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Abstract A new CUDA-C code for tracing orbits around non-charged black holes is
presented. This code, named MALBEC, take advantage of the graphic processing units
and the CUDA platform for tracking null and timelike test particles in Schwarzschild
and Kerr. Also, a new general set of equations that describe the closed circular orbits
of any timelike test particle in the equatorial plane is derived. These equations are
extremely important in order to compare the analytical behavior of the orbits with
the numerical results and verify the correct implementation of the Runge–Kutta algo-
rithm in MALBEC. Finally, other numerical tests are performed, demonstrating that
MALBEC is able to reproduce some well-known results in these metrics in a faster
and more efficient way than a conventional CPU implementation.

Keywords CUDA-C · GPU · Timelike test particles · Geodesics around black holes

1 Introduction

The study and characterization of the geodesic motion around compact objects is
extremely important in astrophysics. The orbits followed by test particles in the pres-
ence of a massive object can give information about the nature of the astrophysical
source, also the dynamics around the compact sources like Neutron Stars (NS) or
Black Holes (BHs) may be helpful to the gravitational wave observatories such LIGO
[1]. For instance, during a binary black hole coalescence, in which one member of the
binary is much more massive than the other. In this kind of system, it is possible to
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assume that the small body moves on a geodesic of the background Kerr spacetime
[2], at least during the early-stages. This is, in the test-mass limit, the full nonlinear
relativistic force law corresponds to a geodesic motion in a Kerr spacetime. Thus, one
way to investigate the properties of such astrophysical sources is through the study of
the geodesic motion in these backgrounds.

In the particular case of BHs, the geodesic structure around these compact sources
was studied during decades. A detailed study of the geodesic motion around Kerr and
the Schwarzschild metric is summarized in the Chandrasekhar book [3], where timelike
and null particles are analyzed, the stability of the trajectories is studied, and also the
innermost stable circular orbits (ISCOs) are computed. In a recent work, the motion of
classical spinning test particles in Schwarzschild and Kerr metrics was considered, and
the ISCO was investigated [4]. In the cited work, small-spin corrections for the ISCO
parameters were found analytically. On the other hand, the circular motion of charged
test particles in the gravitational field of a charged BH described by the Reissner–
Nordström spacetime was studied. This makes it possible to develop techniques that
allow to distinguish between black holes and naked singularities [5].

Over the years, several analytical treatments have been carried out to track orbits
around compact objects. For example, in the following Ref. [6], a system based on the
Poincare approach is presented to classify orbits on the equatorial plane of rotating
BH. In the mentioned article, the authors define a complete taxonomy of orbits that
allows to establish a correspondence between periodic orbits and a set of rational
numbers. On the other hand, the analytical solutions of bound timelike geodesic in
Kerr were introduced in [7]. These solutions are given in terms of elliptic integrals
using the Mino’s method [8], which consist in a perturbative approach to track an
orbital evolution around a super massive black hole. Bound geodesic orbits around
a Kerr black hole can be parametrized by three constants of motion which can be
associated with three frequencies related to the radial, longitudinal and azimuthal
motion. However, it was shown recently that these two ways to characterize bound
geodesics are not in a one-to-one correspondence in the strong field regime [9]. That
is, there is a region of the parameter space in which pairs of physically distinct orbits
can have the same three frequencies.

The geodesic motion of test particles is not restricted only to theoretical analy-
sis, the nonlinearity of the system of equations requires in many cases the use of
numerical technics. Several computational codes can simulate and track the trajecto-
ries followed by test particles around BHs. For instance, the open source ray-tracer
GYOTO developed by Vincent et al. [10], or the GPU ray-tracer recently published
by Daniel Kuchelmeister [11]. Both have a great handling of images and can integrate
trajectories of test particles in vacuum solutions like Schwarzschild and Kerr, and in
the case of GYOTO in numerical metrics as well. However, since our point of view,
there several limitations in both implementations. For example, GYOTO has been
developed using the standard CPU programming instead using the high performance
of the actual graphics processing units (GPUs), which take advantage of the benefits
offered by the CUDA platform developed by NVidia to accelerate the calculation of
the orbits [12]. On the other hand, the GPU ray-tracer, only can launch null geodesics
in the Kerr and/or Schwarzschild metric, and it does not use the 3 + 1 formulation,
which hinders the implementation of numerical metrics.
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In this context arrived MALBEC, MALBEC is a new GPU code developed in
CUDA-C for tracing orbits around compact objects in General Relativity (GR) that
seeks to overcome the limitations of the previously mentioned implementations. Thus,
in this work, we will introduce the first version of MALBEC, and we perform several
validation tests. For this, we will analyze the motion of timelike particles around
Schwarzschild and Kerr black holes. Now, from the mathematical aspect, MALBEC
has been written using the 3 + 1 formulation of the GR and is able to handle timelike and
null geodesic in Schwarzschild and Kerr spacetime. The use of the 3 + 1 formulation is
important in order to bring future support to numerical metrics. Furthermore, in a future
update, we will include extra analytical metrics as well as numerically computed, so
the results presented in this article are not a limitation in our GPU implementation.
From the technical issue, MALBEC implements the Runge–Kutta method, labeled as
RK4, to find the solution of the system of ordinary differential equations (ODEs) that
describe the geodesic motion around the compact source. MALBEC has been written
in the programming language C and uses the CUDA platform [12] with a double
precision arithmetic. Additionally, MALBEC was tested on Linux and Windows, and
can work with a NVidia CUDA enabled GPU of computing capability 1.3 or higher,
making use of the official NVidia NVCC compiler.

Since there are many technical details involved, it is better to outline the main ideas
followed to perform the test of our code. In this way, the reader can have a broad
picture without the technical complications. In order to perform the first validation of
MALBEC, we will use the following procedure: first, we will derive the equations of
motion for timelike and null particles by using the 3 + 1 formulation. These equations
are written as a system of eight coupled ordinary differential equations. So, we obtain
a general set of equations that allow to calculate the initial conditions of any circular
orbits in the equatorial plane of Kerr and Schwarzschild at any position outside of the
event horizon. From this approach, a simple set of equations for the orbital energy and
angular momentum is obtained, which are used to construct the set of initial conditions
that are evolved by MALBEC, thus, the closed orbits and the stability regions can be
verified numerically showing the correct implementation of the code. In other words,
we will verify that the numerical solution reflects the expected theoretical behavior.
Then, we focus on the convergence and speed tests, where we show that the numerical
method implemented converges to the expected numerical order, and also prove that
our code is capable of running a bigger number of geodesics in a shorter time than an
analogous CPU implementation.

This article is organized as follows. In the Sect. 2, some mathematical foundations
are given, particularly the 3 + 1 decomposition of the GR is introduced, and the Kerr
metric written in this formulation. In Sect. 3, the closed circular orbits in the equatorial
plane of Kerr are derived, and the main equations of this work are presented. The special
case of the circular orbits around a Schwarzschild black hole is treated in the Sect. 4.
Then, the numerical simulations are performed in the Sect. 6. Also, in this section,
we perform several tests in order to validate the efficient and correct execution of
MALBEC. Finally, we closed the work given some final remarks and conclusions.
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2 Foundations

In this section, we will introduce some mathematical foundations needed to develop
our formalism. In particular, we will introduce the 3 + 1 decomposition of the GR
which allows us to obtain the equations of motion followed by test particles around
BHs, these equations of motion will be given as a system of ODEs.

In the 3 + 1 decomposition of the GR [13], the spacetime manifold M is assumed
to be globally hyperbolic and to admit a foliation with spacelike hypersurfaces Σt ,
which are parametrized by the parameter t ∈ R : M = R×Σt [14]. In this approach,
the line element can be written as

ds2 = −α2dt2 + γi j (dx
i + β i dt)(dx j + β j dt), (1)

where α defines the lapse of proper time dτ , measured for those observers moving
along the normal direction to the hypersurfaces n = −α∇t , where n is a timelike
future pointing 4-vector, β is a spatial vector called the shift vector and describes how
the spatial coordinates shift when moving from the slice Σt to another one Σt+δt , and
γi j are the components of the induced metric over each hypersurface, such that γ is a
projector orthogonal to the timelike vector n, i.e., γ · n = 0.

Now, the equations of motion for a free particle in the generalized spacetime (1),
can be obtained from the following Lagrangian [13],

L = −1

2

⎛
⎝α2 −

3∑
i=1

3∑
j=1

γi jβ
iβ j

⎞
⎠ ṫ2

+
⎛
⎝

3∑
i=1

3∑
j=1

γi jβ
j ẋ i

⎞
⎠ ṫ + 1

2

3∑
i=1

3∑
j=1

γi j ẋ
i ẋ j , (2)

here the dot denotes differentiation with respect to an affine parameter τ . Thus, fol-
lowing the canonical formulation for the geodesics [15], the equations of motion can
be obtained by using the following expressions

ẋμ = ∂H
∂pμ

, ṗμ = − ∂H
∂xμ

, (3)

where

H = 1

2
gμν pμ pν, pμ = ∂L

∂ ẋμ
, (4)

are the Hamiltonian and the four momentum, respectively. It is worth mentioning that
the energy is only derived from the kinetic energy in such way that H = L. In the
case of charged particles this relation is not satisfied, that is H �= L. Furthermore,
the geodesic equation for a timelike particle, wrote in the 3 + 1 formulation, obey the
following constraint,

2L = −1 (5)
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Throughout this paper, we assume geometrized units, that is, G = c = 1. Also, we
introduce the Kerr line element in Boyer–Lindquist (BL) coordinates xα = (t, r, θ, φ)

as [3],

ds2 = −
(

Δ − a2 sin2 θ

ρ2

)
dt2 − 4

aMr sin2 θ

ρ2 dtdφ

+ ρ2

Δ
dr2 + ρ2dθ2 + Σ

ρ2 sin2 θdφ2, (6)

with the usual definitions

ρ2 = r2 + a2 cos2 θ,

Δ = r2 − 2Mr + a2,

Σ =
(
r2 + a2

)2 − a2Δ sin2 θ.

Here M is the mass of the BH, and a the black hole angular momentum per unit
mass (J/M), note that in the case of the Schwarzschild metric the parameter a = 0.
Additionally, we will investigate only the case a ≤ M , since for a > M the Kerr metric
describes a naked singularity. Furthermore, the coordinate transformation between BL
coordinates (r, θ, φ) and the Cartesian (x, y, z) is given by

x =
√
r2 + a2 sin θ cos φ,

y =
√
r2 + a2 sin θ sin φ,

z = r cos θ. (7)

Now, by comparing Eqs. (1) and (6), we get

α =
√

ρ2Δ

Σ
, β i =

(
0, 0,−2Mar

Σ

)
, γi j = diag

[
ρ2

Δ
,ρ2,

Σ

ρ2 sin2 θ

]
, (8)

in this way the Kerr metric is expressed in terms of the lapse function α, the shift
vector β i , and the components of the induced metric γi j .

3 Closed circular orbits it the equatorial plane

In this section, we will obtain the equations of the closed circular orbits needed to test
MALBEC. These orbits correspond to timelike test particles moving in closed circular
trajectories in the equatorial plane of a non-charged black hole. The equatorial plane
is the plane defined by the condition z = 0, or in BL coordinates θ = π/2. Now, the
restriction θ = π/2 = const. imposes the following condition θ̇ = 0, thus, the ODEs
system coming from the Eq. (7) are reduced to the following,
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ṫ = −(2Ma2 + a2r + r3)pt + 2aMpφ

r(2Mr − a2 − r2)
, (9)

ṙ = − (2Mr − a2 − r2)

r2 pr , (10)

φ̇ = −2Mapt + (2M − r)pφ

r(2Mr − a2 − r2)
, (11)

ṗr = − (Mr − a2)

r3 p2
r + M(4Ma2r − a4 − 2a2r2 − r4)

r2(2Mr − a2 − r2)2 p2
t

− 2Ma(4Mr − a2 − 3r2)

r2(2Mr − a2 − r2)2 pt pφ + (4M2r − Ma2 − 4Mr2 + r3)

r2(2Mr − a2 − r2)2 p2
φ, (12)

θ̇ = ṗt = ṗθ = ṗφ = 0, (13)

In order to get these circular closed trajectories around Kerr, it is necessary to keep
the radial coordinate constant, and also the radial canonical momentum, i. e.,

ṙ = 0, pr = 0. (14)

Note that these two conditions are compatible with Eq. (10), also the last condition
implies that ṗr = 0. Now, to guarantee that pr = 0 in Eq. (12), we will set to zero the
l.h.s of (12), and we will solve for p2

r , from where we can write,

p2
r = r(4M2r − Ma2 − 4Mr2 + r3)

(Mr − a2)(2Mr − a2 − r2)2 p2
φ

− 2raM(4Mr − a2 − 3r2)

(Mr − a2)(2Mr − a2 − r2)2 pt pφ

+ rM(4Ma2r − a4 − 2a2r2 − r4)

(Mr − a2)(2Mr − a2 − r2)2 p2
t (15)

Then, we introduce the last equation into the geodesic equation coming from (5) to
get the following,

−1 = − (M − r)(2Mr + a2 − r2)

r(Mr − a2)(2Mr − a2 − r2)
p2
φ

+ 2Ma(2Mr + a2 − 3r2)

r(Mr − a2)(2Mr − a2 − r2)
pt pφ

− (2M2a2r + Ma4 − 3Ma2r2 − 2Mr4 + a4r + a2r3)

r(Mr − a2)(2Mr − a2 − r2)
p2
t (16)

Finally, we have obtained a system of two algebraic equations given by (16), and by
the r.h.s of (15) equal to zero, i.e. p2

r = 0. On the other hand, it is very usual to
associate the orbital energy E and the angular momentum about the normal axis to the
equatorial plane L , to the canonical momenta pt and pφ respectively. Now, solving
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the system given by Eqs. (15) and (16) for positive energies E > 0, and writing the
equations in terms of E and L , we find the following,

E± =
∣∣∣∣∣

4M2r − Ma2 − 4Mr2 + r3
√
R ± 2M3/2r3/2(2Mr − a2 − r2)a

∣∣∣∣∣ (17)

L± = ±
∣∣∣∣∣
Ma(4Mr − a2 − 3r2) + r3/2(2Mr − a2 − r2)M1/2

√
R ± 2M3/2r3/2(2Mr − a2 − r2)a

∣∣∣∣∣ (18)

Here the superscript “+” represent the co-rotating orbit, while “−” the counter-rotating,
also the symbol R is introduced for shorts, and it is given by,

R = r2(−12M3r + 5M2a2 + 16M2r2 − 3Ma2r − 7Mr3 + r4). (19)

Note the circular trajectories exist only if r takes values such that the factor inside
of the square root be positive. On the other hand, the minimal in the energy for the
co-rotating, or the counter-rotating orbit, can be found from the first derivative of
Eq. (17), in the following way,

E±

dr
= 0, (20)

then, we solve (20) for r , the roots of interest must meet simultaneously the following
conditions: r must be a real value, should be located outside of the event horizon r+ of
the BH, that is r ≥ r+ with r+ = M + √

M2 − a2 [16]. Also, the test particle for this
radius should have a positive energy and real angular momentum. Thus, this root will
correspond to the “Innermost Stable Circular Orbits” (ISCO), which is the smallest
orbit where the test particle can stably stable circular orbits around a BH. So, in our
approach, the ISCO is given by,

r±
isco = 3M + 1

2

√
A + B + C

∓
√

−A − B + 2C + 224a2M + 1728M(a2 − 6M2)

4
√
A + B + C

, (21)

where

A = 4(a4 − 10a2M2 + 9M4)

(a6 + 17a4M2 − 45a2M4 + 27M6 + 8
√
a10M2 − 2a8M4 + a6M6)1/3

,

B = 4(a6 + 17a4M2 − 45a2M4 + 27M6 + 8
√
a10M2 − 2a8M4 + a6M6)1/3,

C = 36M2 + 4(a2 − 6M2),
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with 0 ≤ a < M . Furthermore, the ISCO for the extreme Kerr can be found taking
the limit a → M in Eq. (21), doing this we recover the well know results [17],

r+
isco = M, L+

isco = 2√
3
M, E+

isco = 1

3
, (22)

r−
isco = 9M, L−

isco = − 22

3
√

3
M, E−

isco = 5

3
√

3
, (23)

where L± and E± are the energy and the angular momentum associated to the ISCO
radius, which is computed from the Eqs. (17) and (18). In order to find the energy
and the angular momentum associate with the co-rotating orbit in the extreme Kerr,
L+
isco, E

+
isco, must be taken the right-hand limit r → M+ since the radius of the orbit

coincides with the event horizon. Finally, in the Sect. 6, we will use these equations
to compute several ISCOs for Kerr.

On the other hand, in a closed circular orbit, the geodesics will describe a harmonic
motion around the black hole. For those trajectories, the cartesian coordinates (x, y)
will obey,

x = r cos(ωτ + α), (24)

y = r sin(ωτ + α), (25)

where τ is the proper time of the test particle, α is an initial phase, and r is the constant
radius of the circular orbit. Now, the angular frequency ω can be found comparing
Eqs. (24) with (7) assuming θ = π/2, thus we can find the following equation,

ωτ + α = φ. (26)

Now, by taking one derivative and using (11) we get,

ω = φ̇ = −2Mapt + (2M − r)pφ

r(2Mr − a2 − r2)
, (27)

so, the period of the motion will be given by,

T = 2π

ω
= 2πr(2Mr − a2 − r2)

−2Mapt + (2M − r)pφ

(28)

thus, the time taken by the particle to complete a lap around the Kerr BH depends on
the radius, the energy, and the angular momentum.

4 Circular orbits around Schwarzschild black hole

In this section, we will apply our previous results in a spherically symmetric static
black hole, which is given by the Schwarzschild metric. The Schwarzschild metric
is a vacuum solution to the Einstein field equations that describes the gravitational
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field outside of a non-rotating massive spherically-symmetric object. It is possible to
reduce the Kerr solution to the Schwarzschild ones by setting the parameter a = 0,
thus the equations of motion for a timelike test particle are simpler than Kerr, and also
can be obtained from (3). These equations can be written as follows [3],

ṫ = pt
1 − 2M

r

ṙ =
(

1 − 2M

r

)
pr (29)

θ̇ = pθ

r2 φ̇ = pφ

r2 sin2 θ
(30)

ṗr = − Mp2
t

(−r + 2M)2 − Mp2
r

r2 + p2
θ

r3 + p2
φ

r3 sin2 θ
(31)

ṗt = 0 ṗθ = p2
φ cos θ

r2 sin3 θ
ṗφ = 0 (32)

In the equatorial plane, the circular orbits around the BH are determined by the con-
ditions,

θ = π/2, r = const., (33)

which implies that θ̇ = 0 → pθ = 0, ṙ = 0 → pr = 0, and ṗr = 0. Now,
the equations for the energy and the angular momentum can be obtained from the
Eqs. (17) and (18) just imposing the condition a = 0, from where we can write,

E2 = 4M2 − 4Mr + r2

r(r − 3M)
, (34)

L2 = Mr2

r − 3M
. (35)

Note the energy must be a positive quantity, so one can observe that circular orbits
for a timelike particle could not exist for r ≤ 3M . Now, the minimal in the energy is
found by taking a derivative to Eq. (34) and solving for r as follows,

dE

dr
= M(6M − r)

2r3/2(r − 3M)3/2 = 0. (36)

Thus, for r = 6M we get the critical point which corresponds to the Schwarzschild
ISCO. Now, evaluating the Eqs. (34) and (35) in r = 6M we get

r = 6M E =
√

8

9
L = √

12M. (37)

The values r = 3M and r = 6M defines two ranges for the radius where the orbits
will have different behaviors and stabilities [3],

6M < r (stable) < ∞, and 3M ≤ r (unstable) ≤ 6M. (38)
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The circular orbits of the larger radius, where the minimum of the energy is located,
will be stable in contrast to the circular orbit of the smallest radius where the energy
is undefined [3].

Now, in several applications, it is quite convenient to assume the radius of the orbit
as proportional to the mass, i.e. r = kM with k > 0. In general, if we write r = kM
for Schwarzschild the constant must satisfy k > 3 in order to get closed orbits, thus
we can write the following equations,

r = kM pt =
√
k2 − 4k + 4

k(k − 3)
pφ = kM√

k − 3
(39)

Finally, putting a = 0 in Eq. 28 we get the period of the circular motion,

T = 2π

ω
= 2πr2

pφ

, (40)

thus, for a non-rotating BH, the time to complete a lap around the singularity do not
depends on energy, just depends on the radius and the angular momentum.

5 CUDA-C implementation for computing orbits in general relativity

In 2006, Compute Unified Device Architecture (CUDA) was introduced by NVidia,
this new platform has opened the possibility of using NVidia GPUs to parallel com-
puting. CUDA leverages the parallel compute engine in video cards to solve many
complex computational problems in a more efficient way than on a CPU. Also, the
Nvidia tool-kit comes with a software environment that allows to use C as a high-level
programming language [18].

The CUDA platform has many benefits for paralleling computing, benefits such as
the existence of a shared memory (i.e. a memory area to be shared between threads),
faster loads of data between GPU and CPU, full support for integer, bitwise opera-
tions and scattered reads. Despite CUDA has many advantages over other types of
computing systems, there are some limitations that must be taken into account during
its implementation. For example, in single precision NaNs are not supported, you can
not use pointers to functions or functions with variable parameters. Also, for reasons
of efficiency, the threads must be launched in groups of at least 32 with thousands of
threads in total, but the biggest drawback, is a bottleneck between the CPU and the
GPU by bandwidths and latencies buses. This bottleneck may affect the rate of data
transfer CPU-GPU and thus the efficiency in the execution of the kernels.

Malbec, is a new CUDA-C code for tracing orbits around compact sources, this
code takes advantage of the graphic processing units and the CUDA platform in order
to track the geodesic motion of timelike and null test particles in curved spacetimes.
The code is divided into several source files and headers located in different folders
as one can see in the following diagram (Fig. 1).

The main.cu is the main file of the code, this introduces some spacetime parameters
such as the BH rotation, the number of initial conditions, and controls all the necessary
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main.cu Kernel.cu

rk4.cu

rhs.chandle.h

menu.c

shc.inc

kerr.inc

Load Execute Call

Load

ic.txt

output.txt

Read

Write

solvers

ODEs

metrics
Kernel

common

output

ic

Fig. 1 MALBEC code structure. The orange blocks represent the folders where the files are located, for
simplicity some headers are not included in the diagram

processes during the execution. The code can be compiled with the standard nvcc, e.g.
in a UNIX system like Ubuntu, the command line will be nvcc main.cu -o
malbec.out. In the main file, the host and device input/output are defined, also,
following the standard CUDA programming, the GPU is denoted as device and the
CPU as host. The memory for each vector on the GPU and CPU is allocated, and the
initial conditions are read. Moreover, the initial conditions are stored in a text file as
an array of 8 × N , where N is the desired number of independent initial conditions or
systems.

t r θ φ pt pr pθ pφ

0.0000 6.0000 1.5708 0.0000 0.9428 0.0000 0.0000 3.4641
0.0000 3.5000 1.5708 0.0000 1.1339 0.0000 0.0000 4.9497
0.0000 4.0000 1.5708 0.0000 1.0000 0.0000 0.0000 4.0000
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Each row corresponds to the initial conditions of a test particle ordered as shown
in the previous diagram. Note that each initial condition is a double precision number,
however, for simplicity we show four digits.

Additionally, the ODEs system is composed by eight differential equations which
are hosted in the ODEs folder, the rhs.c handles the sets of equations. In the current
version, MALBEC includes the geodesic equations in Kerr and Schwarzschild space-
time. However, in a future update, other spacetimes will be included and also the code
capabilities will be extended to handle numerical metrics. MALBEC use a GPU imple-
mentation of the traditional fourth order Runge–Kutta (RK4) method, others method
of the RK family will be included soon. The use of the Runge–Kutta family is a well
extended practice in order to solve a system of ODEs, a complete description of the
implicit and explicit RK solvers can be found in Ref. [19]. Additionally, the output
file is an ASCII text, where all the generated data during the integration is written, this
file will be stored in the output folder in the following format,
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τ t x y z

0.0000 0.0000 6.0000 0.0000 0.0000 → i.c. for the 1st test particle
0.0000 0.0000 3.5000 0.0000 0.0000 → i.c. for the 2nd test particle
0.1000 0.1414 5.9997 0.0577 0.0000 → 1st test particle in τ = h
0.1000 0.2646 3.4971 0.1414 0.0000 → 2nd test particle in τ = h
0.2000 0.2828 5.9989 0.1155 0.0000 → 1st test particle in τ = 2h
0.2000 0.5292 3.4886 0.2825 0.0000 → 2nd test particle in τ = 2h
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

The previous example shows the output file for two geodesics in Schwarzschild.
The output.txt file is printed following the same particle order in the ic.txt file, in
addition, the numerical solutions are stored in Cartesian coordinates.

In CUDA, the threads are grouped into blocks, and the blocks are grouped into
grids. All threads running in the same block share the fast shared memory, these
threads can exchange data using this shared memory. It is convenient to understand
the restrictions on the kernel and the GPU in which the different threads are running,
because the proper choice of the block size can affect the code performance. One of
the keys to improve the performance is to keep the multiprocessors on the device as
busy as possible. To implement this idea, the maximum occupancy criterion is used
in MALBEC. The occupancy is the ratio of the number of active warps per multipro-
cessor to the maximum number of warps that can be active on the multiprocessor at
once. Higher occupancy does not always translates into higher performance, there is
a point above which additional occupancy does not improve performance. However,
low occupancy always interferes with the ability to hide memory latency resulting in
performance degradation, according to the CUDA-C best practices guide [20].

The kernel.cu file is responsible for calling the integrator method hosted in the file
rk4.cu and the rhs.c file, which loads the system of differential equations. Now, the
integration goes on until one of the following stop conditions are fulfilled.

– The final evolution time is reached.
– The particle approaches to the event horizon, i.e. the radial coordinate r ≤ 1 +√

1 − a2.

The first stop condition controls the global iterations, that is, the main loop of all threads
in the main file. This condition stops the evolution of all initial conditions when final
time set by the user is reached. On the other hand, the second stop condition is checked
individually for each thread. This verification is written inside of the rk4.cu file and
stops the evolution of the particular thread when the test particle reach to the event
horizon.

Finally, there are an auxiliary header and an extra file located in the common
folder, these files contains some functions definition needed to check the right data
transfer to the device, and also to display the MALBEC option menu. Finally, the
numerical implementation made in MALBEC allows to solve a large set of system
independently. Currently, MALBEC continues under development, however, this first
release v0.5.0 is available and free to download from the following link: https://github.
com/GonzaQuiro/MALBEC.
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Fig. 2 These figures show some unstable orbits around Schwarzschild. Since these orbits are unstable, will
not keep in its circular closed trajectories

6 Numerical analysis

In this section, we will perform several simulations of timelike orbits, these trajectories
are numerically evolved using MALBEC. As mentioned above, the goal in this work is
to introduce MALBEC into the community and perform several tests to ensure proper
execution of our GPU implementation, and also measures its performance. For this, we
start by studying the circular motion of timelike test particles around Schwarzschild
and Kerr BH using the standard RK4 method with a step-size h = 0.001. The initial
conditions are computed by Eqs. (17) and (18) assuming a unit mass as is usual in the
numerical practices. Then, at the end of this section, we focus on the calculation of
the convergence rates, we also make a performance test comparing our GPU scheme
against an analogous implementation in CPU.

6.1 Schwarzschild black hole

Consider first, the closed orbits around a Schwarzschild black hole in the equatorial
plane. Now, using MALEBC, we compute some unstable orbits in the equatorial plane
with a radius between the region 3 ≤ r ≤ 6. The Fig. 2 show the numerical results of
these simulations,

Since these orbits are unstable, they are expected to be sensitive to small fluctuations
in the energy and momentum presumably caused by the accumulated error inherent
in the numerical method. In other words, these orbits cannot remain in their circular
trajectories indefinitely, instead all the unstable trajectories will give a certain number
of laps around the compact object before to be expelled or reach the event horizon. On
the other hand, the orbits which are located at radius greater and equal to the ISCO,
can be kept in their closed circular orbits, as one can see in the Fig. 3.

A different behavior can be observed between the orbits initiated in the unstable
region against the stable ones. As mentioned above, small fluctuations in energy and
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Fig. 3 Some stable trajectories around the black hole, in the right figure each oscillation of the x coordinate
represent a lap around the compact source

momentum produce that the test particle leaves its circular closed trajectory. This
situation can be observed in MALBEC, just running the same initial condition using
different integration steps. The Fig. 4 show how the step-size h, and therefore, the
numerical precision (or the numerical resolution) may affect the final state of the test
particle.

Note that the blue horizontal line in the figure of the lower right corner represents
that the particle reaches the event horizon of the black hole, so the time evolution
of the geodesic finished. On the other hand, stable orbits are more “robust” to these
differences and remain unchanged regardless of the integration step, as we can see in
the Fig. 5.

Finally, in these numerical simulations it is possible to evidence the behaviour of the
unstable and stable orbits. As one can see in this subsection, the code is able to evolve
the timelike test particles by keeping the stable orbits at the same radius around the
black hole. However, the geodesics located in the unstable region show the expected
variations in the radial coordinate due to the unstable nature of the orbits.

6.2 Kerr black hole

The Kerr spacetime describes the geometry of a rotating uncharged axially-symmetric
black hole, so it is possible to find two types of closed trajectories, one co-rotating
to the black hole and the other counter-rotating. All the simulations performed by
MALBEC in this subsection will be assuming M = 1 and Kerr parameter a = 0.5.
However, the results presented here are analogous to those obtained for any a. For
a Kerr BH of a = 0.5, the co-rotating and counter-rotating ISCOs are given by the
following initial conditions,

r+
I SCO = 4.233002529530 p+

t = 0.9178820066607 p+
φ = 2.902866153235,

r−
I SCO = 7.554584714512 p−

t = 0.9548577730472 p−
φ = −3.884212632015,
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Fig. 4 These figures show how the numerical resumption affects the trajectory and the number of oscilla-
tions of two unstable geodesics

Fig. 5 These figures show the trajectory followed by a timelike particle in a stable orbit, the integration
was performed using different numerical resolutions
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Fig. 6 Unstable circular orbits for a Kerr spacetime with a = 0.5 and M = 1. The upper figures correspond
to co-rotating geodesics inside of the co-rotating ISCO while the inferior are counter-rotating orbits

where the ISCO radius can be calculated from Eq. (21) together with Eqs. (17) and
(18). We start by showing some trajectories inside of the ISCO, see Fig. 6,

It can be seen from the figures on the right that the test particles oscillate around
the compact source with a non-constant radius, also in some cases they can reach the
horizon of the black hole. As we can appreciate in the Fig. 6, these particles deviate
from their circular trajectories. This kind of behavior is a typical feature of unstable
orbits as we discussed in the Schwarzschild subsection. Thus, we can conclude that
the co-rotating orbits inside of the co-rotating ISCO, and analogously the counter-
rotating orbits inside of the counter-rotating ISCO, are unstable. On the other hand,
the geodesics located outside of ISCO are perfectly closed and they keep their radius
constant, as we can see in the following figures (Fig. 7).

As in the Schwarzschild case, the orbits initiated in the region r ≥ rI SCO are stable
trajectories and therefore will not be affected by the level of resolution chosen by
the user. Thus, we can highlight two regions, one unstable between the horizon and
rI SCO , and another stable which is outside of the ISCO. Finally, and for completeness,
we compute from Eq. (21) the ISCO for several angular momentum-mass ratio for a
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Fig. 7 These figures show the ISCO and two stable circular orbits for a Kerr BH of a = 0.5. The upper
figures correspond to the co-rotating trajectories while the lower are the counter-rotating

Kerr BH of unit mass (Tables 1, 2). Firstly, we show the co-rotating ISCOs with
their associated Kerr parameter, orbital energy, and angular momentum, and then, the
counter rotating orbits.

These values are useful for testing numerical codes because they delimit the regions
of stability of the orbits. Also, these values coincide with those obtained from Ref. [4]
for non-spinning particles. However, it should be noted that our equations are more
general in the sense it allows to compute any circular orbit around the compact source,
not just the ISCO as in that reference. Finally, based on the numerical results, we
can assure that the code has a good error handle, and evolves the system of equations
correctly.

6.3 Numerical convergence and error analysis

Now, we are ready to investigate about the numerical accuracy of MALBEC by com-
puting the convergence rates using the self-convergence test. For that, we introduce
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Table 1 Co-rotating ISCOs in Kerr for M = 1 and 0.1 ≤ a ≤ 1

a r pt pφ

0.1 5.669302571208 0.9393655520586 3.367109920810

0.2 5.329443296434 0.9353655759711 3.264028637021

0.3 4.978616830575 0.9306417139417 3.153598281507

0.4 4.614335370564 0.9249447067862 3.034065651040

0.5 4.233002529530 0.9178820066607 2.902866153235

0.6 3.829069418814 0.9087867149047 2.755986288640

0.7 3.393128470181 0.8963952722476 2.586500326227

0.8 2.906643854506 0.8778612656718 2.380440624350

0.9 2.320883041784 0.8442470080056 2.099784756124

1 1 0.5773502691896 1.154700538379

Table 2 Counter-rotating ISCOs in Kerr for M = 1 and 0.1 ≤ a ≤ 1

a r pt pφ

0.1 6.322894723789 0.9458134386776 −3.555943626969

0.2 6.639040203567 0.9484639574909 −3.643358857192

0.3 6.949272527004 0.9508242198443 −3.726917098184

0.4 7.254268411283 0.9529428538771 −3.807076678477

0.5 7.554584714512 0.9548577730472 −3.884212632015

0.6 7.850686185306 0.9565990449850 −3.958636355418

0.7 8.142965464834 0.9581908703729 −4.030609693862

0.8 8.431757830806 0.9596529818543 −4.100355267874

0.9 8.717352279606 0.9610016543547 −4.168064196332

1 9 0.9622504486493 −4.233901974057

a coefficient Q, which is used to measure the convergence order of our RK4 imple-
mentation. This coefficient is found by computing the ratio of the differences between
yh, yh/2, yh/4, which are the numerical solution with step-sizes h, h/2, and h/4 respec-
tively. Then, the coefficient Q is defined as,

Q = ‖ yh − yh/2 ‖
‖ yh/2 − yh/4 ‖ = 2m, (41)

wherem is the order of the numerical method, ‖ yh− yh/2 ‖ corresponds to subtraction
between the numerical solution y using the step h, and h/2 respectively. We apply the
Euclidean norm to find the differences between yh and yh/2, and also between yh/2
and yh/4 as follows,
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Fig. 8 Precision coefficient for
10 timelike geodesics solved
numerically in parallel using the
RK4 implementation of
MALBEC

‖ yh − yh/2 ‖ =
√√√√ 8∑

i=1

|yih − yih/2|2, (42)

‖ yh/2 − yh/4 ‖ =
√√√√ 8∑

i=1

|yih/2 − yih/4|2, (43)

here yih , yih/2, and yih/4 are the i-th components of the numerical solution. The sum
ranges from 1 to 8 since we are solving a system of eight ordinary differential equations
(see Sect. 2).

In order to compute the precision coefficient Q, we evolve 10 random timelike
geodesic in the Kerr spacetime with parameter a = 0.5. The results of this test is
shown in the following Fig. 8,

Since the RK4 is a fourth order method, the coefficient Q given by Eq. (41) must
be greater or closer to 24 = 16 for all time τ in a well implemented method. Also
is expected that the coefficient Q has fluctuations around 16 or tend to this value as
time increases as we can see in the last figure. So, based on the curves plotted in
Fig. 8, where the Q ≥ 16, we can confirm that our numerical implementation works
adequately.

6.4 Measuring MALBEC performance

Finally, we focus on evaluating the performance of the Runge–Kutta solver imple-
mented in CUDA. The speed-up of MALBEC will be compared with and equivalent
algorithm written in a standard sequential C. All the numerical runs in this paper
were performed on the Intel Core i7 CPU with 8 cores running at 2.6 GHz, 8 Gb of
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Table 3 Runtime between GPU
and CPU for the RK4
implementation

Initial conditions Runtime (min)

tGPU tCPU
tCPU
tGPU

10 0.0545956 0.04732473 0.9

100 0.11868735 0.49806882 4.2

500 0.3829293 2.43829992 6.4

1000 0.66657395 4.84753887 7.3

5000 3.543259 24.8818684 7.0

10000 7.14927418 48.8400202 6.8

50000 35.6253648 241.872849 6.8

Fig. 9 The MALBEC runtime
when 50 thousand random
timelike geodesics in a Kerr
spacetime are evolved. The red
line correspond to the RK4 GPU
implementation while the green
line to the CPU

RAM, a Nvidia Geforce GTX 960M with CUDA Toolkit 7.5.17, and GNU/gcc 4.8.4
installed on the 64-bit GNU/Linux Ubuntu 14.04. For this performance test, we will
measure the runtime needed to solve a set of maximum 50 thousand timelike ran-
dom geodesics. These geodesics will describe orbits around a Kerr BH with rotation
parameter a = 0.5, the final time for those running will be t f = 1000 and the step-
size used will be h = 0.1. We decided to use the Kerr BH instead of Schwarzschild
since the system of ODEs is more complex. The temporal metric used to compute the
time during this test is the C function clock_t located in the time.h header. The time
measured in these running are shown in Table 3.

Now by plotting these points, it is possible to evidence a linear behavior in the
execution times. Therefore, making a linear regression, it is possible to estimate the
time necessary to evolve an arbitrary number of initial conditions nic in CPU and GPU
(Fig. 9).
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Table 4 Runtime between GPU
and CPU without data saving

Initial conditions Runtime (s)

tGPU tCPU
tCPU
tGPU

10 2.16987 2.496072 1.2

100 2.301033 26.063659 11.3

500 4.628749 128.347269 27.7

1000 4.63499 254.726977 55.0

5000 13.598218 1270.015683 93.4

10000 27.066675 2550.618381 94.2

These equations can we written as,

tGPU = 0.0007nic + 0.0146, (44)

tC PU = 0.0048nic + 0.1876. (45)

Thus, the time needed to run 1 million of initial conditions can be estimated in tC PU ≈
3.3 days versus tGPU ≈ 11.7 h, showing an approximate speed-up factor of 7 in our
GPU implication.

The speed-up ratio depends mainly on two factors, the GPU-CPU data transfer,
and the data write rate to disk. Thus, this factor may increase if the computer used
have higher specifications, particularly if the PCI-e bus speed between the device
and the host is higher. On the other hand, the data saving can be optimized by using
unformatted output, which is the most efficient way to store data, such as a portable
binary. In order to illustrate both situations, we will run again a set of initial conditions,
but disabling the data saving in MALBEC and the memory copy from device to host.
Finally, the time measured is shown in the Table 4.

As one can see in this table, the performance of the GPU code increases notably
while the CPU has a small variation (see Table 3). MALBEC uses a formatted output,
however, the formatted output is more computationally expensive because of the need
to convert between internal binary data to ASCII text, besides, the data is written
from an array which have to iterate through the array elements. On the other hand,
unformatted data is not directly human readable, therefore, special care must be taken
when the file is written, since it could happen a mixture between the data of the different
orbits evolved simultaneously. We are evaluating to implement the binary outputs, in
our next update, in order to improve even more the speed-up of the code.

7 Final remarks and conclusions

We introduce and validate a new general relativistic ray-tracer code named MALBEC,
this code uses a GPU implementation of the Runge–Kutta solver to integrate null and
timelike geodesics around compact sources. The system of ODEs solved by MALBEC
is obtained from the 3 + 1 formulation of the GR, this describe the geodesic motion
for test particles moving around Schwarzschild and Kerr black hole.
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In order to validate our code, we derive a general set of equations that describe
any closed circular timelike orbits around Schwarzschild or Kerr. These equations
represent the orbital energy and the angular momentum of the test particle outside the
event horizon in the equatorial plane of the source. They are obtained by applying
several restrictions, like to assume a constant radius and set the radial momentum to
zero in the differential equations that govern the geodesic motion.

These equations are critical to show that MALBEC performs the correct integra-
tion of the ODEs system, since the numerical simulation can be contrasted with the
theoretical orbits in order to verify the correct numerical evolution. Several orbits,
in different stability regions, were subjected to numerical simulations. These simula-
tions show that the test particles fulfil the expected behavior of the theoretical orbits,
validating the numerical solutions obtained by MALBEC.

On the other hand, other tests were performed to our CUDA RK4 implementation.
First, we check the convergence rates of MALBEC, and then we do a performance
test where a large number of simulations were launched in parallel, obtaining a speed-
up factor of seven compared with a usual CPU implementation. Finally, based on
the excellent results obtained in each test, we can conclude that the first version of
MALBEC is ready to be released as a public open source. The code can be downloaded
from the following repository: https://github.com/GonzaQuiro/MALBEC. In a next
update, we will include extras metrics and astrophysical objects, we develop a new
algorithm to handle numerically computed metrics, and also we investigate several
performance technics for increase the speed of MALBEC.
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convergence test.
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