
On the P3-hull number of Kneser graphs

Luciano N. Grippo∗†∗∗ Adrián Pastine ‡∗∗ Pablo Torres †§∗∗

Mario Valencia-Pabon ¶∗∗ Juan C. Vera ‖∗∗

Submitted: Sep 27, 2020; Accepted: Jul 25, 2021; Published: Jul 30, 2021

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

This paper considers an infection spreading in a graph; a vertex gets infected if
at least two of its neighbors are infected. The P3-hull number is the minimum size
of a vertex set that eventually infects the whole graph.

In the specific case of the Kneser graph K(n, k), with n > 2k + 1, an infection
spreading on the family of k-sets of an n-set is considered. A set is infected whenever
two sets disjoint from it are infected. We compute the exact value of the P3-hull
number of K(n, k) for n > 2k + 1. For n = 2k + 1, using graph homomorphisms
from the Knesser graph to the Hypercube, we give lower and upper bounds.

Mathematics Subject Classifications: 05C76, 52A37, 05C85

1 Introduction

We only consider finite, simple, and undirected graphs. For a graph G = (V,E), a graph
convexity on V is a collection C of subsets of V such that ∅, V ∈ C and C is closed under
intersections. The sets in C are called convex sets and the convex hull HC(S) in C of a set
S of vertices of G is the smallest set in C containing S (see [7] and references therein).
Some natural convexities in graphs are defined by a set P of paths in G, in a way that
a set S of vertices of G is convex if and only if for every path P : v0, v1, . . . , vl ∈ P such
that v0 and vl belong to S, all vertices of P belong to S (cf. [1, 8]). If we define P as the
set of all shortest paths in G, we have the well-known geodetic convexity (see for example
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[17, 11, 25]). The monophonic convexity is defined by considering P as the set of all
induced paths of G [18, 15].

If we let P be the set of all paths of G with three vertices, we have the well-known
P3-convexity which will be studied in this paper. This convexity was introduced with
the aim of modeling the spread of a disease in a grid [5]. Since then, many articles, in
connection with this convexity, were published in the specialized literature (the reader is
referred for instance to [10, 9, 2, 16, 7]).

Given a set S ⊆ V , the P3-interval I[S] of S is formed by S, together with every vertex
outside S with at least two neighbors in S. If I[S] = S, then the set S is P3-convex. The
P3-convex hull HC(S) of S is the smallest P3-convex set containing S. In what follows, we
write H(S) instead of HC(S). The P3-convex hull H(S) can be formed from the sequence
Ip[S], where p is a nonnegative integer, I0[S] = S, I1[S] = I[S], and Ip[S] = I[Ip−1[S]],
for every p > 2. When for some p ∈ N, we have Iq[S] = Ip[S], for all q > p, then Ip[S]
is a P3-convex set. If H(S) = V (G) we say that S is a P3-hull set of G. The cardinality
hP3(G) of a minimum P3-hull set in G is called the P3-hull number of G. Centeno et al.
proved that, given a graph G and an integer k, to decide whether the P3-hull number of
G is at most k is an NP-complete problem [10]. Coelho et al. [14] proved that compute
the P3-hull number is an APX-hard problem even for bipartite graphs with maximum
degree four. Moreover, Chen [12] shown that the P3-hull number of a graph is hard to
approximate within a ratio O(2log1−ε n), for any ε > 0, unless NP ⊆ DTIME(npolylog(n)).
All these negative results motivate the study of the P3-hull number on particular families
of graphs.

In this paper we deal with the problem of computing the P3-hull number of Kneser
graphs K(n, k). Kneser graphs have a very nice structure. For an overview on this relevant
family of graphs we refer the reader to [20]. Many graph theoretic parameters have been
computed for Kneser graphs K(n, k). Some examples are the independence number [19],
the chromatic number [22], the diameter [28].

The aim of this work is twofold, first to contribute to the knowledge of Kneser graphs;
second to obtain new formulas for the hull number within a family of graphs having nice
structure.

This article is organized as follows. In Section 2 we present some preliminaries defini-
tions and concepts. Section 3 is devoted to our results. Finally, we give some concluding
remarks in Section 4.

Related work

Infection problems appear in the literature under many different names and were studied
by researches of various fields [13]. An infection problem already studied on Kneser
graphs is zero forcing (see [6]). The zero forcing problem follows the infection rule where
an infected vertex v will infect one of its neighbors w if all neighbors of v except for
w are already infected. The zero forcing number of G is the size of a smallest set S
of initially infected vertices that forces the whole graph to become infected. Another
infection problem is the bootstrap percolation on a graph (see for example, [4, 3, 23,
24, 26, 27] and references therein): an infection spreads over the vertices of a connected
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graph G following a deterministic spreading rule in such a way that an infected vertex will
remain infected forever. Given a set S ⊆ V (G) of initially infected vertices, we can build
a sequence S0 = S, S1, S2, . . . in which Si+1 is obtained from Si using such a spreading
rule. Under the r-neighbor bootstrap percolation on a graph G, the spreading rule is a
threshold rule in which Si+1 is obtained from Si by adding to it the vertices of G which
have at least r neighbors in Si. The set S0 is a percolating set of G if there exists a t
such that St = V (G). Let tr(S) be the minimum t such that St = V (G). The percolation
time of G is defined as tr(G) = max{tr(S) : S percolates G}. Notice that this infection
problem is related to graph convexities. In fact, the 2-neighbor bootstrap percolation
problem on graphs is very close to the P3-convexity on graphs. The 2-neighbor bootstrap
percolation problem has been studied by several authors. For example, the maximum
percolation time of the 2-neighbor bootstrap percolation problem has been studied by
Benevides et al. [4], Marcilon et al. [23] and Przykucki [26]. The smallest or largest size
of a percolating set with a given property has been studied by Benevides et al. [3] and
Morris [24]. Moreover, Przykucki [26] and Riedl [27] studied some problems concerning the
size of 2-percolating sets. Notice that the problem of finding a minimum size 2-percolating
set on a graph is equivalent to determining the P3-hull number of such graph. As we have
mentioned previously, the problem of computing the P3-hull number of a graph is a very
hard problem, even for bipartite graphs. Therefore, it is interesting to find infinite graph
families where such parameter can be easily determined in polynomial time.

2 Preliminaries

Given a graph G, NG(u) stands for the neighborhood of u in G. Let A and B be two
sets. Given an integer a such that 0 6 a 6 |A|,

(
A
a

)
stands for the set whose elements are

the a-element subsets of A, and
(
A
a

)(
B
b

)
the set whose elements are the subsets of A ∪ B

with a elements in A and b elements in B. Notice that
(
A
0

)
= {∅},

(
A
0

)(
B
b

)
=
(
B
b

)
, and(

A
a

)(
B
0

)
=
(
A
a

)
.

Let n be a positive integer. We denote by [n] the set {1, · · · , n}. For positive integers
n and k such that n > 2k, the Kneser graph, denoted K(n, k), has as vertex set

(
[n]
k

)
and

two vertices are adjacent if they have empty intersection.
We introduce two more graphs in order to study the P3-hull number of the Kneser

graph K(2k+1, k), the n-cube and middle levels graph. For any n ∈ Z+, the n-dimensional
hypercube (or n-cube), denoted Qn, is the graph in which the vertices are all binary n-
tuples of length n (i.e., the set {0, 1}n), and two vertices are adjacent if and only if they
differ in exactly one position. For any i ∈ {0, . . . , n} we denote by Qi

n the ith-layer of Qn,
that is, the subgraph of Qn induced by all the vertices having exactly i ones.

The middle levels graph M2k+1 is the graph whose vertices are all k-element and all
(k+ 1)-element subsets of {1, 2, . . . , 2k+ 1}, with an edge between any pair of sets where
one is a proper subset of the other. The name middle levels graph for M2k+1 comes from
the fact that it is isomorphic to the subgraph of the hypercube Q2k+1 induced by all the
vertices in the middle two layers Qk

2k+1 and Qk+1
2k+1. It is not difficult to see that M2k+1 is a
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bipartite connected graph of order 2
(
2k+1
k

)
. Johnson and Kierstead [21] provide a natural

2-to-1 graph homomorphism φ from M2k+1 to K(2k + 1, k) defined by:

φ(X) =

{
X, if |X| = k;
{1, · · · , 2k + 1} \X, if |X| = k + 1.

3 Hull number of Kneser graphs

Let k > 1 and n > 2k + 1. For i ∈ {0, . . . , k}, let F i =
(
[k+1]

i

)(
[n]\[k+1]

k−i

)
. Then {F i : i =

0, . . . , k} is a partition of the vertex set of K(n, k).

Lemma 1. Let k > 1 and n > 2k + 1. Let i, j 6 k be such that i 6 j + 1 6 i + n − 2k
and (i, j) /∈ {(1, 0), (3k + 1− n, k)}. Then, F i ⊆ I[Fk−j].

Proof. Let 0 6 i, j 6 k. Any vertex in F i has exactly di,j :=
(
k+1−i
k−j

)(
n−2k+i−1

j

)
neighbors

in Fk−j. Thus F i ⊆ I[Fk−j] if and only if di,j > 2. As di,j > 0 we analyze when it is equal
to zero or one. Notice that di,j = 0 if and only if j + 1 < i or j + 1 > i + n − 2k. Also,
di,j = 1 if and only if

(
k+1−i
k−j

)
= 1 and

(
n−2k+i−1

j

)
= 1. That is when j = k or j + 1 = i,

and j = 0 or j + 1 = i+ n− 2k.

Lemma 2. Let k > 1 and n > 2k + 1. Then F1 is a hull set of K(n, k).

Proof. First we show by induction that F t ∪Fk−t ⊂ H(F1) for t = 1, . . . , bk/2c. To do
this notice that taking i = j = k − 1 in Lemma 1 we obtain the base case t = 1. Now
assume the statement is true for t > 1. Taking i = t+ 1 and j = t in Lemma 1 we obtain
F t+1 ⊂ I[Fk−t] ⊂ H(F1). Also, taking i = j = k − t − 1 we obtain Fk−t−1 ⊂ I[F t+1]
completing the induction. To finish the proof, notice that taking i = k and j = k − 1
in Lemma 1 we obtain Fk ⊂ I[F1] and taking i = j = 0 in Lemma 1 we obtain F0 ⊂
I[Fk].

Theorem 3. Let k > 1 and n > 2k + 3. Then hP3(K(n, k)) = 2.

Proof. Let A1 = [k] and A2 = [k + 1] \ {k} and define S = {A1, A2}. We will show that
{A1, A2} is a P3-hull set of K(n, k).

Notice that A1 and A2 are neighbors of all the vertices in F0. Hence F0 ⊂ H(S).
Taking i = j = k in Lemma 1 we obtain Fk ⊂ I[F0] ⊂ H(S). Taking i = k − 1 and
j = k in Lemma 1 we obtain Fk−1 ⊂ I[F0] ⊂ H(S). Also, taking i = j = 1 we obtain
F1 ⊂ I[Fk−1] ⊂ H(S). The statement follows by Lemma 2.

Theorem 4. hP3(K(2k + 2, k)) = 3, for every k > 3.

Proof. First, we will prove that hP3(K(2k + 2, k)) > 2. Let S = {S1, S2} ⊆ K(2k + 2, k)
and let A = S1 ∪ S2. We split the proof into the only two possible cases for |S1 ∩ S2|.

Case 1: |S1 ∩ S2| = k − 1.
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Since |A| = k + 1, each vertex in
(
A
k

)
is adjacent to S1 and S2 and thus

(
A
k

)
⊆ I[S].

Symmetrically, since |A| = k + 1 and
(
A
k

)
⊆ I[S], we conclude that

(
A
k

)
⊆ I2[S]. Let C

be any vertex in K(2k + 2, k). Since |C| = k > 3, either |C ∩ A| > 2 or |C ∩ A| > 2.

Assume, without loosing generality, that |C ∩A| > 2. If C /∈
(
A
k

)
∪
(
A
k

)
, then |C ∩A| > 1.

Hence C has no neighbors in
(
A
k

)
and it has at most one neighbor in

(
A
k

)
which implies

that C /∈ H
((

A
k

)
∪
(
A
k

))
. Therefore, H(S) = I2[S] =

(
A
k

)
∪
(
A
k

)
.

Case 2: |S1 ∩ S2| = k − 2.

Let A = S1 ∪ S2. Hence, |A| = k + 2 and |A| = k. Thus,
(
A
k

)
= {A} and I[S] =

{A, S1, S2}. In addition, for each i ∈ {1, 2}, C ∩ Si 6= ∅ for every C ∈
(
A
k

)
. Therefore,

H(S) = {S1, S2, A}.

Since in both cases H({S1, S2}) is properly contained in K(2k + 2, k), we conclude
that hP3(K(2k + 2, k)) > 3.

To show hP3(K(2k+2, k)) 6 3, let S = {A1, A2, A3}, where A1 = [k], A2 = [k+1]\{k}
and A3 = {3, . . . , k + 2}. We will prove that S is a hull set of K(2k + 2, k). As in the
proof of Theorem 3, A1 and A2 are neighbors of all the vertices in F0 and hence F0 ⊂
I1({A1, A2}). Taking i = j = k in Lemma 1 we obtain Fk ⊆ H[{A1, A2}]. We have, then,
{A1, A2} ⊂ F0 ∪Fk ⊆ H[{A1, A2}]. It is not difficult to see that F0 ∪Fk = H[{A1, A2}],
as I[F0 ∪Fk] = F0 ∪Fk. Indeed, for any B ∈ F j with 0 < j < k we have B connected
to F0 ∪Fk only when j = 1 or j = k− 1. If j = 1, B has exactly one neighbor in Fk and
none in F0. Similarly, when j = k− 1, B has exactly one neighbor in F0 and none in Fk.

Let S1 =
({1,2}

1

)(
[2k+2]\[k+2]

k−1

)
. We have S1 = N(A3)∩F1. As F1 ⊂ N(H({A1, A2})) and

A3 /∈ H({A1, A2}) we have S1 ⊂ H(S). Now let S2 = {A ∈ Fk−1 : A∩{1, 2} = 1}. Every
element in S2 has a neighbor in S1; to see this, let a be the only element in A∩{1, 2} and
let b be the only element in A\ [k+ 1]. Then, there exists Y ⊆ {a, k+ 3, · · · , 2k+ 2}\{b}
with Y ∈ N(A) ∩ S1. Also, S2 ⊂ Fk−1 ⊂ N(F0). As F0 ∩S1 ⊂ F0 ∩F1 = ∅, we have
S2 ⊂ H(S).

Now we claim that F1 ⊂ N(S2). This implies that F1 ⊂ H(S), as S2 ∩Fk ⊂
Fk−1 ∩Fk = ∅ and F1 ⊂ N(Fk). Notice that by Lemma 2 we obtainH(S) = K(2k+1, k).
To show F1 ⊂ N(S2), let A ∈ F1 and let c ∈ A∩ [k+ 1]. If c ∈ {1, 2}, let a be the integer
in {1, 2} \ {c} and let X be any (k− 2)-set in

(
[k+1]\{1,2}

k−2

)
. Otherwise, let a = 1 and let X

be the only (k−2)-set in [k+ 1]\{1, 2, c}. Let b /∈ A\ [k+ 1]. Then, Y = {a}∪X ∪{b} is
a vertex in S2 having A as a neighbor. Therefore, Y ∈ N(A)∩S2 and so, A ∈ N(S2).

Remark 5. hP3(K(6, 2)) = 2.

Proof. Let A = {1, 2, 3}. Let Si = A \ {i} for each i ∈ {1, 2}. Since C ∩ Si = ∅, for

every C ∈
(
A
2

)
and for each i ∈ {1, 2},

(
A
2

)
⊆ H({S1, S2}). Hence

(
A
2

)
⊆ H({S1, S2}). If

C /∈
(
A
2

)
∪
(
A
2

)
, then |C ∩ A| = |C ∩ A| = 1. Hence C is adjacent to A \ C ∈

(
A
2

)
and

A \ C ∈
(
A
2

)
and thus C ∈ H({S1, S2}). Therefore, {S1, S2} is a hull set of K(6, 2).

the electronic journal of combinatorics 28(3) (2021), #P3.32 5



Theorem 6. hP3(K(2k + 1, k)) 6 k2 + k.

Proof. From Lemma 2, we have hP3(K(2k + 1, k)) 6 | F1 | = k2 + k.

3.1 Preservation of P3 convexity under homomorphisms and its inverses

Let G = (V,E) a graph. For any vertex u ∈ V , let NG(u) denote the subset of neighbor
vertices of u in G, that is, the set {v ∈ V : uv ∈ E}. Let G1 = (V1, E1) and G2 = (V2, E2)
be graphs. A graph homomorphism between graphs G1 and G2, denoted by φ : G1 → G2,
is a mapping φ from V (G1) to V (G2) such that φ(u) and φ(v) are adjacent in G2 whenever
u and v are adjacent in G1. A graph homomorphism φ : G1 → G2 is called locally bijective
if for all u ∈ G1 the restriction of φ to NG1(u) is a bijection between NG1(u) and NG2(φ(u)).

Lemma 7. Let φ : G1 → G2 be a locally bijective graph homomorphism. Let S ⊆ G2.
Then, φ−1(H(S)) ⊆ H(φ−1(S)).

Proof. We prove by induction on i that φ−1(I i[S]) ⊆ I i[φ−1(S)] for all i > 0. In the
base case i = 0 we actually have equality. Now assume the statement is true for i > 0.
Let u ∈ φ−1[I i+1(S)], that is φ(u) ∈ I i+1(S). If φ(u) ∈ I i[S], then by induction u ∈
I i[φ−1(S)] ⊆ I i+1[φ−1(S)]. Thus, assume φ(u) /∈ I i[S]. Then there are two neighbors v
and w of φ(u) in I i(S). By assumption, φ−1(v) ∪ φ−1(w) ⊆ I i[φ−1(S)]. As φ is locally
bijective, NG1(u) ∩ φ−1(v) = {v′} and NG1(u) ∩ φ−1(w) = {w′}, for some v′, w′ ∈ H. As
v′, w′ ∈ I i[φ−1(S)] we have u ∈ I i+1[φ−1(S)].

Lemma 8. Let φ : G1 → G2 be a locally bijective graph homomorphism. Let S ⊂ G1.
Then, φ(H(S)) ⊆ H(φ(S)).

Proof. We prove by induction on i that φ(I i[S]) ⊆ I i[φ(S)] for all i > 0. In the base
case i = 0 we actually have equality. Now assume the statement is true for i > 0.
Let u ∈ I i+1(S), we want to show φ(u) ∈ I i+1[φ(S)]. If u ∈ I i[S], then by induction
φ(u) ∈ I i[φ(S)] ⊆ I i+1[φ(S)]. Thus, assume u /∈ I i[S]. Then |NG1(u) ∩ I i[S]| > 2. As φ
is locally bijective, |NG2(φ(u)) ∩ φ(I i[S])| > 2 also, and thus u ∈ I i+1[S].

Theorem 9. Let φ : G1 → G2 be a surjective, locally bijective graph homomorphism.
Then hP3(G2) 6 hP3(G1) 6 max{|φ−1(u)| : u ∈ G2}hP3(G2).

Proof. Let S1 be hull set for G1. From Lemma 8 we obtain H(φ(S1)) ⊇ φ(H(S1)) =
φ(G1) = G2. Thus hP3(G1) = |S1| > |φ(S1)| > hP3(G2). Let S2 be hull set for G2. From
Lemma 7, H(φ−1(S2)) ⊇ φ−1(H(S2)) = φ−1(G2) = G1. Thus hP3(G1) 6 |φ−1(S2)| 6
max{|φ−1(u)| : u ∈ G2}|S2| = max{|φ−1(u)| : u ∈ G2}hP3(G2).

Corollary 10. Let k > 1 be an integer. Then, hP3(K(2k + 1, k)) 6 hP3(M2k+1) 6
2hP3(K(2k + 1, k)).

Proof. The result follows from Theorem 9 by noticing that the 2-to-1 graph homomor-
phism from M2k+1 to K(2k+ 1, k) defined at the end of Section 2 is surjective and locally
bijective.
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3.2 Lower bound of hP3(K(2k + 1, k))

In order to deduce a lower bound for hP3(K(2k+ 1, k)), we need the following preliminary
results.

Lemma 11. Let n > 1 and 1 6 i 6 n− 1 be integers. Let S be the set of vertices in the
ith-layer Qi

n of the hypercube Qn. Then, S is a P3-hull set of Qn.

Proof. Let x = (x1, · · · , xn) be any vertex in Qi−1
n . Clearly, there exist two coordi-

nates xp, xq in x, with 1 6 p < q 6 n, such that xp = xq = 0. The vertices y =
(x1, · · · , xp−1, 1, xp+1, · · · , xn) and z = (x1, · · · , xq−1, 1, xq+1, · · · , xn) are vertices in S ad-
jacent to x. In the same way, for any vertex w in Qi+1

n we can pick two different coordinates
wp and wq such that wp = wq = 1. Then we can find two vertices u and v in S adjacent
to w, where u (resp. v) is equal to w except in the pth (resp. qth) coordinate which
is equal to 0. Thus, w has at least two neighbors in S. As this property holds for any
1 6 i 6 n− 1 then, we conclude that S is a P3-hull set of the hypercube Qn.

Concerning with the P3-hull number of the n-dimensional hypercube Qn, the following
result has been obtained recently by Brešar and Valencia-Pabon [7].

Theorem 12 ([7]). For any n > 1, hP3(Qn) = dn
2
e+ 1.

Lemma 13. Let k > 1 be an integer. Then, hP3(M2k+1) > k + 2.

Proof. Let S be a P3-hull set of M2k+1. For any vertex w ∈ S let w̃ be a vertex in the
hypercube Q2k+1 such that w̃j = 1 if j ∈ w, and w̃j = 0 otherwise, for 1 6 j 6 2k+ 1. As
M2k+1 is isomorphic to the subgraph of Q2k+1 induced by the vertices in the two middle
layers Qk

2k+1 and Qk+1
2k+1 then, by Lemma 11, the set S ′ = {w̃ : w ∈ S} is a P3-hull set of

Q2k+1. Therefore, by Theorem 12, |S ′| > d2k+1
2
e+ 1 = k + 2.

Finally, by Lemma 13 and Corollary 10, we have the following theorem.

Theorem 14. Let k > 1 be an integer. Then, hP3(K(2k + 1, k)) > dk
2
e+ 1.

4 Discussion

Corollary 10 gives an upper bound for the P3-hull number of M2k+1 in terms of the P3-hull
number of K(2k + 1, k). Exact values for hP3(K(2k + 1, k)) and hP3(M2k+1), calculated
with the aid of a computer, are shown in Table 1.

So we have the following conjecture.

Conjecture 15.
⌈
hP3 (M2k+1)

2

⌉
= hP3(K(2k + 1, k)), for any integer k > 1.

The lower bound for the P3-hull number of K(2k + 1, k) obtained in Theorem 14
seems to be far from being tight. In addition to results given in Table 1, we also have
computational evidence showing that hP3(K(2k + 1, k)) is at most equal to 11, 16 and
23 for k = 5, 6 and 7, respectively. Notice that hP3(K(2k + 1, k)) seems to be equal to
k(k−1)

2
+ c, being c a constant, with c 6 2. So we have the following conjecture.

Conjecture 16. hP3(K(2k + 1, k)) = Θ(k2).
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k hP3(K(2k + 1, k)) hP3(M2k+1)
1 2 3
2 3 6
3 5 9
4 8 6 15

Table 1: Some exact results.

Acknowledgements

The first four authors acknowledge partial support of LIA SINFIN/INFINIS (CNRS-
CONICET-UBA, France–Argentina) and partial support of Regional Program MATH-
AMSUD MATH190013 (France - Argentina - Chile). The first author acknowledges par-
tial support of ANPCyT PICT 2017-1315.

References

[1] H. J. Bandelt. Graphs with intrinsic s3 convexities. J. Graph Theory, 13(2):215–228,
1989.

[2] R. M. Barbosa, C. E. M. M., M. C. Dourado, D. Rautenbach, and J. L. Szwarcfiter.
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