On the P_{3}-hull number of Kneser graphs

Luciano N. Grippo ${ }^{* * * *}$ Adrián Pastine ${ }^{\ddagger * *}$ Pablo Torres ${ }^{\dagger}{ }^{\$ * *}$
Mario Valencia-Pabon ${ }^{\mathbf{\|} * *}$ Juan C. Vera ${ }^{\| * *}$

Submitted: Sep 27, 2020; Accepted: Jul 25, 2021; Published: Jul 30, 2021
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

This paper considers an infection spreading in a graph; a vertex gets infected if at least two of its neighbors are infected. The P_{3}-hull number is the minimum size of a vertex set that eventually infects the whole graph.

In the specific case of the Kneser graph $K(n, k)$, with $n \geqslant 2 k+1$, an infection spreading on the family of k-sets of an n-set is considered. A set is infected whenever two sets disjoint from it are infected. We compute the exact value of the P_{3}-hull number of $K(n, k)$ for $n>2 k+1$. For $n=2 k+1$, using graph homomorphisms from the Knesser graph to the Hypercube, we give lower and upper bounds.

Mathematics Subject Classifications: 05C76, 52A37, 05C85

1 Introduction

We only consider finite, simple, and undirected graphs. For a graph $G=(V, E)$, a graph convexity on V is a collection \mathcal{C} of subsets of V such that $\varnothing, V \in \mathcal{C}$ and \mathcal{C} is closed under intersections. The sets in \mathcal{C} are called convex sets and the convex hull $H_{\mathcal{C}}(S)$ in \mathcal{C} of a set S of vertices of G is the smallest set in \mathcal{C} containing S (see [7] and references therein). Some natural convexities in graphs are defined by a set \mathcal{P} of paths in G, in a way that a set S of vertices of G is convex if and only if for every path $P: v_{0}, v_{1}, \ldots, v_{l} \in \mathcal{P}$ such that v_{0} and v_{l} belong to S, all vertices of P belong to S (cf. [1, 8]). If we define \mathcal{P} as the set of all shortest paths in G, we have the well-known geodetic convexity (see for example

[^0]$[17,11,25])$. The monophonic convexity is defined by considering \mathcal{P} as the set of all induced paths of $G[18,15]$.

If we let \mathcal{P} be the set of all paths of G with three vertices, we have the well-known P_{3}-convexity which will be studied in this paper. This convexity was introduced with the aim of modeling the spread of a disease in a grid [5]. Since then, many articles, in connection with this convexity, were published in the specialized literature (the reader is referred for instance to $[10,9,2,16,7]$).

Given a set $S \subseteq V$, the P_{3}-interval $I[S]$ of S is formed by S, together with every vertex outside S with at least two neighbors in S. If $I[S]=S$, then the set S is P_{3}-convex. The P_{3}-convex hull $H_{\mathcal{C}}(S)$ of S is the smallest P_{3}-convex set containing S. In what follows, we write $H(S)$ instead of $H_{\mathcal{C}}(S)$. The P_{3}-convex hull $H(S)$ can be formed from the sequence $I^{p}[S]$, where p is a nonnegative integer, $I^{0}[S]=S, I^{1}[S]=I[S]$, and $I^{p}[S]=I\left[I^{p-1}[S]\right]$, for every $p \geqslant 2$. When for some $p \in \mathbb{N}$, we have $I^{q}[S]=I^{p}[S]$, for all $q \geqslant p$, then $I^{p}[S]$ is a P_{3}-convex set. If $H(S)=V(G)$ we say that S is a P_{3}-hull set of G. The cardinality $h_{P_{3}}(G)$ of a minimum P_{3}-hull set in G is called the P_{3}-hull number of G. Centeno et al. proved that, given a graph G and an integer k, to decide whether the P_{3}-hull number of G is at most k is an NP-complete problem [10]. Coelho et al. [14] proved that compute the P_{3}-hull number is an APX-hard problem even for bipartite graphs with maximum degree four. Moreover, Chen [12] shown that the P_{3}-hull number of a graph is hard to approximate within a ratio $O\left(2^{\log ^{1-\epsilon} n}\right)$, for any $\epsilon>0$, unless NP \subseteq DTIME ($\left.n^{\text {polylog }(n)}\right)$. All these negative results motivate the study of the P_{3}-hull number on particular families of graphs.

In this paper we deal with the problem of computing the P_{3}-hull number of Kneser graphs $\mathrm{K}(n, k)$. Kneser graphs have a very nice structure. For an overview on this relevant family of graphs we refer the reader to [20]. Many graph theoretic parameters have been computed for Kneser graphs $\mathrm{K}(n, k)$. Some examples are the independence number [19], the chromatic number [22], the diameter [28].

The aim of this work is twofold, first to contribute to the knowledge of Kneser graphs; second to obtain new formulas for the hull number within a family of graphs having nice structure.

This article is organized as follows. In Section 2 we present some preliminaries definitions and concepts. Section 3 is devoted to our results. Finally, we give some concluding remarks in Section 4.

Related work

Infection problems appear in the literature under many different names and were studied by researches of various fields [13]. An infection problem already studied on Kneser graphs is zero forcing (see [6]). The zero forcing problem follows the infection rule where an infected vertex v will infect one of its neighbors w if all neighbors of v except for w are already infected. The zero forcing number of G is the size of a smallest set S of initially infected vertices that forces the whole graph to become infected. Another infection problem is the bootstrap percolation on a graph (see for example, [4, 3, 23, $24,26,27]$ and references therein): an infection spreads over the vertices of a connected
graph G following a deterministic spreading rule in such a way that an infected vertex will remain infected forever. Given a set $S \subseteq V(G)$ of initially infected vertices, we can build a sequence $S_{0}=S, S_{1}, S_{2}, \ldots$ in which S_{i+1} is obtained from S_{i} using such a spreading rule. Under the r-neighbor bootstrap percolation on a graph G, the spreading rule is a threshold rule in which S_{i+1} is obtained from S_{i} by adding to it the vertices of G which have at least r neighbors in S_{i}. The set S_{0} is a percolating set of G if there exists a t such that $S_{t}=V(G)$. Let $t_{r}(S)$ be the minimum t such that $S_{t}=V(G)$. The percolation time of G is defined as $t_{r}(G)=\max \left\{t_{r}(S): S\right.$ percolates $\left.G\right\}$. Notice that this infection problem is related to graph convexities. In fact, the 2-neighbor bootstrap percolation problem on graphs is very close to the P_{3}-convexity on graphs. The 2-neighbor bootstrap percolation problem has been studied by several authors. For example, the maximum percolation time of the 2-neighbor bootstrap percolation problem has been studied by Benevides et al. [4], Marcilon et al. [23] and Przykucki [26]. The smallest or largest size of a percolating set with a given property has been studied by Benevides et al. [3] and Morris [24]. Moreover, Przykucki [26] and Riedl [27] studied some problems concerning the size of 2-percolating sets. Notice that the problem of finding a minimum size 2-percolating set on a graph is equivalent to determining the P_{3}-hull number of such graph. As we have mentioned previously, the problem of computing the P_{3}-hull number of a graph is a very hard problem, even for bipartite graphs. Therefore, it is interesting to find infinite graph families where such parameter can be easily determined in polynomial time.

2 Preliminaries

Given a graph $G, N_{G}(u)$ stands for the neighborhood of u in G. Let A and B be two sets. Given an integer a such that $0 \leqslant a \leqslant|A|,\binom{A}{a}$ stands for the set whose elements are the a-element subsets of A, and $\binom{A}{a}\binom{B}{b}$ the set whose elements are the subsets of $A \cup B$ with a elements in A and b elements in B. Notice that $\binom{A}{0}=\{\varnothing\},\binom{A}{0}\binom{B}{b}=\binom{B}{b}$, and $\binom{A}{a}\binom{B}{0}=\binom{A}{a}$.

Let n be a positive integer. We denote by $[n]$ the set $\{1, \cdots, n\}$. For positive integers n and k such that $n \geqslant 2 k$, the Kneser graph, denoted $\mathrm{K}(n, k)$, has as vertex set $\binom{[n]}{k}$ and two vertices are adjacent if they have empty intersection.

We introduce two more graphs in order to study the P_{3}-hull number of the Kneser graph $\mathrm{K}(2 k+1, k)$, the n-cube and middle levels graph. For any $n \in \mathbb{Z}^{+}$, the n-dimensional hypercube (or n-cube), denoted Q_{n}, is the graph in which the vertices are all binary n tuples of length n (i.e., the set $\{0,1\}^{n}$), and two vertices are adjacent if and only if they differ in exactly one position. For any $i \in\{0, \ldots, n\}$ we denote by Q_{n}^{i} the i th-layer of Q_{n}, that is, the subgraph of Q_{n} induced by all the vertices having exactly i ones.

The middle levels graph $M_{2 k+1}$ is the graph whose vertices are all k-element and all $(k+1)$-element subsets of $\{1,2, \ldots, 2 k+1\}$, with an edge between any pair of sets where one is a proper subset of the other. The name middle levels graph for $M_{2 k+1}$ comes from the fact that it is isomorphic to the subgraph of the hypercube $Q_{2 k+1}$ induced by all the vertices in the middle two layers $Q_{2 k+1}^{k}$ and $Q_{2 k+1}^{k+1}$. It is not difficult to see that $M_{2 k+1}$ is a
bipartite connected graph of order $2\binom{2 k+1}{k}$. Johnson and Kierstead [21] provide a natural 2-to-1 graph homomorphism ϕ from $M_{2 k+1}$ to $\mathrm{K}(2 k+1, k)$ defined by:

$$
\phi(X)= \begin{cases}X, & \text { if }|X|=k \\ \{1, \cdots, 2 k+1\} \backslash X, & \text { if }|X|=k+1 .\end{cases}
$$

3 Hull number of Kneser graphs

Let $k \geqslant 1$ and $n \geqslant 2 k+1$. For $i \in\{0, \ldots, k\}$, let $\mathcal{F}_{i}=\binom{[k+1]}{i}\binom{[n] \backslash[k+1]}{k-i}$. Then $\left\{\mathcal{F}_{i}: i=\right.$ $0, \ldots, k\}$ is a partition of the vertex set of $\mathrm{K}(n, k)$.

Lemma 1. Let $k \geqslant 1$ and $n \geqslant 2 k+1$. Let $i, j \leqslant k$ be such that $i \leqslant j+1 \leqslant i+n-2 k$ and $(i, j) \notin\{(1,0),(3 k+1-n, k)\}$. Then, $\mathcal{F}_{i} \subseteq I\left[\mathcal{F}_{k-j}\right]$.

Proof. Let $0 \leqslant i, j \leqslant k$. Any vertex in \mathcal{F}_{i} has exactly $d_{i, j}:=\binom{k+1-i}{k-j}\binom{n-2 k+i-1}{j}$ neighbors in \mathcal{F}_{k-j}. Thus $\mathcal{F}_{i} \subseteq I\left[\mathcal{F}_{k-j}\right]$ if and only if $d_{i, j} \geqslant 2$. As $d_{i, j} \geqslant 0$ we analyze when it is equal to zero or one. Notice that $d_{i, j}=0$ if and only if $j+1<i$ or $j+1>i+n-2 k$. Also, $d_{i, j}=1$ if and only if $\binom{k+1-i}{k-j}=1$ and $\binom{n-2 k+i-1}{j}=1$. That is when $j=k$ or $j+1=i$, and $j=0$ or $j+1=i+n-2 k$.

Lemma 2. Let $k \geqslant 1$ and $n \geqslant 2 k+1$. Then \mathcal{F}_{1} is a hull set of $\mathrm{K}(n, k)$.
Proof. First we show by induction that $\mathcal{F}_{t} \cup \mathcal{F}_{k-t} \subset H\left(\mathcal{F}_{1}\right)$ for $t=1, \ldots,\lfloor k / 2\rfloor$. To do this notice that taking $i=j=k-1$ in Lemma 1 we obtain the base case $t=1$. Now assume the statement is true for $t \geqslant 1$. Taking $i=t+1$ and $j=t$ in Lemma 1 we obtain $\mathcal{F}_{t+1} \subset I\left[\mathcal{F}_{k-t}\right] \subset H\left(\mathcal{F}_{1}\right)$. Also, taking $i=j=k-t-1$ we obtain $\mathcal{F}_{k-t-1} \subset I\left[\mathcal{F}_{t+1}\right]$ completing the induction. To finish the proof, notice that taking $i=k$ and $j=k-1$ in Lemma 1 we obtain $\mathcal{F}_{k} \subset I\left[\mathcal{F}_{1}\right]$ and taking $i=j=0$ in Lemma 1 we obtain $\mathcal{F}_{0} \subset$ $I\left[\mathcal{F}_{k}\right]$.

Theorem 3. Let $k \geqslant 1$ and $n \geqslant 2 k+3$. Then $h_{P_{3}}(\mathrm{~K}(n, k))=2$.
Proof. Let $A_{1}=[k]$ and $A_{2}=[k+1] \backslash\{k\}$ and define $\mathcal{S}=\left\{A_{1}, A_{2}\right\}$. We will show that $\left\{A_{1}, A_{2}\right\}$ is a P_{3}-hull set of $\mathrm{K}(n, k)$.

Notice that A_{1} and A_{2} are neighbors of all the vertices in \mathcal{F}_{0}. Hence $\mathcal{F}_{0} \subset H(\mathcal{S})$. Taking $i=j=k$ in Lemma 1 we obtain $\mathcal{F}_{k} \subset I\left[\mathcal{F}_{0}\right] \subset H(\mathcal{S})$. Taking $i=k-1$ and $j=k$ in Lemma 1 we obtain $\mathcal{F}_{k-1} \subset I\left[\mathcal{F}_{0}\right] \subset H(\mathcal{S})$. Also, taking $i=j=1$ we obtain $\mathcal{F}_{1} \subset I\left[\mathcal{F}_{k-1}\right] \subset H(\mathcal{S})$. The statement follows by Lemma 2 .

Theorem 4. $h_{P_{3}}(\mathrm{~K}(2 k+2, k))=3$, for every $k \geqslant 3$.
Proof. First, we will prove that $h_{P_{3}}(\mathrm{~K}(2 k+2, k))>2$. Let $\mathcal{S}=\left\{S_{1}, S_{2}\right\} \subseteq \mathrm{K}(2 k+2, k)$ and let $A=S_{1} \cup S_{2}$. We split the proof into the only two possible cases for $\left|S_{1} \cap S_{2}\right|$.

Case 1: $\left|S_{1} \cap S_{2}\right|=k-1$.

Since $|A|=k+1$, each vertex in $\binom{\bar{A}}{k}$ is adjacent to S_{1} and S_{2} and thus $\binom{\bar{A}}{k} \subseteq I[\mathcal{S}]$. Symmetrically, since $|\bar{A}|=k+1$ and $\binom{\bar{A}}{k} \subseteq I[\mathcal{S}]$, we conclude that $\binom{A}{k} \subseteq I^{2}[\mathcal{S}]$. Let C be any vertex in $\mathrm{K}(2 k+2, k)$. Since $|C|=k \geqslant 3$, either $|C \cap A| \geqslant 2$ or $|C \cap \bar{A}| \geqslant 2$. Assume, without loosing generality, that $|C \cap A| \geqslant 2$. If $C \notin\binom{A}{k} \cup\binom{\bar{A}}{k}$, then $|C \cap \bar{A}| \geqslant 1$. Hence C has no neighbors in $\binom{A}{k}$ and it has at most one neighbor in $\binom{\bar{A}}{k}$ which implies that $C \notin H\left(\binom{A}{k} \cup\binom{\bar{A}}{k}\right)$. Therefore, $H(\mathcal{S})=I^{2}[\mathcal{S}]=\binom{A}{k} \cup\binom{\bar{A}}{k}$.

Case 2: $\left|S_{1} \cap S_{2}\right|=k-2$.
Let $A=S_{1} \cup S_{2}$. Hence, $|A|=k+2$ and $|\bar{A}|=k$. Thus, $\binom{\bar{A}}{k}=\{\bar{A}\}$ and $I[\mathcal{S}]=$ $\left\{\bar{A}, S_{1}, S_{2}\right\}$. In addition, for each $i \in\{1,2\}, C \cap S_{i} \neq \varnothing$ for every $C \in\binom{A}{k}$. Therefore, $H(\mathcal{S})=\left\{S_{1}, S_{2}, \bar{A}\right\}$.

Since in both cases $H\left(\left\{S_{1}, S_{2}\right\}\right)$ is properly contained in $\mathrm{K}(2 k+2, k)$, we conclude that $h_{P_{3}}(\mathrm{~K}(2 k+2, k)) \geqslant 3$.

To show $h_{P_{3}}(\mathrm{~K}(2 k+2, k)) \leqslant 3$, let $\mathcal{S}=\left\{A_{1}, A_{2}, A_{3}\right\}$, where $A_{1}=[k], A_{2}=[k+1] \backslash\{k\}$ and $A_{3}=\{3, \ldots, k+2\}$. We will prove that \mathcal{S} is a hull set of $\mathrm{K}(2 k+2, k)$. As in the proof of Theorem 3, A_{1} and A_{2} are neighbors of all the vertices in \mathcal{F}_{0} and hence $\mathcal{F}_{0} \subset$ $I^{1}\left(\left\{A_{1}, A_{2}\right\}\right)$. Taking $i=j=k$ in Lemma 1 we obtain $\mathcal{F}_{k} \subseteq H\left[\left\{A_{1}, A_{2}\right\}\right]$. We have, then, $\left\{A_{1}, A_{2}\right\} \subset \mathcal{F}_{0} \cup \mathcal{F}_{k} \subseteq H\left[\left\{A_{1}, A_{2}\right\}\right]$. It is not difficult to see that $\mathcal{F}_{0} \cup \mathcal{F}_{k}=H\left[\left\{A_{1}, A_{2}\right\}\right]$, as $I\left[\mathcal{F}_{0} \cup \mathcal{F}_{k}\right]=\mathcal{F}_{0} \cup \mathcal{F}_{k}$. Indeed, for any $B \in \mathcal{F}_{j}$ with $0<j<k$ we have B connected to $\mathcal{F}_{0} \cup \mathcal{F}_{k}$ only when $j=1$ or $j=k-1$. If $j=1, B$ has exactly one neighbor in \mathcal{F}_{k} and none in \mathcal{F}_{0}. Similarly, when $j=k-1, B$ has exactly one neighbor in \mathcal{F}_{0} and none in \mathcal{F}_{k}.

Let $\mathcal{S}_{1}=\binom{\{1,2\}}{1}\binom{[2 k+2] \backslash[k+2]}{k-1}$. We have $\mathcal{S}_{1}=N\left(A_{3}\right) \cap \mathcal{F}_{1}$. As $\mathcal{F}_{1} \subset N\left(H\left(\left\{A_{1}, A_{2}\right\}\right)\right)$ and $A_{3} \notin H\left(\left\{A_{1}, A_{2}\right\}\right)$ we have $\mathcal{S}_{1} \subset H(\mathcal{S})$. Now let $\mathcal{S}_{2}=\left\{A \in \mathcal{F}_{k-1}: A \cap\{1,2\}=1\right\}$. Every element in \mathcal{S}_{2} has a neighbor in \mathcal{S}_{1}; to see this, let a be the only element in $A \cap\{1,2\}$ and let b be the only element in $A \backslash[k+1]$. Then, there exists $Y \subseteq\{a, k+3, \cdots, 2 k+2\} \backslash\{b\}$ with $Y \in N(A) \cap \mathcal{S}_{1}$. Also, $\mathcal{S}_{2} \subset \mathcal{F}_{k-1} \subset N\left(\mathcal{F}_{0}\right)$. As $\mathcal{F}_{0} \cap \mathcal{S}_{1} \subset \mathcal{F}_{0} \cap \mathcal{F}_{1}=\varnothing$, we have $\mathcal{S}_{2} \subset H(\mathcal{S})$.

Now we claim that $\mathcal{F}_{1} \subset N\left(\mathcal{S}_{2}\right)$. This implies that $\mathcal{F}_{1} \subset H(\mathcal{S})$, as $\mathcal{S}_{2} \cap \mathcal{F}_{k} \subset$ $\mathcal{F}_{k-1} \cap \mathcal{F}_{k}=\varnothing$ and $\mathcal{F}_{1} \subset N\left(\mathcal{F}_{k}\right)$. Notice that by Lemma 2 we obtain $H(\mathcal{S})=\mathrm{K}(2 k+1, k)$. To show $\mathcal{F}_{1} \subset N\left(\mathcal{S}_{2}\right)$, let $A \in \mathcal{F}_{1}$ and let $c \in A \cap[k+1]$. If $c \in\{1,2\}$, let a be the integer in $\{1,2\} \backslash\{c\}$ and let X be any $(k-2)$-set in $\binom{[k+1] \backslash\{1,2\}}{k-2}$. Otherwise, let $a=1$ and let X be the only $(k-2)$-set in $[k+1] \backslash\{1,2, c\}$. Let $b \notin A \backslash[k+1]$. Then, $Y=\{a\} \cup X \cup\{b\}$ is a vertex in \mathcal{S}_{2} having A as a neighbor. Therefore, $Y \in N(A) \cap \mathcal{S}_{2}$ and so, $A \in N\left(\mathcal{S}_{2}\right)$.
Remark 5. $h_{P_{3}}(\mathrm{~K}(6,2))=2$.
Proof. Let $A=\{1,2,3\}$. Let $S_{i}=A \backslash\{i\}$ for each $i \in\{1,2\}$. Since $C \cap S_{i}=\varnothing$, for every $C \in\binom{\bar{A}}{2}$ and for each $i \in\{1,2\},\binom{\bar{A}}{2} \subseteq H\left(\left\{S_{1}, S_{2}\right\}\right)$. Hence $\binom{A}{2} \subseteq H\left(\left\{S_{1}, S_{2}\right\}\right)$. If $C \notin\binom{A}{2} \cup\binom{\bar{A}}{2}$, then $|C \cap A|=|C \cap \bar{A}|=1$. Hence C is adjacent to $A \backslash C \in\binom{A}{2}$ and $\bar{A} \backslash C \in\binom{\bar{A}}{2}$ and thus $C \in H\left(\left\{S_{1}, S_{2}\right\}\right)$. Therefore, $\left\{S_{1}, S_{2}\right\}$ is a hull set of $\mathrm{K}(6,2)$.

Theorem 6. $h_{P_{3}}(\mathrm{~K}(2 k+1, k)) \leqslant k^{2}+k$.
Proof. From Lemma 2, we have $h_{P_{3}}(\mathrm{~K}(2 k+1, k)) \leqslant\left|\mathcal{F}_{1}\right|=k^{2}+k$.

3.1 Preservation of P_{3} convexity under homomorphisms and its inverses

Let $G=(V, E)$ a graph. For any vertex $u \in V$, let $N_{G}(u)$ denote the subset of neighbor vertices of u in G, that is, the set $\{v \in V: u v \in E\}$. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be graphs. A graph homomorphism between graphs G_{1} and G_{2}, denoted by $\phi: G_{1} \rightarrow G_{2}$, is a mapping ϕ from $V\left(G_{1}\right)$ to $V\left(G_{2}\right)$ such that $\phi(u)$ and $\phi(v)$ are adjacent in G_{2} whenever u and v are adjacent in G_{1}. A graph homomorphism $\phi: G_{1} \rightarrow G_{2}$ is called locally bijective if for all $u \in G_{1}$ the restriction of ϕ to $N_{G_{1}}(u)$ is a bijection between $N_{G_{1}}(u)$ and $N_{G_{2}}(\phi(u))$.

Lemma 7. Let $\phi: G_{1} \rightarrow G_{2}$ be a locally bijective graph homomorphism. Let $S \subseteq G_{2}$. Then, $\phi^{-1}(H(S)) \subseteq H\left(\phi^{-1}(S)\right)$.

Proof. We prove by induction on i that $\phi^{-1}\left(I^{i}[S]\right) \subseteq I^{i}\left[\phi^{-1}(S)\right]$ for all $i \geqslant 0$. In the base case $i=0$ we actually have equality. Now assume the statement is true for $i>0$. Let $u \in \phi^{-1}\left[I^{i+1}(S)\right]$, that is $\phi(u) \in I^{i+1}(S)$. If $\phi(u) \in I^{i}[S]$, then by induction $u \in$ $I^{i}\left[\phi^{-1}(S)\right] \subseteq I^{i+1}\left[\phi^{-1}(S)\right]$. Thus, assume $\phi(u) \notin I^{i}[S]$. Then there are two neighbors v and w of $\phi(u)$ in $I^{i}(S)$. By assumption, $\phi^{-1}(v) \cup \phi^{-1}(w) \subseteq I^{i}\left[\phi^{-1}(S)\right]$. As ϕ is locally bijective, $N_{G_{1}}(u) \cap \phi^{-1}(v)=\left\{v^{\prime}\right\}$ and $N_{G_{1}}(u) \cap \phi^{-1}(w)=\left\{w^{\prime}\right\}$, for some $v^{\prime}, w^{\prime} \in H$. As $v^{\prime}, w^{\prime} \in I^{i}\left[\phi^{-1}(S)\right]$ we have $u \in I^{i+1}\left[\phi^{-1}(S)\right]$.

Lemma 8. Let $\phi: G_{1} \rightarrow G_{2}$ be a locally bijective graph homomorphism. Let $S \subset G_{1}$. Then, $\phi(H(S)) \subseteq H(\phi(S))$.
Proof. We prove by induction on i that $\phi\left(I^{i}[S]\right) \subseteq I^{i}[\phi(S)]$ for all $i \geqslant 0$. In the base case $i=0$ we actually have equality. Now assume the statement is true for $i>0$. Let $u \in I^{i+1}(S)$, we want to show $\phi(u) \in I^{i+1}[\phi(S)]$. If $u \in I^{i}[S]$, then by induction $\phi(u) \in I^{i}[\phi(S)] \subseteq I^{i+1}[\phi(S)]$. Thus, assume $u \notin I^{i}[S]$. Then $\left|N_{G_{1}}(u) \cap I^{i}[S]\right| \geqslant 2$. As ϕ is locally bijective, $\left|N_{G_{2}}(\phi(u)) \cap \phi\left(I^{i}[S]\right)\right| \geqslant 2$ also, and thus $u \in I^{i+1}[S]$.

Theorem 9. Let $\phi: G_{1} \rightarrow G_{2}$ be a surjective, locally bijective graph homomorphism. Then $h_{P_{3}}\left(G_{2}\right) \leqslant h_{P_{3}}\left(G_{1}\right) \leqslant \max \left\{\left|\phi^{-1}(u)\right|: u \in G_{2}\right\} h_{P_{3}}\left(G_{2}\right)$.

Proof. Let S_{1} be hull set for G_{1}. From Lemma 8 we obtain $H\left(\phi\left(S_{1}\right)\right) \supseteq \phi\left(H\left(S_{1}\right)\right)=$ $\phi\left(G_{1}\right)=G_{2}$. Thus $h_{P_{3}}\left(G_{1}\right)=\left|S_{1}\right| \geqslant\left|\phi\left(S_{1}\right)\right| \geqslant h_{P_{3}}\left(G_{2}\right)$. Let S_{2} be hull set for G_{2}. From Lemma 7, $H\left(\phi^{-1}\left(S_{2}\right)\right) \supseteq \phi^{-1}\left(H\left(S_{2}\right)\right)=\phi^{-1}\left(G_{2}\right)=G_{1}$. Thus $h_{P_{3}}\left(G_{1}\right) \leqslant\left|\phi^{-1}\left(S_{2}\right)\right| \leqslant$ $\max \left\{\left|\phi^{-1}(u)\right|: u \in G_{2}\right\}\left|S_{2}\right|=\max \left\{\left|\phi^{-1}(u)\right|: u \in G_{2}\right\} h_{P_{3}}\left(G_{2}\right)$.

Corollary 10. Let $k \geqslant 1$ be an integer. Then, $h_{P_{3}}(\mathrm{~K}(2 k+1, k)) \leqslant h_{P_{3}}\left(M_{2 k+1}\right) \leqslant$ $2 h_{P_{3}}(\mathrm{~K}(2 k+1, k))$.

Proof. The result follows from Theorem 9 by noticing that the 2-to- 1 graph homomorphism from $M_{2 k+1}$ to $\mathrm{K}(2 k+1, k)$ defined at the end of Section 2 is surjective and locally bijective.

3.2 Lower bound of $h_{P_{3}}(\mathrm{~K}(2 k+1, k))$

In order to deduce a lower bound for $h_{P_{3}}(\mathrm{~K}(2 k+1, k))$, we need the following preliminary results.

Lemma 11. Let $n>1$ and $1 \leqslant i \leqslant n-1$ be integers. Let S be the set of vertices in the ith-layer Q_{n}^{i} of the hypercube Q_{n}. Then, S is a P_{3}-hull set of Q_{n}.
Proof. Let $x=\left(x_{1}, \cdots, x_{n}\right)$ be any vertex in Q_{n}^{i-1}. Clearly, there exist two coordinates x_{p}, x_{q} in x, with $1 \leqslant p<q \leqslant n$, such that $x_{p}=x_{q}=0$. The vertices $y=$ $\left(x_{1}, \cdots, x_{p-1}, 1, x_{p+1}, \cdots, x_{n}\right)$ and $z=\left(x_{1}, \cdots, x_{q-1}, 1, x_{q+1}, \cdots, x_{n}\right)$ are vertices in S adjacent to x. In the same way, for any vertex w in Q_{n}^{i+1} we can pick two different coordinates w_{p} and w_{q} such that $w_{p}=w_{q}=1$. Then we can find two vertices u and v in S adjacent to w, where u (resp. v) is equal to w except in the p th (resp. q th) coordinate which is equal to 0 . Thus, w has at least two neighbors in S. As this property holds for any $1 \leqslant i \leqslant n-1$ then, we conclude that S is a P_{3}-hull set of the hypercube Q_{n}.

Concerning with the P_{3}-hull number of the n-dimensional hypercube Q_{n}, the following result has been obtained recently by Brešar and Valencia-Pabon [7].

Theorem 12 ([7]). For any $n \geqslant 1, h_{P_{3}}\left(Q_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+1$.
Lemma 13. Let $k \geqslant 1$ be an integer. Then, $h_{P_{3}}\left(M_{2 k+1}\right) \geqslant k+2$.
Proof. Let S be a P_{3}-hull set of $M_{2 k+1}$. For any vertex $w \in S$ let \tilde{w} be a vertex in the hypercube $Q_{2 k+1}$ such that $\tilde{w}_{j}=1$ if $j \in w$, and $\tilde{w}_{j}=0$ otherwise, for $1 \leqslant j \leqslant 2 k+1$. As $M_{2 k+1}$ is isomorphic to the subgraph of $Q_{2 k+1}$ induced by the vertices in the two middle layers $Q_{2 k+1}^{k}$ and $Q_{2 k+1}^{k+1}$ then, by Lemma 11, the set $S^{\prime}=\{\tilde{w}: w \in S\}$ is a P_{3}-hull set of $Q_{2 k+1}$. Therefore, by Theorem $12,\left|S^{\prime}\right| \geqslant\left\lceil\frac{2 k+1}{2}\right\rceil+1=k+2$.

Finally, by Lemma 13 and Corollary 10, we have the following theorem.
Theorem 14. Let $k \geqslant 1$ be an integer. Then, $h_{P_{3}}(K(2 k+1, k)) \geqslant\left\lceil\frac{k}{2}\right\rceil+1$.

4 Discussion

Corollary 10 gives an upper bound for the P_{3}-hull number of $M_{2 k+1}$ in terms of the P_{3}-hull number of $\mathrm{K}(2 k+1, k)$. Exact values for $h_{P_{3}}(\mathrm{~K}(2 k+1, k))$ and $h_{P_{3}}\left(M_{2 k+1}\right)$, calculated with the aid of a computer, are shown in Table 1.

So we have the following conjecture.
Conjecture 15. $\left\lceil\frac{h_{P_{3}}\left(M_{2 k+1}\right)}{2}\right\rceil=h_{P_{3}}(\mathrm{~K}(2 k+1, k))$, for any integer $k \geqslant 1$.
The lower bound for the P_{3}-hull number of $\mathrm{K}(2 k+1, k)$ obtained in Theorem 14 seems to be far from being tight. In addition to results given in Table 1, we also have computational evidence showing that $h_{P_{3}}(\mathrm{~K}(2 k+1, k))$ is at most equal to 11,16 and 23 for $k=5,6$ and 7 , respectively. Notice that $h_{P_{3}}(\mathrm{~K}(2 k+1, k))$ seems to be equal to $\frac{k(k-1)}{2}+c$, being c a constant, with $c \leqslant 2$. So we have the following conjecture.
Conjecture 16. $h_{P_{3}}(\mathrm{~K}(2 k+1, k))=\Theta\left(k^{2}\right)$.

k	$h_{P_{3}}(\mathrm{~K}(2 k+1, k))$	$h_{P_{3}}\left(M_{2 k+1}\right)$
1	2	3
2	3	6
3	5	9
4	8	$\leqslant 15$

Table 1: Some exact results.

Acknowledgements

The first four authors acknowledge partial support of LIA SINFIN/INFINIS (CNRS-CONICET-UBA, France-Argentina) and partial support of Regional Program MATHAMSUD MATH190013 (France - Argentina - Chile). The first author acknowledges partial support of ANPCyT PICT 2017-1315.

References

[1] H. J. Bandelt. Graphs with intrinsic s_{3} convexities. J. Graph Theory, 13(2):215-228, 1989.
[2] R. M. Barbosa, C. E. M. M., M. C. Dourado, D. Rautenbach, and J. L. Szwarcfiter. On the carathéodory number for the convexity of paths of order three. SIAM J. on Discrete Math., 26:929-939, 2012.
[3] F. Benevides and M. Przykucki. On slowly percolating sets of minimal size in bootstrap percolation. Electron J. Combin., 20(2), 2013, \#P46.
[4] F. Benevides, C. V., M. C. Dourado, R. M. Sampaio, and A. Silva. The maximum time of a 2-neighbour bootstrap percolation: Algorithmic aspects. European J. Combin., 48:88-99, 2015.
[5] B. Bollobás. The Art of Mathematics: Cofee Time in Memphis. Cambridge University Press, 2006.
[6] B. Brešar, T. Kos, and P. D. Torres. Grundy domination and zero forcing in Kneser graphs. Ars Math. Contemp., 17(2):419-430, 2019.
[7] B. Bresăr and M. Valencia-Pabon. On the P_{3}-hull number of Hamming graphs. Discrete Appl. Math., 282:48-52, 2020.
[8] J. Calder. Some elementary properties of interval convexities. J. London Math. Soc., 3:422-428, 1971.
[9] C. C. Centeno, S. Dantas, M. C. Dourado, D. Rautenbach, and J. L. Szwarcfiter. Convex partitions of graphs induced by paths of order three. Discrete Math. and Theoret. Comput. Sci., 12(5):175-184, 2010.
[10] C. C. Centeno, L. D. Penso, D. Rautenbach, and V. G. Pereira de Sá. Geodetic number versus hull number in P_{3}-convexity. SIAM J. on Discrete Math., 27(2):717731, 2013.
[11] M. Changat, H. M. Mulder, and G. Sierksma. Convexities related to path properties on graphs. Discrete Math., 290(2-3):117-131, 2005.
[12] N. Chen. On the approximability of influence in social networks. SIAM J. on Discrete Math., 23(3):1400-1415, 2009.
[13] M. Chopin. Optimization problems with propagation in graphs: parameterized complexity and approximation. PhD thesis, Université Paris-Dauphine, 2013.
[14] E. M. M. Cohelo, M. C. Dourado, and R. M. Sampaio. Inapproximability results for graph convexity parameters. Theoret. Comput. Sci., 600:49-58, 2015.
[15] M. C. Dourado, F. Protti, and J. L. Szwarcfiter. Complexity results related to monophonic convexity. Discrete Appl. Math., 158(12):1268-1274, 2010.
[16] M. C. Dourado, D. Rautenbach, V. Fernandes dos Santos, P. M. Schäfer, and J. L. Szwarcfiter. An upper bound on the P_{3}-Radon number. Discrete Math., 312:24332437, 2012.
[17] P. Duchet. Convexity in combinatorial structures. In Proceedings of the 14 th winter school on abstract analysis (Srní, 1986), number 14, pages 261-293, 1987.
[18] P. Duchet. Convex sets in graphs, ii. minimal path convexity. J. Comb. Theory B., 44(3):307-316, 1988.
[19] P. Erdős, C. Ko, and R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. (2), 12:313-320, 1961.
[20] C. Godsil and G. Royle. Algebraic graph theory. Springer, 2001.
[21] J. R. Johnson and H. A. Kierstead. Explicit 2-factorisations of the odd graph. Order, 21:19-27, 2004.
[22] L. Lovász. Kneser's conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A, 25(3):319-324, 1978.
[23] T. Marcilon and R. Sampaio. The maximum time of 2-neighbor bootstrap percolation: complexity results. Theoret. Comput. Sci., 708:1-17, 2018.
[24] R. Morris. Minimal percolating sets in bootstrap percolation. Electron J. Combin., 16(1), 2009, \#R2.
[25] I. M. Pelayo. Geodesic convexity in graphs. Springer, 2013.
[26] M. Przykucki. Maximal percolation time in hypercubes under 2-bootstrap percolation. Electron J. Combin., 19(2), 2012, \#P41.
[27] E. Riedl. Largest minimal percolating sets in hypercubes under 2-bootstrap percolation. Electron J. Combin., 17, 2010, \#R80.
[28] M. Valencia-Pabon and J.-C. Vera. On the diameter of Kneser graphs. Discrete Math., 305(1-3):383-385, 2005.

[^0]: *Instituto de Ciencias, Universidad Nacional de General Sarmiento, Argentina.
 ${ }^{\dagger}$ Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
 ${ }^{\ddagger}$ Instituto de Matemática Aplicada San Luis, Universidad Nacional de San Luis, Argentina.
 ${ }^{\text {§ }}$ Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Argentina.
 ${ }^{\text {I LIPN, Université Sorbonne Paris Nord, France. }}$
 ${ }^{\|}$Tilburg School of Economics and Management, The Netherlands.
 **Email addresses: lgrippo@ungs.edu.ar (L. N. Grippo), agpastine@unsl.edu.ar (A. Pastine), ptorres@fceia.unr.edu.ar (P. Torres), valencia@lipn.univ-paris13.fr (M. Valencia-Pabon), j.c.veralizcano@tilburguniversity.edu (J. C. Vera).

