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Abstract
Monitoring of early euphausiid larvae provides valuable information on the mechanisms involved in recruitment to the adult 
populations. As the Antarctic is undergoing rapid environmental change, these mechanisms are key to ecosystem-based 
management of the krill fishery. We analyzed the distribution and abundance of early euphausiid larvae (calyptopes I to late 
furciliae) from 76 plankton samples from surface to 300 m depth in the Atlantic sector in January 2011 in relation with a 
previous survey and published information. Thysanoessa macrura (mean density: 209 ind  m−2) dominated the sampling while 
Euphausia superba (mean density: 13.63 ind  m−2) and Euphausia frigida (mean density: 10.05 ind  m−2) were also present. 
T. macrura density increased while E. superba experienced a high decrease respect to historical data. Clustering of stations 
and correspondence analysis showed that the associations of larvae and water masses are in agreement with literature reports, 
so the differences on the abundance of early larvae are within the observed variability and cannot be attributed to any single 
factor, suggesting that it is due to more subtle changes such as the stability of the water column and/or vorticity in the fronts.
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Introduction

Climate change, through sea ice decline, ocean warming, 
acidification, and other environmental stressors, such as 
modifications in circulation patterns, will impact on the 
abundance, distribution and life cycles of Antarctic krill 
and other euphausiids (Flores et al. 2012). Under the new 
conditions generated by climate change, ecosystems will be 
fundamentally modified (Hoegh-Guldberg and Bruno 2010). 
Understanding the expected changes and the mechanisms 

involved is crucial for their conservation and ecosystem-
based fisheries management (Flores et al. 2012).

In the Atlantic Sector of the Antarctic, bottom topography 
and emerged continental masses create a complex environ-
ment where six euphausiid species are found: Euphausia 
superba, Euphausia frigida, Euphausia crystallorophias, 
Euphausia triacantha, Thysanoessa macrura and Thy-
sanoessa vicina. Their different physiological tolerances 
(Ross et al 1988; Quetin and Ross 1984, 1989) result in the 
latitudinal replacement of species (Tattersall 1924; Baker 
1965; Ponomareva and Dobryisheva 1978; Marschall and 
Mizdalzki 1985; Ross et al. 1988; Hofmann et al. 1992) 
associated with the circumpolar oceanic circulation.

The main oceanographic features of the survey area are 
the Antarctic Circumpolar Current (ACC), the Weddell-
Scotia Confluence (WSC), also known as the secondary 
front (Deacon 1937, 1979; Makarov and Maslennikov 1981; 
Makarov et al. 1992) and the northern branch of the Wed-
dell gyre (WS). The nutrient rich Upper Circumpolar Deep 
Water (UCDW), typical of the ACC (Heywood et al. 2004) 
defines the southern boundary of the ACC at the Scotia 
Front (Orsi et al. 1995). This feature, also known as the 
Southern Boundary (SBACC), is an area of divergence or 
upwelling, that corresponds to the circumpolar distributions 
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of baleen whales, krill and to regions of high phytoplankton 
biomass (Tynan 1998).

The WSC results from the encounter of water of three 
different origins, moving at different speeds in the same 
overall direction and mixing while moving eastwards. (Pat-
terson and Sievers 1980; Whithworth et al. 1994; Thomp-
son and Youngs 2013; Meredith et al. 2015). It begins at 
the easternmost South Shetland Islands with the injection 
of water from the Antarctic Coastal Current between the 
ACC to the north and the northern branch of the Weddell 
Gyre to the south. The WSC is weakly stratified and the 
vertical distribution of properties is homogeneous (Patterson 
and Sievers 1980) with lower salinities, and higher oxygen 
concentrations than waters adjacent to the north and south 
(Whithworth et al. 1994). This complex provides a predict-
able foraging ground for many species, and is of critical 
importance to the functioning of the Southern Ocean eco-
system (Loeb et al. 2009, 2010; Venables et al. 2012). Large 
densities of euphausiid larvae have been regularly observed 
at the WSC during the twentieth century: E. superba up to 
 106 ind  m−3 (Marr 1962; Hempel 1985a); between 100–1000 
ind  m−2 (Makarov and Menshenina 1989), and 2044 ind 
 m−2 described during CCAMLR 2000 Survey (Siegel et al. 
2004); T. macrura with densities between 1000–3000 ind 
1000  m−3 (Hempel and Marschoff 1980), and up to 7200 
ind  m−2 (Makarov et al. 1992) during seventies and eighties 
respectively. High interannual variability was also recorded, 
as summarized by Siegel and Watkins (2016) for E. superba 
in the western Atlantic Sector. In 1981 Antarctic krill was 
particularly abundant with a mean density of 1.9  104 ind 
 m−2 and a maximum of 1.8  106 calyptopes  m−2. The 1981 
spawning season was unusual in that krill larval densities 
were an order of magnitude higher than during 2000 (Siegel 
et al. 2004). The highest numbers of larvae were recorded 
in the central Scotia Sea, in the open ocean and along the 
shelf slopes (Rakusa-Suszczewski 1984; Siegel et al. 2004).

With the exception of those of E. crystallorophias, the 
Euphausiids eggs sink after spawning, reaching different 
depths at hatching (Marr 1962; Mackintosh 1973; Pon-
omareva and Dobryisheva 1978; Makarov 1979a). From 
the first calyptopis onwards, larvae reside in the upper 
100 m and, since they do not perform significant diel verti-
cal migrations (Marschoff et al. 1998), their dispersion is 
due to surface currents alone. While developing, euphausiid 
larvae in the WSC are carried eastwards reaching the South 
Sandwich Islands and east of the South Georgia Islands, 
already mixed with populations carried by the ACC. Thus, 
the WSC region becomes an important source of E. superba 
recruits in the eastern Scotia Sea.

Warming and freshening of sea water as a result of the 
climate change process are accompanied by the intensifica-
tion of the ACC and its poleward migration (Chapman et al 
2020). These changes in the extent and disposition of the 

frontal systems in the Scotia Sea will impact on the early 
life histories of the euphausiid species.

Our aim is to establish if the interannual variability 
observed in the densities of early euphausiid larvae in the 
Scotia Sea might be explained by changes in their distri-
bution patterns, thus reflecting the impact of long term 
changes.

In the present study we focus on the spatial distribution 
and abundance of euphausiid larvae in relation to water mass 
distributions in the WSC and surroundings in 2011 when the 
densities of E. superba were very low in comparison with 
historical data when E. superba densities were very high.

Material and method

From 13th January to 1st February 2011, 76 plankton sam-
ples were taken on board of the oceanographic research ves-
sel Puerto Deseado, operated jointly by CONICET, Instituto 
Antártico Argentino (IAA) and the Argentine Navy. The sta-
tions were distributed in seven transects located in the region 
comprised between 43°30′W and 58°12′ W (Fig. 1). CTD 
(conductivity, temperature and depth) profiles were obtained 
using a Seabird CTD 9 profiler. Water masses were identi-
fied from the Temperature–Salinity profiles. The plankton 
net was constructed accordingly to the  WP2 specifications 
(Tranter 1968) (mesh: 200-µm; 60 cm opening diameter). 
It was hauled vertically from 300 m back to the surface at 
1  ms−1 (depth was determined by the length and angle of the 
wire paid off), projecting the whole track of the net against 
the vertical to the maximum depth in the haul.

Samples were fixed in 2% seawater formaline, buffered 
with borax. Euphausiids were sorted to species and stage 
and counted under a Wild M8 stereomicroscope. When 
necessary, a Motoda plankton splitter (Motoda 1959) was 
used for subsampling. All larvae were identified to species 
and staged as calyptopes (CI–CIII) and furciliae (FI–FIV 
pooled as early furciliae, EF; the remaining as late furciliae, 
LF) using keys and figures published by Pertzova (1976); 
Makarov (1979a); Marschoff (1996) and Gallotti (2013). 
Results were expressed as densities (number of individuals 
per square meter) for each combination of species and stage, 
Three clusters were constructed applying the hierarchical 
agglomerative clustering method with the PRIMER software 
(Clarke and Gorley 2015). One was based on the standard-
ized temperature and salinity measured at 10 m, 50 m and 
100 m (environmental cluster) and the other was based on 
the log transformed densities of euphausiid larvae (taxa clus-
ter) data. The Bray–Curtis coefficient and distance linkage 
group average were used to obtain dendrograms.

The water masses identified from the temperature and 
salinity profiles were used to identify the stations belonging 
to each water mass. The association between the two clusters 
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classifications from 2011 and the water masses were tested 
with a G-test.

The correspondence analysis for the 2011 data was per-
formed accordingly to Lebart et al. (1979) obtaining the 
position of stations and taxa on the correspondence axes. 
The PERMANOVA (Permutational Multivariate Analysis of 
Variance), (Morrison 1976) was applied to the coordinates 
on the correspondence axes (derived from larvae data) of the 
stations grouped by water masses.

Results

Oceanographic setting

Besides the Antarctic Surface Water and Winter Water the 
analysis of CTD data along the meridional sections shown in 
Fig. 1 revealed the presence of Weddell Sea (WS), Antarctic 
Circumpolar Current (ACC), Antarctic Peninsula (Mar de la 
Flota/Bransfield Strait, MF) and Weddell-Scotia Confluence 
(WSC) waters. The position of the 27.7 kg  m−3 isopycnal 
surface observed in January 2011 was within the described 
limits. Thus, each station was ascribed to one of the four 
water masses identified.

The local values of temperature remain well within the 
physiological limits of euphausiid larvae, as they were 
experimentally determined (Ikeda 1984; Ross et al. 1988; 
Quetin and Ross 1989) between 0 ºC and 2 ºC, temperatures 
seen at the surface during the austral summer.

The region of the ACC was characterized by the presence 
of UCDW identified by deep maxima of temperature and 
salinity (1.8–2 °C and 34.6–34.7), defining the 27.7  kgm−3 
potential density anomaly surface. This surface becomes 
shallower from north to south, from 600 m in the ACC to 
less than 200 m in the Weddell Sea. The southern limit of 
the ACC is marked by the deepening of the isotherms at the 
Scotia Front. Two stations (N° 38 and 39), located in the 
easternmost section, with properties close to those of the 
northern extreme of the section were considered as pertain-
ing to the ACC.

From the comparison with historic datasets, the 1995 
sampling year (Marschoff et al. 1998) results that the ocean-
ographic conditions during the cruise presented lower salin-
ity in the Confluence region, probably as a result of greater 
influx of fresh water from ice melting in the Weddell Sea as 
shown in the T–S graphs presented in Fig. 2 (limited to the 
stations in the region of overlapping in the 1995 and 2011 
surveys).

Fig. 1  Position of the stations and main oceanographic features in the 
Southern Scotia Sea region during austral summer 2011. Cluster anal-
ysis based on temperature and salinity). No CTD data were obtained 
on station 20. Red line: Scotia Front; yellow line boundary of Penin-

sula waters; broken white line: Hesperides trench; green line: Wed-
dell Front; MF Mar de la Flota, WS Weddell Sea. Stations are colored 
accordingly to numbered cluster groups
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South of the Scotia Front the WSC region was vertically 
homogeneous, its southern limit was defined by the Wed-
dell Front. Within the WSC region, the vertical profiles in 
the Hesperides Trench were even more homogenous. The 
Weddell front was marked by the deepening of the isotherms 
and the isopycnal surface of 27.7 kg  m−3 reaching 200 m; 
the Weddell region (northern branch of the Weddell gyre in 
our study) was characterized by the subsurface minimum 
temperature.

Finally, close to the Antarctic Peninsula we found the 
slope front defining the MF region, identified by the change 
in the slope of the isopycnal lines and the intrusion of the 
0 °C isotherm to the west. This region is characterized by 
the influence of the cold and fresher shelf water.

Local eddies or meanders were found at Stations: 83 
(ACC); 71, 93, 91, 13 (WSC), 61, 14 and 35 (Weddell), 
but only at station 71 reached the surface. The cluster con-
structed with the salinity and temperature parameters yielded 
four groups (Fig. 1):

Group 1: associated with the ACC in the Scotia Sea
Group 2: stations in the WSC,
Group 3: southern WSC including the Hesperides 
Trench
Group 4: Weddell Sea.

Distribution of larvae

Larvae of E. superba, E. frigida and T. macrura were pre-
sent in the sampling; their relative densities and spatial 
distributions are presented in Fig. 3. T. macrura was the 
most abundant (87.2% of the total), with all larval stages 
present; larvae of E. superba (5.74%) were at calyptopes 
stages. Larvae of E. frigida (5.77% of the total calyp-
topes); where first calyptopes represented 86.26% of total 
larvae and the remaining early furciliae (Fig. 3).

Thysanoessa macrura was caught in all samples but 
one, with a mean density of 210 ind  m−2 and mean densi-
ties of 36, 17 and 9 ind  m−2 for first to third calyptopis and 
39 and 107 ind  m−2 for early and late furciliae. E. superba 
calyptopes, were present in 72% of the samples with a 
mean density of 14 ind  m−2. It was practically absent in 
the South Orkneys plateau and the South Shetlands. Most 
of the positive stations (62%) were in the WSC region 
(Fig. 3). E. frigida calyptopes were also present in 72% of 
the samples, showing a more northerly distribution with a 
mean density of 16 ind  m−2. The largest densities were in 
the NW Scotia Sea. It was not found in the South Orkneys 
plateau and the Hespérides Trench and only low densities 
were estimated from the Weddell Sea (Fig. 3).

Fig. 2  T-S diagram showing 
the change (dilution) observed 
between 1995 (red) and 2011 
(blue). AASW (Antarctic Sur-
face Water), CDW Circumpolar 
Deep Water, WW Winter Water. 
Upper right corner: position of 
the stations of the cruises
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The log transformed densities of each combination of 
species and stages yielded the dendrogram shown in Fig. 4. 
Six groups were recognized:

Group 1: most of the larvae were T. macrura with 
relative densities below 1 ind  m−2, low densities of E. 
frigida and very low of E. superba were found.
Group 2: most of the stations lie in the WSC; E. 
superba was the dominant
Group 3: low densities of T. macrura and a few sta-
tions with relatively high densities of E. superba 
(above 1.5 ind  m−2), also in the WSC, Weddell Sea 
and South Shetland.
Group 4: 45% of the samples were in this group. The 
three species were present, reaching the highest rela-
tive densities; most of the stations were located in the 
WSC and the Scotia Sea

Group 5: only low densities of T. macrura with half 
of the stations from WSC waters
Group 6: very low densities of all species mainly 
from WSC waters

Each station pertains to one of the four groups obtained 
with the environmental data and to one of the six groups 
from the stages and species data and were identified as 
belonging to one of the four water masses, allowing to 
test their associations applying the G statistic. The asso-
ciation between cluster classifications was significant 
(G-test G = 50.76, υ = 15, p < 0.00001). The stages and 
species groups were also significantly associated with the 
classification of the stations based on the water masses 
derived from the analysis of the stations profiles (G-test, 
G = 35.69, υ = 20, p < 0.002).

Fig. 3  Spatial distribution of Euphausia frigida, E. superba, and Thysanoessa macrura in the studied area during austral summer 2011. The pro-
portions of larval stages of each species are included in the lower left corner
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Correspondence analysis conducted on the densities of 
the stages observed at each station resulted in three axes 
explaining 82.84% of the total variability (40%, 27% and 
16% respectively). The first two axes are represented in 
Fig. 5 showing the positions of the larvae and the stations 
(indicated by their water mass). E. superba appeared asso-
ciated with the WSC and Weddell Sea, E. frigida with the 
ACC and T. macrura more widely distributed.

The coordinates of the stations on the correspond-
ence axes were tested for associations with the variables 
observed at each station. Stations were grouped by water 
mass and their correspondence coordinates on the first 
three axes tested by PERMANOVA (1000 permutations)
finding that the coordinates on the three axes were sig-
nificant (λ1 = 0.477, p = 0.0001); λ2 = 0.876, p = 0.0025): 
λ3 = 0.975, p = 0.0129).Table 1 shows the means of the 
position of the water masses on the first three correspond-
ence axes (Table  1a) and the Mahalanobis distances 
between them (Table 1b). Associated probabilities were 
obtained simultaneously with the PERMANOVA.

Discussion

Oceanographic setting

The freshening observed in waters of the WSC (Fig. 2), 
has been discussed by Dotto et al (2016). Based on hydro-
graphic data from the period 1960–2010s, they showed 
freshening and lightening of the deep water masses at the 
western extreme of the WSC. This process is probably 
caused by large freshwater inputs originating from the 
western shelf of the Weddell Sea, where the basal melting 
of the Larsen Ice Shelves system at the eastern Antarctic 
Peninsula (Rignot et al. 2013) produced large freshwater 
inputs between 2003 and 2008.

Since the 1970s the westerly winds increased by 
20% and the temperature of the ACC by 0.5 °C between 
300 m to 1000 m (Turner et al. 2009), but the transport 
by the ACC has not augmented (Boning et al. 2008). The 
response to increased wind stress seems to be a change in 

Fig. 4  Position of the stations and main oceanographic features in 
the Scotia Sea region during austral summer 2011. Cluster analysis 
based on euphausiid larvae log densities. Oceanographic features as 
in Fig. 1 Stations are colored according to cluster groups. The mean 

relative densities (ind  m−2) are indicated in each group. Black bars: 
Thysanoessa macrura; dark gray: Euphausia superba; light gray: 
Euphausia frigida; thickness proportional to the relative abundances 
within each group
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eddy activity (Hallberg and Gnanadesikan 2006; Meredith 
and Hogg 2006).

While the position of frontal zones and the general dis-
position of water masses remained constant, these circula-
tion changes might influence the reproductive processes of 
euphausiids (Siegel and Watkins 2016; Meyer et al. 2020).

Variability of Euphausiid larvae densities

A previous study (Rombolá et al. 2019) reported the high 
variability in the densities of euphausiid larvae in three 
recent cruises compared with historical results, discuss-
ing possible sources. This comparison of the densities 
obtained in 2011 with those from 1981 and 1995 demon-
strate the increase in T. macrura and the reduction in E. 

superba, which was even less abundant than E. frigida. 
Similar changes in the predominant species were also 
observed by Panasiuk-Chodnicka at Admiralty Bay in the 
2008–2009 season (SC-CAMLR XXXIII 2014; Annex 6 
paragraph 6.8). Present analysis shows that, in 2011 the 
distributions of larvae were closely related with the water 
masses as demonstrated by the G tests applied to the clus-
ters obtained with larval densities and properties of the 
water masses identified from CTD results. The same rela-
tions were observed in 1981 on a dataset obtained in a pre-
vious cruise in the same region (Marschoff 1985, 1996).

For comparison with present results, Fig. 6 shows the 
species-stage cluster of the log transformed densities of 
the 1981 dataset. The four groups derived from the larval 

Fig. 5  Distribution of stations/
water masses, species and stages 
on the first two correspondence 
axes obtained from the densi-
ties observed at each station in 
summer 2011. SC1 Euphausia 
superba calyptopis 1, SC2 E. 
superba calyptopis 2, FC1 
Euphausia frigida calyptopis 
1, FC2 E. frigida calyptopis 2, 
FCIII E. frigida calyptopis III, 
FEF E. frigida early furciliae, 
MC1 Thysanoessa macrura 
calyptopis 1, MC2 T. macrura 
calyptopis: 2, MC3 T. macrura 
calyptopis 3, MEF T. macrura 
early furciliae, MLF T. macrura 
late furciliae

Table 1  (a) Means *104 of the position of the water masses on the 
space of the first three correspondence axes derived from the den-
sities of larvae and number of observations in each group. (b) 

Mahalanobis distances between the means of water masses in the 
upper half of the matrix; their probabilities in the lower (in bold those 
significant)

Probabilities calculated from 10,000 permutations (B). WSC Weddell-Scotia Confluence, ACC  Antarctic Circumpolar Current, WS Weddell Sea, 
MF Mar de la Flota 

A N First axes Second axes Third axes B WSC ACC WS MF

WSC 40 0.005 0.003 0.002 WSC 0 2.60 4.27 1.17
ACC 14 0.001 −0.002 −0.0001 ACC 0.0002 0 1.17 1.43
WS 18 0.005 −0.001 −0.003 WS 0.0001 0.0358 0 3.46
MF 4 0.001 0.004 −0.001 MF 0.2461 0.2298 0.0164 0



 Polar Biology

1 3

composition at each station also correspond to their posi-
tion in relation with fronts.

The close relation of larval populations with the distri-
bution of water masses is also demonstrated by the PER-
MANOVA analysis which was able to identify the sta-
tions belonging to different water masses from the larvae 
caught.

Both, in 2011 (Fig. 5) and 1981 (Marschoff 1996), the 
correspondence axes were related with the same character-
istics of water and larval populations (salinity and age).

Thus, in spite of the large differences in densities, the 
distribution of the catches during the 2011 survey are asso-
ciated with the distribution of water masses as observed in 
1981.

In 2011 the most abundant euphausiid was T. macrura, 
the most ubiquitous species in the area (Makarov 1979b; 
Nordhausen 1992; Fisher et al. 2004). It was widely distrib-
uted, covering the largest area, including the Scotia Sea, the 
WSC and the Northern Weddell Sea, being more abundant 
in the ACC (Makarov 1979b; Hempel and Marschoff 1980; 
Hempel 1981; Nordhausen 1992; Haraldsson and Siegel 
2014). Due to its early spawning T. macrura was found in 
all stages, up to late furciliae; and was recorded in virtually 
all stations, densities increased considerably in relation with 
the historic cruises analyzed. At a number of stations to the 
south of the South Orkney Islands, calyptopes densities were 
low with few early furciliae. Late furciliae were found in 

the ACC and in the WSC in high densities (more than 1000 
ind  m−2).

Euphausia frigida is a typical species of the ACC, being 
more abundant in the Drake Passage to the north of the 
South Shetland Islands (John 1936; Makarov 1977; Loeb 
and Shulenberger 1987). Spawning is reported to begin 
in August, extending to April (Menshenina 1989). As in 
other studies, (Hempel and Marschoff 1980; Hempel 1981; 
Hempel and Hempel 1982; Makarov and Menshenina 1989; 
Fedotov 1992), CI dominated our sampling, with early fur-
ciliae present in a few samples. As described by Makarov 
et al. (1992), E. frigida larvae declined markedly to the 
south, in the easternmost part of the Weddell Gyre, but, even 
though in low quantities, it was found in the northern Wed-
dell Sea (Hempel and Hempel 1982). The unusual finding of 
E. frigida south in the Weddell Sea (62.49 S; 45.99 W) on 
15th January 2011, might be due to the meanders detected 
in the area.

Euphausia superba was abundant in the WSC (Hempel 
1981; Hempel and Hempel 1982; Siegel 2000; Siegel et al. 
2004, 2013; Gao et al. 2013; Loeb and Santora 2015). CI 
was the dominant stage in the WSC with increasing num-
bers toward the eastern Scotia Sea. In the present study, it 
was recorded in the western Weddell Sea, in agreement with 
the reported distribution summarized by Siegel and Watkins 
(2016), but not with their densities, as their review reported 
very high values such as 20 ×  103 ind  m−2 in the western 

Fig. 6  Position of the stations and main oceanographic features in the Southern Scotia Sea region during austral summer 1981. Cluster analysis 
based on euphausiid larvae log densities. Cluster features as in Fig. 4
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Atlantic sector in 1981 in contrast with the very low density 
of 14 ind  m−2 in this cruise. More recently, Gao et al. (2013) 
reported an average density of 1.173 ind  m−2 of calyptopes 
with relative abundance of 99.81% east of Elephant Island.

Only few early furciliae of E. superba were found in 
the 2011 sampling, a result already reported for the area 
in January and early February (Hempel and Hempel 1978; 
Brinton and Towsend 1984; Hempel 1985a, b; Marschoff 
1996; Siegel et al. 2013). North of the Antarctic Peninsula 
(the westernmost area surveyed in our cruise), Setubal Pires 
(1986) reported that in 1983 E. superba was present in 50% 
of the stations CI being the dominant stage with 21.83% of 
the total larvae at stations north of Elephant Island in con-
trast with 3.75% in the same area in the present study. These 
larvae are carried westwards by the ACC mixing with larvae 
from the WSC and Scotia Sea (Siegel and Watkins 2016).

In the comparison of their overall distributions among 
water masses in 1981 and 2011, Table 2 shows that, in both 
years, E. superba densities were similar in the ACC and 
in the WSC. E. frigida maintained their maximum densi-
ties in the ACC and T. macrura, evenly distributed in 1981 
increased significantly in 2011.

In 2011 we found very low densities north of the Antarc-
tic Peninsula; 33.54 ind  m−2 to the east and the maximum 
density in the WSC (166 ind  m−2 and relative abundance of 
16.54%). Dietrich et al. 2014, also in January 2011 around 
Elephant Island, found 35% of the positive samples with 
E. superba calyptopes, and 17% with furciliae, while T. 
macrura was the most abundant, with 98% of occurrence in 
the positive stations. In a survey conducted in January 2011 
in waters off the Western Antarctic Peninsula, Siegel et al. 
(2013) found a mean density of larvae in the northern sta-
tions of 15.2 ind  m−2, dominated by early calyptopes stages. 

Higher densities of CI were found far south in the area of 
the Bellingshausen gyre. This suggests that in the summer 
2010–2011 E. superba larvae were not reaching the South 
Shetland Islands and the ACC.

A possible explanation, largely speculative, is based on 
the mechanisms involved in the coupling of biological and 
oceanographic processes involved after spawning occurs.

Given the depths reached by the eggs of the euphausiid 
species, Marschoff (1996) proposed that, as the eggs and 
nauplii of E. superba hatch deeper than those of T. macrura 
and E. frigida, they will be more dependent on the develop-
ment of divergences facilitating the developmental ascent 
process by the increase in vertical transport. Eggs of T. 
macrura and E. frigida, not reaching depths below 800 m, 
will not depend on vertical transport. This difference in the 
hatching depths implies that, E. superba will reach surface 
waters in one or both sides of the fronts, while T. macrura 
and E. frigida will be retained in eddies formed at the fronts.

The overall impact of climate change on E. superba was 
analyzed by Flores et al. (2012) and revised by Meyer et al. 
(2020), identifying the high priority to be given to research 
on the recruitment process to obtain a mechanistic under-
standing of the factors leading to successful spawning and 
survival of early larvae, in order to advice fisheries manage-
ment on the benefits of incorporating uncertainty surround-
ing key aspects of krill ecology into management decisions 
(Meyer et al. 2020). There is strong evidence that krill is 
sensitive to climatic modes such as the SAM and the ENSO 
(Saba et al. 2014; Loeb and Santora 2015) and that climatic 
conditions in the SW Atlantic have become increasingly 
unfavorable for recruitment (Meyer et al. 2020).

Thus, the increase in T. macrura and E. frigida larvae 
and the reduction in E. superba observed in 2011 would be 
explained by a reduction in vertical transport resulting from 
increased stability of the water column and eddy activity 
resulting from these changes that might be attributed to cli-
mate change. On the other hand, the low densities observed 
in E superba larvae abundance in 2011 could be explained 
as the result of the dynamic equilibrium of many highly 
variable factors; as the larvae observed in a determined area 
is the result of the origin and history of the water masses 
rather than the direct result of actual hydrological charac-
teristics (Marschoff 1996; Stupnikova et al. 2018), and no 
single environmental factor shows a predictable relationship 
with krill density (Weber et al. 1986; Rombolá et al. 2019).

Short term variability was observed by Brinton et al. 
(1986) who found average larval densities of 35 ind  m−2 in 
the Scotia Sea during summer 1984. The CCAMLR 2000 
survey yielded a mean density of larvae in the western 
Scotia Sea of 2044 ind  m−2 (Siegel et al. 2004), and even 
higher densities were recorded during Fibex 1981 (Rakusa-
Suszczewski 1984). We also have recorded higher densi-
ties than in 2011 in the 2014 season, but also a very poor 

Table 2  Means of the logarithm of the densities of euphausiid early 
larvae in the water masses in 2011 and 1981

Standard deviations in brackets. ACC  Antarctic Circumpolar Current, 
WSC Weddell – Scotia Confluence, WS Weddel Sea,  N number of 
samples

Water masses N (Marschoff 1985) N (present study)

T. macrura
 WSC 13 8.52 (6.29) 40 7.78 (4.98)
 ACC 8 6.24 (3.70) 14 20.01 (4.29)
 WS 10 5.15 (4.41) 18 8.39 (5.01)

E. superba
 WSC 13 16.23 (8.07) 40 2.23 (1.70)
 ACC 8 16.78 (11.44) 14 1.96 (1.20)
 WS 10 7.6 (10.06) 18 1.26 (1.52)

E. frigida
 WSC 13 1.92 (2.06) 40 1.87 (1.51)
 ACC 8 2.22 (2.43) 14 5.63 (3.16)
 WS 10 0 18 0.65 (0.91)
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summer in January 2012 (Rombolá et al. 2019). Discerning 
whether changes are due to long term phenomena or just the 
response to short term fluctuations in oceanographic condi-
tions requires the of monitoring of early larvae populations 
and environmental variables during an extended period. 
In this study we present methods to observe the relation 
between the larval and the water masses distributions as a 
contribution to the interpretation of the time series required 
to identify changes due to short term variability against a 
background of large global processes such as those derived 
from climate change.

Further research is needed, obtaining oceanographic 
information specifically designed to study the processes 
associated with the developmental ascent of early larvae in 
order to elucidate possible causes of the observed variability.
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