξ2]N + fPQ
MξP1 ξ

Q
2 , (1.2)

which reduces to the C-bracket when the structure constants vanish. As expected, the
Jacobiator is also deformed

J(ξ1, ξ2, ξ3)M = 3
2∂

M
(
ξN[1 ξ

P
2 ∂Nξ3]P + 1

3fNPQξ
N
1 ξ

P
2 ξ

Q
3

)
. (1.3)

The inclusion of the generalized frame/fluxes introduces a double Lorentz symmetry given
by O(D−1, 1)L×O(1, D−1+n)R. From a L∞ point of view all these new ingredients enrich
the algebraic structure of DFT or, in other words, define the algebraic structure of GDFT.

The products related to the dynamics of the theory can be cast in a closed form if we
restrict our study to a family of theories given by the generalized Kerr-Schild ansatz. This
ansatz was introduced in the context of DFT in [26], extended to heterotic DFT in [27]
and [28], and further explore in the context of duality covariant theories in [29–31]. In this
ansatz the perturbation of the generalized exact frame is given by

EMA = EM
A + 1

2κEM
BKBK̄

A ,

EMA = EM
A − 1

2κEM
BK̄BK

A , (1.4)

where KA and K̄A are a pair of generalized null vectors,

KAK
A = K̄AK̄

A = 0 , (1.5)

and κ in (1.4) is an order parameter. We use A, A as the flat left and right projections of
the M,N indices. The vectors KA and K̄A satisfy the equivalent of a geodesic condition
in the context of DFT,

KADAK̄
B = K̄ADAK

B = 0 , (1.6)

where DA is a generalized covariant derivative. The ansatz (1.4) plus a linear expansion
for the generalized dilaton,

d = do + κf (1.7)

with KAEAf = KAEAf = 0 provide a family of exact solutions in a perturbative frame-
work. In this sense, all the non-trivial products of the L∞ structure of GDFT can be
explicitly/exactly computed, as we show. Considering a Lgauge+fields

∞ structure the theory
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can be cast in an L3 algebra, where new brackets related to the generalized structure con-
stants and the double Lorentz transformations are computed. When one also considers the
equation of motion of the fields the algebraic structure is exactly promoted to an L4 algebra.

This work is organized as follows: in section 2 we introduce GDFT in the generalized
metric/flux formulation. Here we present the generalized Kerr-Schild ansatz (GKSA) for
flat backgrounds. In section 3 we start by reviewing the way to obtain the products for a
generic L∞ algebra. Then we cast the algebraic structure of both DFT and GDFT when
the GKSA is considered. The present computations show the algebraic structure of the
fundamental charged heterotic string and (Bosonic) Enhanced Double Field Theory, as we
show in section 4. Finally in section 5 we summarize our work.

2 The generalized Kerr-Schild ansatz

2.1 The DFT approach in metric formalism

The GKSA is given by an exact and linear perturbation of the generalized background met-
ric HMN (M,N = 0, . . . , 2D− 1) and an exact perturbation of the generalized background
dilaton do. In this work we will consider linear perturbations in both fields.

The perturbation of the generalized background metric HMN is given by a pair of
generalized vectors, KM and K̄M , and an order parameter κ, such that

HMN = HMN + κ(K̄MKN +KMK̄N ) , (2.1)

while the vectors satisfy

K̄M = 1
2(ηMN +HMN )K̄N = P̄MNK̄

N ,

KM = 1
2(ηMN −HMN )KN = PMNKN , (2.2)

and the generlized null conditions,

ηMNK̄MK̄N = ηMNKMKN = ηMNK̄MKN = 0 . (2.3)

or, equivalently,

HMNK̄MK̄N = HMNKMKN = HMNK̄MKN = 0 . (2.4)

The generalized background dilaton do is perturbed in a similar way,2

d = do + κf . (2.5)

The perturbations of the GKSA satisfy the following extra conditions

K̄P∂PK
M +KP∂

MK̄P −KP∂P K̄
M = 0 ,

KM∂Mf = K̄M∂Mf = 0 , (2.6)

which play the role of generalized geodesic equations.
2We work with a linear perturbation for simplicity, i.e., f = const.. In the general case f =

∑∞
n=0 κ

nfn.
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In addition to the global O(D,D) symmetry, the principle action of DFT is invariant
under generalized diffeomorphisms generated infinitesimally by ξM through the generalized
Lie derivative. Acting on an arbitrary vector it reads,

LξVM = ξN∂NVM + (∂MξN − ∂NξM )VN + ω(∂NξN )VM , (2.7)

where ω is a weight constant. The generalized metric HMN and the generalized background
metric HMN are tensors with ω = 0 with respect to generalized diffeomorphisms, and
ω(e−2d) = ω(e−2do) = 1. It is straightforward to check that conditions (2.6) are covariant
under generalized diffeomorphism transformations.

The Lagrangian of DFT is defined as,

LDFT = e−2d
(1

8H
MN∂MHKL∂NHKL −

1
2H

MN∂NHKL∂LHMK

+4HMN∂Md∂Nd− 2∂MHMN∂Nd

)
, (2.8)

while the equations of motion can be written in terms of generalized curvatures,

RPQ = PPM P̄QN
(1

8∂MH
KL∂NHKL −

1
4(∂L − 2(∂Ld))(HLK∂KHMN ) + 2∂M∂Nd

−1
2∂(M |HKL∂LH|N)K + 1

2(∂L − 2(∂Ld))(HKL∂(MHN)K +HK (M |∂KHL|N))
)

= 0 , (2.9)

and

R = 1
8H

MN∂MHKL∂NHKL −
1
2H

MN∂NHKL∂LHMK + 4HMN∂M∂Nd

+4∂MHMN∂Nd− 4HMN∂Md∂Nd− ∂M∂NHMN = 0 . (2.10)

2.2 Extension to GDFT in flux formalism

The ansatz (2.1) and (2.5) are powerful tools to work pertubatively since the generalized
null and geodesic conditions provide finite contributions to the action principle and the
equations of motion. Interestingly enough (2.1) admits an extension to the flux formu-
lation of DFT, which is a mandatory step to consider a GDFT. In this case we consider
perturbations of the form,

EMA = EM
A + 1

2κEM
BKBK̄

A ,

EMA = EM
A − 1

2κEM
BK̄BK

A , (2.11)

where KA = EMAKM = EMAKM and K̄A = EMAK̄M = EMAK̄M and EMA is an
O(D,D + n)/O(D − 1, 1)L × O(1, D − 1 + n)R frame. Here A = 0, . . . , D − 1 and
A = 0, . . . , D − 1 + n are O(D − 1, 1)L and O(1, D − 1 + n)R indices, respectively. In
agreement with the previous section, we are going to consider a constant generalized frame
background, i.e., ∂MENA = 0 and a constant generalized dilaton background ∂Mdo = 0 .
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Defining ηAB and HAB as the invariant metrics of O(D − 1, 1)L × O(1, D − 1 + n)R,
we have,

ηAB = EMAη
MNENB = EMAη

MNENB , (2.12)
HAB = EMAHMNENB = EMAH

MNENB . (2.13)

The generalized fluxes take the form

FABC = 3E[A(EMB)EMC] +
√

2fMNPEMAENBEPC ,

FA =
√

2e2d∂M
(
EMAe

−2d
)
, (2.14)

where fMNP plays the role of generalized structure constants and therefore satisfy

fMNP = f[MNP ] , f[MN
RfP ]R

Q = 0 , (2.15)

and
fMN

P∂P · · · = 0 . (2.16)

The generalized Lie derivative is deformed as,

L̂ξVM = LξVM + fMNP ξ
NV P , (2.17)

and, in addition, the theory is invariant under O(D − 1, 1)L ×O(1, D − 1 + n)R or double
Lorentz transformations,

δΓV
A = V BΓBA , (2.18)

where V A is a generic vector and ΓAB = −ΓBA an arbitrary parameter. The previous
transformations close with the following parameters

ξM12 = [ξ1, ξ2]M(Cf ) , (2.19)

Γ12AB = 2ξP[1∂PΓ2]AB − 2Γ[1A
CΓ2]CB , (2.20)

where the Cf -bracket is a deformation of the C-bracket given by

[ξ1, ξ2]M(Cf ) = 2ξP[1∂P ξ
M
2] − ξ

N
[1 ∂

Mξ2]N + fPQ
MξP1 ξ

Q
2 , (2.21)

where (2.16) is required for consistency.
A flat covariant derivative acting on a generic vector is given by

DAVB = EAVB +WAB
CVC , (2.22)

where EA =
√

2EMA∂M . The covariant derivative as well as the flat derivative can also be
defined for background fields in a similar fashion. In (2.22) WAB

C is the generalized spin
connection, which is partially identified with the generalized fluxes according to

W[ABC] = −1
3FABC , (2.23)

WBA
B = −FA , (2.24)
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in order to have, on the one hand, frame compatibility under covariant derivation and, on
the other, partial integration with respect to the dilaton density, i.e.,∫

e−2dVDAV A = −
∫
e−2dV ADAV . (2.25)

Considering the flat projectors as PAB = 1
2ηAB −

1
2HAB and P̄AB = 1

2ηAB + 1
2HAB, and

the notation
VA = VA + VA = PA

BVB + P̄A
BVB , (2.26)

the generalized curvatures (2.9) and (2.10) are rewritten as

R = 2EAFA + FAFA −
1
6FABCF

ABC − 1
2FABCF

ABC , (2.27)

RAB = EAFB − ECFAB
C + FCDAF

D
B
C −FCFAB

C . (2.28)

while the relevant projections of the fluxes are written in terms of KA and K̄Ā in the
following way,

FABC =
√

2fMNP

(
EM

AE
N

BE
P

C−
1
2κKAKBE

MBEN
BE

P
C−κEM

AK[B|KCE
NCEP

|C]

)
,

FABC = κ
(
K̄ [CDB]KA+KAE[BK̄C]

)
+
√

2fMNP

(
EM

AE
N

BE
P

C−
1
2κKAK̄DE

MDEN
BE

P
C

)
,

FABC = −κ
(
K[CDB]K̄A+K̄AE[BKC]

)
+
√

2fMNP

(
EM

AE
N

BE
P

C+1
2κK̄AKDE

MDEN
BE

P
C

)
,

FA = −1
2κ
(

(EB̄K̄
B)KA+(EBK

A)K̄B+4EAf
)
. (2.29)

The flat version of the null conditions reads

KAK
A = K̄AK̄

A = 0 , (2.30)

and the flat geodesic conditions now contain a contribution related to the generalized
structure constants,

KAEAK̄
C +
√

2KAK̄BfMPQE
M
AE

P
BE

QC = 0 , (2.31)

K̄AEAK
C +
√

2K̄AKBfMPQE
M
AE

P
BE

QC = 0 , (2.32)

KAEAf = K̄AEAf = 0 . (2.33)

3 L∞ algebras

In this section we start by reviewing how to fit DFT in an L∞ algebra and then we show the
extension to GDFT. We always consider the GKSA in order to obtain closed expressions
when dynamics is taken into account and we dedicate next section to discuss about the
family of theories that can be described within this approach.
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3.1 Basics

Let us consider a vector graded space X which is the direct sum of vector spaces Xn, each
of which has degree n

X =
⊕
n

Xn , n ∈ Z . (3.1)

We will denote by x an element of X with definite degree, i.e, x ∈ Xp for some fixed p.
We consider multilinear products `k

`k : X⊗k → X , (3.2)

with degree given by

deg(`k(x1, x2, . . . , xk)) = k − 2 +
k∑
i=1

deg(xi) . (3.3)

For a permutation σ of k labels we have

`k(xσ(1), . . . , xσ(k)) = (−1)σε(σ;x) `k(x1, . . . , xk) . (3.4)

The (−1)σ factor gives a plus or minus sign if the permutation is even or odd, respectively.
The ε(σ;x) factor is the Koszul sign. For a graded commutative algebra Λ(x1, x2, · · · ) with

xi ∧ xj = (−1)deg(xi)deg(xj) xj ∧ xi , ∀i, j , (3.5)

the Koszul sign for a general permutation is given by

x1 ∧ . . . ∧ xk = ε(σ;x) xσ(1) ∧ . . . ∧ xσ(k) . (3.6)

It is convenient to abuse with the notation in the following way

(−1)deg(xi)deg(xj) ≡ (−1)xixj . (3.7)

The L∞ relations are labeled by a positive integer n given by the number of inputs.
Explicitly they are∑
i+j=n+1

(−1)i(j−1)∑
σ

(−1)σε(σ;x) `j
(
`i(xσ(1) , . . . , xσ(i)) , xσ(i+1), . . . xσ(n)

)
= 0 . (3.8)

The sum over σ is a sum over “unshuffles”, it includes only the terms which satisfy

σ(1) < · · · < σ(i) , σ(i+ 1) < · · · < σ(n) . (3.9)

It is common to write these relations as∑
i+j=n+1

(−1)i(j−1)`j `i = 0 , (3.10)

– 7 –
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such that

n = 1 0 = `1`1 (3.11)
n = 2 0 = `1`2 − `2`1 (3.12)
n = 3 0 = `1`3 + `2`2 + `3`1 (3.13)
n = 4 0 = `1`4 − `2`3 + `3`2 − `4`1 , . . . (3.14)

For instance, the n = 3 case is given by

0=`2(`2(x1,x2),x3)+(−1)(x1+x2)x3`2(`2(x3,x1),x2)+(−1)(x2+x3)x1`2(`2(x2,x3),x1)
+`1(`3(x1,x2,x3))+`3(`1(x1),x2,x3)+(−1)x1`3(x1,`1(x2),x3)+(−1)x1+x2`3(x1,x2,`1(x3)).

One must assign a given degree p to gauge parameters, fields, EOM’s, etc., and so
specify to what vector subspace Xp they belong. In this work we consider that the space
of degree two contains the constants (c), the space of degree one contains functions (χ),
the space of degree zero contains the gauge parameters (ζ), the space of degree minus one
contains the fields (Ψ) and, finally, the space of degree minus two the dynamics (F). In
general the products can be read from the symmetries and dynamics of a given field theory.
The symmetry transformations define the brackets `n+1(ζ,Ψn) as follows

δξΨ =
∑
n≥0

1
n! (−1)n(n−1)/2 `n+1(ξ,Ψn) , (3.15)

where Ψk = Ψ, . . . ,Ψ︸ ︷︷ ︸
k times

. The equations of motion define the ln(Ψn) brackets as follows

F(Ψ) =
∞∑
n=1

(−1)n(n−1)/2

n! `n(Ψn) . (3.16)

Both (3.15) and (3.16) are fundamental relations that can be used to read non-trivial
products, and then extra products can appeared upon checking the L∞ relations (3.8).

3.2 GKSA-DFT as an L3 algebra

Here we follow the construction presented in [19]. In that work the authors show that
when the arguments of l2 are the DFT gauge parameters, this product is related to the
C-bracket. Moreover, the first line in (3.15) coincides with the Jacobiator and the last line
characterizes the non-trivial Jacobiator of DFT given by

J(ξ1, ξ2, ξ3)M = 3
2∂

M (ξN[1 ξ
P
2 ∂Nξ3]P ) = NM . (3.17)

Considering the following relation derived from (3.15), (3.16) and (3.8),

[δζ1 , δζ2 ]Ψ = δ−C(ζ1,ζ2)Ψ , (3.18)

– 8 –
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with C(ζ1, ζ2) ≡ `2(ζ1, ζ2) , the non-trivial products are

`1(χ) = ∂χ ∈ X0, (3.19)
`1(c) = ιc ∈ X1, (3.20)

`2(ξ1, ξ2) =
[
ξ1, ξ2

]
C
∈ X0, (3.21)

`2(ξ, χ) = 1
2ξ

K∂Kχ ∈ X1, (3.22)

`3(ξ1, ξ2, ξ3) = −N(ξ1, ξ2, ξ3) ∈ X1. (3.23)

On the other hand, considering

δξHMN = ξP∂PHMN + 2(∂(Mξ
P − ∂P ξ(M )HN)P

δξd = ξP∂Pd−
1
2∂P ξ

P , (3.24)

and (3.15), and invoking the GKSA it is straightforward to find

`1(ξ)t = 2(∂MξN − ∂NξM ) , (3.25)

`1(ξ)s = −1
2∂P ξ

P , (3.26)

`2(ξ,K)v = δξKM , (3.27)
`2(ξ, K̄)v = δξK̄M , (3.28)
`2(ξ, f)s = ξP∂P f , (3.29)

where the letters s,v,t means that we are considering the scalar, vectorial or tensorial part
of the product, respectively.

3.2.1 Pertubative DFT as an exact L3 algebra

The closed expressions for the dynamics can be easily obtained from (3.16). Considering
the equation of motion for the generalized dilaton we identify,

`1(f)s = 4κHKL∂K∂Lf (3.30)
`2(f, f)s = 8κ2HKL∂Kf∂Lf (3.31)

`2(K̄,K)s = 4κ∂K∂L(KKK̄L) , (3.32)

and, analogously, from the generalized metric equation we obtain,

`1(f)t = 4κPKM P̄LN∂MNf (3.33)

`2(K̄,K)t = κ
[
HMN∂MN

(
KKK̄L

)
− 2∂MN

(
KNK̄LPK

M −KKK̄
N P̄L

M)] (3.34)

`3(f, K̄,K)t = −6κ2
[
HMN∂Mf∂N

(
KKK̄L

)
− 2PKM∂M

(
KNK̄L∂Nf

)
+ 2P̄LM∂M

(
KKK̄

N∂Nf
) ]

, (3.35)

where ∂MN = ∂M∂N .
In order to verify the L∞ relations given by (3.8) it is necessary to only include extra

products related to the gauge transformation of the equations of motion, `2(ξ,R)s = δξR
and `2(ξ,RMN )t = δξRMN , while the remaining products are null.

– 9 –
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3.3 GKSA-GDFT as an L4 algebra

The extension to GDFT will be performed in several steps. We start by considering only
the subspaces related to the brackets algebra (X2,X1,X0), then we include the subspace of
fields X−1 and finally we include both fields and their dynamics X−2.

3.3.1 GDFT bracket algebra as an L3 algebra

We start by discussing the subalgebra corresponding to the pure gauge structure, given by
the Cf -bracket algebra (2.21) and the Double Lorentz bracket (2.20). The graded vector
space is taken to contain three spaces of fixed degree,

0 → X2 → X1 → X0

c χ ζ (3.36)

where ζ = (ξ,Λ) is a generic parameter and the above arrows define the `1 action. From
X2 to X1 the action is given by the inclusion map, while from X1 to X0 the action is given
by the partial derivative. Acting on X0 the map `1 is null since we are not considering the
fields yet. At this level the non-trivial products are

`1(χ) = ∂χ ∈ X0, (3.37)
`1(c) = ιc ∈ X1, (3.38)

`2(ξ1, ξ2) =
[
ξ1, ξ2

]
Cf
∈ X0, (3.39)

`2(ξ, χ) = 1
2ξ

K∂Kχ ∈ X1, (3.40)

`3(ξ1, ξ2, ξ3) = −No(ξ1, ξ2, ξ3)−Nf (ξ1, ξ2, ξ3) ∈ X1 , (3.41)
`2(ξ,Γ) = ξP∂PΓAB ∈ X0, (3.42)

`2(Γ1,Γ2) = −Γ1A
CΓ2CB ∈ X0 , (3.43)

where No and Nf can be computed from the Jacobiator of GDFT,

J(ξ1, ξ2, ξ3)M = 3
2∂

M
(
ξN[1 ξ

P
2 ∂Nξ3]P + 1

3fNPQξ
N
1 ξ

P
2 ξ

Q
3

)
= NM

o +NM
f . (3.44)

The bracket Γ[1A
CΓ2]CB encodes the algebra of matrix multiplication and therefore the

analogous of the Jacobiator for the Double Lorentz symmetry is trivially null. Moreover
from (3.42) it is straightforward to show the following relation,

`2(Γ, ∂χ) = ∂`2(Γ, χ) . (3.45)

Using the previous relation and the products (3.37)–(3.43) it is straightforward to show
that the relations n ≥ 4 are trivial.

3.3.2 Off-shell GDFT as extended L3 algebra

Now we extend the L3 algebra describing the Cf and the double Lorentz brackets to include
the fields and the symmetry transformations. We recall at this point that the generalized
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metric formalism has to be abandoned in order to describe the GDFT structure. The
graded vector space now contains four spaces,

0→ X2 → X1 → X0 → X−1

c χ ζ Ψ (3.46)

where Ψ = (K, K̄, f) and `nΨn = 0 with n ≥ 1 since there is no dynamics at this point.
From the symmetry transformations we read the following products,

`1(ξ)t = 2(∂MξN − ∂NξM ) , (3.47)

`1(ξ)s = −1
2∂P ξ

P , (3.48)

`2(ξ, K̄)v = L̂ξK̄A , (3.49)
`2(Γ, K̄)v = δΓK̄A , (3.50)
`2(ξ,K)v = L̂ξKA , (3.51)
`2(Γ,K)v = δΓKA , (3.52)
`2(ξ, f)s = ξP∂P f . (3.53)

The L∞ relations can be probed considering the previous list and the one from the previous
section. The relations n = 1 and n = 2 are trivial. The relation n = 3 is not trivial for the
case x1 = Ψ, x2 = ζ2, x3 = ζ3,

0 = `2(`2(Ψ, ζ2), ζ3) + `2(`2(ζ3,Ψ, ), ζ2) + `2(`2(ζ2, ζ3),Ψ) .

The previous expression can be rewritten in the following form,

[δζ2 , δζ3 ]Ψ = δζ23Ψ (3.54)

and therefore it is satisfied using the closure condition for the deformed generalized diffeo-
morphisms and double Lorentz transformations. Relations with n ≥ 4 are trivial.

3.3.3 Pertubative GDFT as an exact L4 algebra

Finally we extend the L3 algebra describing the Cf and the double Lorentz brackets algebra
to include the dynamics. The graded vector space now contains five spaces,

0→ X2 → X1 → X0 → X−1 → X−2

c χ ζ Ψ F (3.55)

where the perturbative equations of motion are related to the equations of the generalized
dilaton and the generalized metric F = (R,RAB), but considering the GKSA and the
linear perturbation for the generalized dilaton. From (3.16) we have

`1(f)s = −4κEA
(
EAf

)
(3.56)

`2(f, f)s = −8κ2EAfE
Af (3.57)

`2(K, K̄)s = 2κEA
(
KAEBK̄

B + K̄BEBKA

)
− 4κfABCf

DBCK̄AKD (3.58)

`4(K,K, K̄, K̄)s = −6κ2K̄BK̄C

[
(ECKA)EBKA − 2fBBCKAf

CACKB
]

(3.59)
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where we use the compact notation fABC = EMAE
N
BE

P
CfMNP . The previous contri-

butions come from the GDFT Lagrangian up to a cosmological term that requires a field
redefinition. Analogously, from the generalized flat Ricci scalar we read

`1(f)t = 2κ
[√

2fABCE
Cf − EA[EBf ]

]
(3.60)

`2(K, K̄)t = κ

[
2fDBCKCK̄Ef

E
DA − 2fCDAK̄

DKDf
D
BC

−2
√

2fCDA
(
−1

2KCDBK̄
D − 1

2K̄
DEBKC + 1

2KBDCK̄
D

+1
2K̄

DECKB

)
−
√

2
(
(EB̄K̄

B)KC + (EBK
C)K̄B

)
fABC

+2EC
[
−K[CDB]K̄A − K̄AE[BKC] + 1√

2
K̄AKDf

D
BC

]
+EA

[
(EC̄K̄

C)KB + (ECKB)K̄C
]

−2
√

2fDBC
(
K̄ [ADD]K

C +KCE[DK̄A]

) ]
(3.61)

`3(f,K, K̄)t = κ2
[
− 3

2
(
4ECf

) (
KBDCKA

)
+ 6KCK̄AE

C [EBf]
−6
(
ECf

)
KBDCKA + 6

(
ECf

)
KAEBKC

−6
(
ECf

)
KAECKB − 6

√
2
(
ECf

)
K̄AKDf

D
BC

]
(3.62)

`4(K,K, K̄, K̄)t = 6κ2
[(

(EBK
C)K̄B

) (
KBDCKA

)
−KCK̄AE

C
[
(EC̄K̄

C)KB

+(ECKB)K̄C
]
−KCK̄DK̄AE

D [EBKC

]
+KCK̄DKBE

D
[
DCK̄A

]
+KCK̄DE

D
[
K̄AECKB

]
+
√

2KCK̄DKAE
DK̄Df

D
BC

+KBDCK̄
DK̄ADDK

C + K̄DECKBK
CEDK̄A

+
(
(EBK

C)K̄B
)
KBDCKA −

(
(EBK

C)K̄B
)
KAEBKC

+
(
(EB̄K̄

B)KC + (EBK
C)K̄B

)
KAECKB

+
√

2
(
K̄BEBK

C
)
K̄AKDf

D
BC

]
. (3.63)

At this point we include products related to the gauge transformation of the equations
of motion, `2(ξ,R)s = δξR, and `2(ξ,RAB)t = δξRAB, `2(Λ,RAB)t = δΛRAB, where the
last contribution can be easily computed considering that each index of RAB transforms
as a projected double Lorentz vector. The products related to the transformation of the
equations of motion are required to check the n = 2 relation. In this context, the absence of
a `3(ζ1, ζ2,F) implies that the closure of the gauge algebra holds off-shell. The remaining
products are also null as can be easily verified.
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4 Applications

4.1 Fundamental charged heterotic string

The most simple theory that lies inside the family of low energy effective field theories that
can be reproduced with the GKSA is the fundamental charged heterotic string solution
in D = 10 [32]. The duality approach can be easily constructed considering the following
parametrization,

HMN =

 gµνo −gµρo Coρν −gµρo Aoρi
−gνρo Coρµ goµν + CoρµCoσνg

ρσ
o +Aoµ

iκijAoν
j Coρµg

ρσ
o Aoσi +Aoµ

jκji
−gνρo Aoρi Coρνg

ρσ
o Aoσi +Aoν

jκij κij +Aoρig
ρσ
o Aoσj

 , (4.1)

with κij a Cartan-Killing metric. Since the generalized structure constants force us to de-
scribe the theory with the generalized frame/flux formalism, compatibility with the ansatz
forces that the gauge field remains unperturbed as in [26]. Similarly, the generalized null
vectors KM and K̄M can be parametrized in terms of a pair of null vectors l and l̄ in the
following way,

KM = 1√
2

 lµ

−lµ − Coρµlρ

−Aoiρlρ

 , K̄M = 1√
2

 l̄µ

l̄µ − Coρµ l̄ρ

−Aoiρ l̄ρ

 , (4.2)

where Coµν = boµν + 1
2Aoµ

iAoνi and the null vectors are constraint by (2.33). The
parametrization of the dilaton is e−2do = √goe−2φ. In this case the perturbed solution
is given by

ds2 = 1
1 +NH(r)(−dt2 + (dx9)2) + q2H(r)

4N(1 +NH(r))2 (dt+ dx9)2 +
8∑
i=1

dxidxi , (4.3)

with H(r) a Green function and N a constant. The non-vanishing components of the two
form and gauge field are

b9t = NH(r)
1 +NH(r) , (4.4)

A1
0 = A1

9 = qH(r)
1 +NH(r) , (4.5)

with q a charge and φ = −1
2 ln(1 +NH(r)).

At the level of the symmetry transformations the algebraic structure of the duality
covariant approach of this theory is an L3 algebra, given by the transformations of KM , K̄M

and f under generalized diffeomorphisms and Double Lorentz transformations. While the
former encodes ordinary diffeomorphisms and abelian/non abelian gauge transformations
for b0µν/Aoµi, the latter transforms the flat version of the null vectors with a 10-dimensional
Lorentz parameter Λab such that,

δΛla = Λablb , δΛ l̄a = Λab l̄b , (4.6)

where la = eµo alµ and l̄a = eµo a l̄µ. The full perturbative GDFT for this solution can be
cast in an L4 algebra with κ2 contributions in the equations of motion as we showed in the
previous section.
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4.2 (Bosonic) enhanced DFT

In compactifications of the bosonic string on k-dimensional tori, the U(1)L × U(1)R sym-
metry of the Kaluza-Klein reduction gets enhanced at special points in moduli space and
there are new massless scalars transforming in the adjoint representation of the enhanced
symmetry groups. The new gauge group corresponds to GL × GR where GL = GR, and
reduces to the standard U(1)L × U(1)R outside the points that provide the enhancement.
As we mentioned, DFT incorpores T-duality as a global symmetry group and therefore
it is expected that there exists a formulation that captures these new states in a duality
covariant way [33–36]. When GL×GR has non-simple roots, it was shown in [37] that the
C-bracket can be deformed in a way that preserves the duality covariance. The deforma-
tion accounts for the cocycle factors that are necessary in the vertex representation of the
current algebra. In terms of the generalized Lie derivative this deformation is

(L̂EA
EB)M = (LEA

EB)M + Ω̂AB
CEMC , (4.7)

where Ω̂ABC vanishes if one or more indices correspond to Cartan generators and if A,B,C3

are associated with roots of the enhancement algebra, say α, β, γ, respectively,

Ω̂ABC =
{

(−1)α∗β δα+β+γ if two roots are positive,
−(−1)α∗β δα+β+γ if two roots are negative.

(4.8)

The tensor Ω̂ABC satisfies

Ω̂ABC = Ω̂[ABC] , Ω̂[AB
DΩ̂C]D

E = 0 , Ω̂ABC∂
C · · · = 0 , (4.9)

and therefore (4.8) can be easily identified with the generalized structure constants fABC
upon trivially extended O(D,D + n) → O(D + n,D + n) in (2.17). In this sense, the
algebraic structure of enhanced DFT can be cast in the L3 framework at the level of
CΩ-bracket algebra according to the results of this work.

5 Summary

In this work we show that GDFT can be cast in an L∞ structure. The presence of a
deformed generalized Lie derivative and the double Lorentz transformation enrich the al-
gebraic structure including non-trivial products to the well known L∞ structure of DFT.
The frame formalism is needed to compute the generalized fluxes, which are deformed with
a generalized version of the structure constants. At the level of the symmetry transfor-
mations the algebraic structure of GDFT is given by an L3 algebra. We also show that
the study of the dynamics can be performed in a closed form considering a GKSA for the
generalized frame and a linear perturbation for the generalized dilaton. When dynamics is
taken into account, the structure is promoted to an L4 algebra with κ2 corrections. The
present computation has direct implications in the low energy effective action principle of

3We use the same notation, but these indices A,B,C . . . must be thought as double internal index of a
generalized parallelizable manifold.

– 14 –



J
H
E
P
0
6
(
2
0
2
1
)
0
5
8

the fundamental heterotic charged string, and bosonic string compactified on an specific
internal k-dimensional torus with enhanced gauge symmetry. The latter is described by a
enhanced DFT, which can be understood as a particular case of GDFT and therefore, at
the level of the deformed bracket, the algebraic structure is an L3 algebra.
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