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In this paper we address, both experimentally and theoretically, the very grazing scattering of He atoms off
KCl(001) with incidence along the 〈100〉 channel. Our theoretical model combines a semiquantum description
of the scattering dynamics and a high-precision interaction potential. By means of a thorough analysis of the
quantum phase for in-plane scattering and rainbow trajectories, we are able to connect the presence of the
physisorption well with the significant enhancements of the corrugation and rainbow angle, relative to the hard
corrugated wall predictions. We trace this connection to dynamical effects on the incident and scattered beams
due to their traversing of the physisorption well. Finally, we show that the inclusion of van der Waals interactions
in the potential improves the theoretical accord with experiments for both the corrugation and the rainbow angle.

DOI: 10.1103/PhysRevB.104.235401

I. INTRODUCTION

Physisorption wells are a well-known feature of He-surface
systems [1], traditionally attributed to polarization and vdW
attractive terms in the potential. Despite their typical shallow-
ness (depth ∼ 10 meV), a recent study of grazing-incidence
fast atom diffraction (GIFAD) for the He-KCl(001) system
showed that this potential feature results in a sharp increase
of the surface corrugation and rainbow angle for incidence
along the 〈110〉 channel with very low normal energy (E⊥ <

60 meV) [2]. The key factor enabling this unexpected connec-
tion, besides GIFAD’s high sensitivity to details of the surface
electronic density, was the soft character of the He-surface
interaction, i.e., dynamical effects.

An additional appealing aspect of physisorption wells is
their location at He-surface distances where both polariza-
tion and van der Waals (vdW) interactions are expected to
significantly contribute to the potential, a fact that has been
mentioned in recent GIFAD studies for He-LiF(001) [3], Ne-
LiF(001) [4], and He-KCl(001) [2]. However, all three cases
focused on the 〈110〉 incidence channel, where the leading
order dispersive force is likely given by polarization [5],
which may hide vdW contributions. In fact, in Ref. [2], cal-
culations performed with a density functional theory (DFT)
potential in which the Perdew-Burke-Ernzenhof (PBE) [6]
exchange-correlation functional implicitly includes polariza-
tion but neglects vdW contributions, quantitatively captured
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the experimental corrugation and rainbow features, while al-
ternative functionals that included vdW yielded no significant
improvement on the theory-experiment accord.

In this context, in the present paper we address the very
grazing (low normal energy E⊥ = E sin2 θi with E the impact
energy and θi the glancing incidence angle) scattering of He
atoms off KCl(001) with incidence along the 〈100〉 channel.
We perform a thorough analysis of the role dynamical effects
play as probes of the physisorption well. The relevant phys-
ical quantities for this study are the surface corrugation and
the rainbow angle, given their already reported sensitivity to
dynamical effects which, for normal energies E⊥ < 60 meV,
are particularly enhanced by the attractive potential [2].

Concerning vdW interactions, heretofore they have proven
rather elusive for GIFAD [2,4,7–11]. In this regard, the con-
sidered grazing incidence atom-surface scattering problem
presents a combination of very favorable conditions for their
exploration: (i) a polarization-free incidence channel, (ii)
scattering conditions which keep He-surface distances large
enough for vdW to be relevant, (iii) significant changes in
the physisorption region when potentials that include vdW
interactions are used instead of the reference PBE one, and
(iv) dynamical effects which, for very low normal energies,
turn the surface corrugation and rainbow angle sensitive to
subtle changes in the physisorption region.

The pillars supporting our analysis are a DFT-based high
precision potential built without incorporating experimental
information of any sort, the surface initial value represen-
tation (SIVR) [12,13] which is a semiquantum approach to
describe the scattering dynamics and GIFAD experimental
patterns for E⊥ < 200 meV. Additional literature regarding
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GIFAD studies of the He-KCl(001) system can be found in
Refs. [2,9,14–17].

This paper is organized as follows: In Secs. II and III, we
briefly summarize the experimental method and theoretical
model; in Sec. IV A we present and discuss experimental and
simulated diffraction charts for the reference PBE potential;
in Sec. IV B, we analyze the potential energy surfaces (PESs)
obtained from different vdW approaches; in Sec. IV C, we
investigate dynamical contributions to the surface corrugation,
as well as to the quantum phase; in Sec. IV D, we focus on
the dynamical effects on the rainbow angle; in Sec. IV E, we
address vdW contributions to the surface corrugation and the
rainbow angle; and in Sec. V, we review our main results and
outline our conclusions.

II. EXPERIMENTAL METHOD

The experiments were performed in a setup already de-
scribed in Refs. [2,18]. A brief outline of the procedure
follows. The KCl(001) sample was cleaved in air and imme-
diately introduced into the ultrahigh-vacuum chamber to be
mounted on a five-axis manipulator. It was prepared by an-
nealing at about 650 K and its cleanness and crystallographic
order were verified from the resulting well-defined GIFAD
patterns. The 4He0 beam was obtained by the neutralization of
a He+ beam (with 300 to 600 eV primary energies) and subse-
quent collimation to a beam divergence lower than 1 mrad by
a set of apertures of 0.4×0.09 mm2 placed 0.36 m apart. The
two-dimensional angular distributions of scattered projectiles
were collected by a detector formed by microchannel plates,
a phosphor-coated screen and a CCD camera placed in the
forward direction at a distance of 1.27 m. From the recorded
GIFAD patterns, the effective surface corrugation and rain-
bow angle were derived as explained in detail in Refs. [2,19]
(particularly, see Supplemental Material of Ref. [2]).

III. THEORETICAL MODEL

The simulations of the scattering process yielding the GI-
FAD patterns were performed by means of the SIVR method
combined with high-precision DFT-based PESs for the He-
KCl(001) system. Following, we give a brief description of
both of these ingredients.

A. SIVR approach

The SIVR method is a semiquantum model for grazing
atom-surface scattering that takes into account quantum ef-
fects, such as interferences, coherence lengths, and classically
forbidden transitions, without losing the appealing and eas-
ily understandable description in terms of classical scattering
trajectories. The SIVR approximation is based on the well-
known IVR approach [20] which, within a Feynman path
integral formulation of quantum mechanics, introduces Van
Vleck’s approximation [21] for the quantum time-evolution
operator, without the additional stationary phase approxima-
tion, of customary use in semiclassical methods. The IVR
method provides results in excellent agreement with the full
quantum values for a wide variety of atomic, molecular and
nuclear processes [20,22–27], which demonstrates its ability

to describe quantum effects in complex systems evolving over
time.

Within the SIVR model, the IVR time-evolution operator
acts on the initial unperturbed state of the impinging projec-
tile, giving rise to the SIVR scattering state as a function of
the time t , |� (SIVR)(t )〉, with outgoing asymptotic conditions.
This scattering state can be expressed in terms of an ensemble
of classical trajectories with different initial conditions, where
the correlation among nearby trajectories is introduced by
a determinant associated with the Maslov function. Within
the quantum time-dependent distorted-wave formalism [28],
|� (SIVR)(t )〉 is used to produce the SIVR transition amplitude
A(SIVR) that reads

A(SIVR) =
∫

dro fs(ro)
∫

dko fm(ko) a(SIVR)(ro, ko), (1)

where a(SIVR)(ro, ko) is the partial transition amplitude associ-
ated with the classical projectile path rt ≡ rt (ro, ko), with ro

and ko, respectively, being the starting (at t = 0) position and
momentum. The corresponding functions fs(ro) and fm(ko)
describe the spatial and momentum profiles of the initial co-
herent wave packet at a fixed distance Z0 from the surface
where the time evolution is started.

From Eq. (1), it is clear that the transition amplitude A(SIVR)

contains the interference among different partial amplitudes
a(SIVR) associated with a given incident wave packet, which is
the ultimate origin of quantum effects. Therefore, the diffrac-
tion is mainly governed by the t evolution of the phase of
a(SIVR)(ro, ko), which is given, except for the Maslov phase
(i.e., an integer number times π/2), by

�
(SIVR)
t = φ

(SIVR)
t − Q · ro, (2)

where Q = K f − Ki is the projectile momentum transfer,
with K f (Ki) the final (initial) projectile momentum, and

φ
(SIVR)
t =

∫ t

0
dt ′

[
1

2mP
(K f − pt ′ )2 − VPS(rt ′ )

]
, (3)

with pt = mPdrt/dt being the classical projectile momentum,
mP the projectile mass, and VPS(rt ) the projectile-surface in-
teraction along the trajectory. For more details of the SIVR
model, we refer the reader to Refs. [12,13].

B. Potential energy surface

To build the PES we considered a relaxed KCl(001) surface
and a three-dimensional (3D) grid of positions Ri for the
He atom. By means of DFT, as implemented in the QUAN-
TUM ESPRESSO package [29], we calculated the potential
energy for each of these configurations. From the resulting
energy grid the projectile-surface potential of an arbitrary
configuration VPS(R) can be evaluated using the corrugation
reducing procedure [30] and a 3D cubic spline interpolation.
We performed the DFT calculations with the PBE exchange-
correlation functional [6], which leaves vdW interactions out.
We built three additional PESs, labeled vdW1, vdW2, and
vdW3, which include vdW interactions, respectively using
the rVV10 [31], DF2b86r [32], and D2 [33] approaches.
Further details regarding the four PESs can be found in
Refs. [2,17,34].
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FIG. 1. Sketch of the GIFAD geometry and sample pattern. He-
KCl(001) system and incidence along 〈100〉.

IV. RESULTS AND DISCUSSION

In this section, we present our experimental and simulated
GIFAD charts for 4He → 〈100〉KCl(001) to then focus on the
surface corrugation and the rainbow angle, both of them being
GIFAD-related properties. By means of a detailed analysis
of the potential features and SIVR GIFAD simulations, we
expose the different effects and interactions that contribute
to these properties when derived from the processing of ex-
perimental GIFAD patterns in the 5–200 meV normal energy
range. Simulations have been carried out for an impact energy
E = K2

i /(2mP ) = 600 eV, within the validity range of the
semiquantum SIVR method and corresponding to the highest
value used in the experiments. Regarding SIVR, note that the
key assumption of this theoretical model is the use of the IVR
time-evolution operator [20], whose range of validity extends
beyond the limits of most semiclassical theories [22,35–37].

The fact that experimental and theoretical results are ob-
tained independently, i.e., without incorporating information
of one another to ensure and/or optimize their mutual accord,
is central to the analysis here reported. The geometry of GI-
FAD for 4He → 〈100〉KCl(001) is depicted in Fig. 1 together
with relevant angles and crystallographic parameters. Note
that the scattering process is depicted with a broad line to
represent the entanglement of classical trajectories of similar
initial conditions, discussed in Sec. III A.

A. Diffraction charts

Recent articles [2,9,17] for the He-KCl(001) system show
that the overall features of the experimental GIFAD patterns
are reasonably well described by means of the PBE PES.
Hence, in this paper, we use this potential as a reference to
study dynamical effects as well as the role of vdW interactions
in the physical quantities of interest.

In Fig. 2, we depict the experimental and theoretical
diffraction charts, in terms of the normal energy E⊥ and the fi-
nal azimuthal angle ϕ f . The experimental chart was built from
azimuthally projected patterns for different normal energies,
normalized to their respective total intensities. An analogous
procedure was used for the simulated chart, obtained from the
SIVR approach with the PBE PES (henceforth PBE-SIVR).

The azimuthal positions of the bright streaks are de-
termined by the Bragg (interchannel) interference among
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FIG. 2. Two-dimensional diffraction charts, in terms of the nor-
mal energy E⊥ and the azimuthal angle ϕ f for impact energy E =
600 eV. (a) Experiment and (b) SIVR simulation with the PBE PES.

equivalent parallel channels, satisfying sin ϕ f = nλ/D with
λ = 2π/Ki, D the channel width and n the Bragg order
(n = 0 for the in-plane reflection). The intensity modulation
(both azimuthal and in normal energy) of the Bragg orders is
in contrast ruled by intrachannel interference, a well-known
challenge for all GIFAD models [4] due to its extraordinary
sensitivity to the potential features and the description of
the rainbow region. Intrachannel interference is given by the
potential landscape within a single channel, which gives rise
to the rainbow and supernumerary rainbows maxima. The
intrachannel pattern acts as an envelope function for the Bragg
maxima, determining their intensities.

The simulated chart in Fig. 2 fairly reproduces the experi-
mental trend despite some noticeable differences, such as the
apparent shift to lower E⊥ by about 20 meV in the outer-
most peaks of the simulated chart (similar to those present in
Refs. [9,17]), the high intensity of these peaks at the highest
E⊥ values, and the azimuthal width of the streaks. These
quantitative discrepancies might be the result of processes
not contemplated by our model, such as inelastic effects, de-
fects, vdW interaction, etc. Concerning inelastic mechanisms,
fingerprints of the physisorption well have been recently ex-
plored in polar profiles [38]. Note as well that, given the
reported sensitivity of the streaks azimuthal width to the colli-
mation setup [13,39], our simulations were carried out under
the same collimation conditions as the experiment.

235401-3



G. A. BOCAN et al. PHYSICAL REVIEW B 104, 235401 (2021)

FIG. 3. Axial potential as a function of the He-surface distance
Z for fixed values of the coordinate Y across the 〈100〉 channel.
Different exchange-correlation functionals are considered in each
panel: (a) PBE, (b) vdW1, (c) vdW2, and (d) vdW3 (see text for
the labeling of vdW approaches).

B. PES analysis

The He-surface potential VPS is a central ingredient in our
GIFAD simulations, which consider its full 3D character. The
scattering process in GIFAD, however, is mainly ruled by
the axial potential V 2D(Y, Z ), obtained from averaging VPS

along the channeling direction (x̂) [40], with Y the position
across the channel and Z the vertical He-surface distance.
In Fig. 3, we plot the axial PBE, vdW1, vdW2, and vdW3
potentials as functions of Z . The displayed curves correspond
to Y values across the 〈100〉 channel, with Y = YB = 0 and
Y = YM = D/2, respectively, its border (B) and middle (M)
[see Fig. 4]. Note that rows of alternating K+ and Cl− ions
run along the borders of the 〈100〉 channel, while there are no
surface atoms in its middle.

FIG. 4. PBE equipotential curves of the axial potential along
〈100〉 depicting the HCW (intrinsic) corrugation, the rainbow angle
and in-plane B and M trajectories for a given E⊥. Normal energy val-
ues are in meV. Nonlabeled curves correspond to values −1, −2, −3,

and −4 meV.

The salient feature in Fig. 3 is the physisorption well,
particularly, its presence in Fig. 3(a). Attractive contributions
to the potential are typically assumed to be polarization and/or
vdW in nature. However, notwithstanding the no-polarization
no-vdW scenario, respectively ensured by the 〈100〉 channel
and the PBE potential, Fig. 3(a) exhibits a shallow well,
around 5 meV deep in the 3.2–3.5 Å Z range, which pro-
vides evidence for an additional attractive contribution, likely
exchange-correlation in origin [41]. Regarding dispersion
contributions to the axial potential for He-KCl(001), polar-
ization effects have been reported along 〈110〉 [2], while
vdW effects are visible in Figs. 3(b)–3(d), when compared to
Fig. 3(a). In all cases, vdW dispersion forces result in a deeper
well and a larger variation of its location Z with the coordinate
Y across the channel.

Physisorption wells can be probed by low normal energy
He atoms with high sensitivity through the dynamical effects
they induce on GIFAD-related properties such as the surface
corrugation and rainbow angle. The processing of an experi-
mental GIFAD pattern [2] yields the shape of an equipotential
curve (associated to a given normal energy) from the mod-
ulation of the Bragg pattern along the azimuthal angle. The
surface corrugation and rainbow angle are then, respectively,
derived from the amplitude and maximum slope of this effec-
tive potential. Within a hard corrugated wall (HCW) model
[42], however, these quantities can be determined, for a given
E⊥, from geometric properties of the V 2D(Y, Z ) = E⊥ equipo-
tential curve, as illustrated in Fig. 4 for the 〈100〉 channel
and PBE potential. The intrinsic corrugation 	Z (HCW)(E⊥) =
Zmax − Zmin is determined by the Z positions of this curve’s
maximum (Zmax) and minimum (Zmin), while its maximum
slope max(dZ/dY ) gives the angle of maximal deflection,
i.e., the rainbow angle 
rb(E⊥). Note that within this HCW
description, the rainbow maximum can also be described in
classical terms, resulting from the accumulation of trajectories
reflected near an inflection point in Z (Y ).

Noteworthily, the HCW (intrinsic) corrugation and rain-
bow, derived directly from the axial potential (and hence
alternatively referred to as PES corrugation and rainbow),
cannot provide a complete picture of the scattering process
as they do not take into account either the persistence of the
He-surface interaction throughout the scattering process or the
quantum effects involved in the rainbow scattering. Instead,
within the SIVR approach, the surface corrugation is associ-
ated with the in-plane intensity, at ϕ f = 0, of the simulated
GIFAD pattern, while the rainbow angle is determined by the
bright outermost maximum in the intrachannel pattern, which
takes into account quantum effects like the dark side of the
classical rainbow angle [12,43].

C. Surface corrugation: Dynamical effects and phase analysis

In this section, we will restrict our theoretical analysis to
SIVR simulations with the PBE potential to show how dynam-
ical effects contribute to the surface corrugation derived from
experimental GIFAD patterns. Then, by means of a detailed
monitoring of the evolution of the phase associated with rele-
vant trajectories, we will prove the direct connection between
the behavior of the experimental (effective) corrugation at low
normal energy and the physisorption well.
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FIG. 5. Surface corrugation as a function of the normal energy
E⊥ obtained from experimental GIFAD patterns, the PBE PES (HCW
value) and SIVR simulations (with the PBE PES), the latter given by
Eq. (4).

1. Dynamical contribution to the effective corrugation

The SIVR specular intensity of a GIFAD pattern is de-
termined from the interference between partial transition
amplitudes corresponding to trajectories contained in the scat-
tering plane, i.e., impinging along the channel border (B) or
middle (M) [see Fig. 4]. The phase difference between B and
M trajectories is associated with their respective reflection
distances to the surface Zmax and Zmin and, hence, we define
the SIVR corrugation in a manner analogous to the HCW one
[42], that is,

	Z (SIVR) = φ
(SIVR)
B − φ

(SIVR)
M

2Kiz
, (4)

where φ
(SIVR)
B and φ

(SIVR)
M are the respective phases for B

and M trajectories, given by Eq. (3) for t → +∞, and Kiz =√
2mPE⊥ is the component of the initial momentum perpen-

dicular to the surface plane. Despite this HCW-like definition,
the SIVR corrugation is not proportional to the intrinsic one as
B and M trajectories experience different potential landscapes
and these dynamical effects also contribute to their phase
difference. Consequently, the SIVR corrugation contains in-
formation of both the intrinsic corrugation and dynamical
effects and can then be expressed as

	Z (SIVR) = 	Z (HCW) + 	Z (dyn). (5)

The effective (from experiments), intrinsic (from the PES)
and SIVR corrugations for He-KCl(001) have recently been
addressed for 〈110〉 incidence [2] and in Fig. 5 we analo-
gously show these quantities as functions of E⊥ along 〈100〉.
Upon decreasing E⊥, experiments show a slightly decreasing
behavior down to 30 meV when the tendency reverts and
corrugation starts to increase, though in a less eye-catching
fashion than the one obtained for 〈110〉. However, there is
more to this behavior than this first-glance impression. The
intrinsic corrugation 	Z (HCW)(E⊥), obtained from the axial
PBE PES, monotonically decreases thus failing to capture
the low E⊥ experimental increase. In contrast, the SIVR cor-
rugation 	Z (SIVR)(E⊥) is in almost quantitative accord with
the experiment in the whole E⊥ range considered, which,

combined with Eq. (5), means that dynamical effects are the
origin of the increase in the experimental corrugation for
E⊥ � 30 meV.

A measure of the increasing importance of dynamical ef-
fects for low E⊥ can be obtained from the relative difference
	Z (dyn)/	Z (HCW), which reaches 20% for E⊥ = 10 meV and
46% for E⊥ = 5 meV, lower though comparable to the respec-
tive 38% and 55% reported for 〈110〉 [2]. When compared
with 〈110〉 [2], the corrugation increase for 〈100〉 appears
at lower E⊥ and is less intense, due to the monotonically
decreasing behavior of its intrinsic corrugation. Nevertheless,
dynamical effects along 〈100〉 are intense enough to produce
the slope inversion of the experimental and SIVR corruga-
tions.

2. Analysis of the SIVR phase

As previously stated, the origin of the observed dynamical
effects for low E⊥ is related to the physisorption well. Follow-
ing, we prove this claim through the analysis of SIVR phases
φ

(SIVR)
B and φ

(SIVR)
M [see Eq. (4)].

Within a HCW scattering the phase φ(HCW) is given by

φ
(HCW)
j (Z ) =

{
2 Kiz(Z0 − Z ) incoming path
2 Kiz(Z0 − Zt p) outgoing path,

(6)

with Ztp the trajectory’s turning point (Z (B)
tp = Zmax and Z (M )

tp =
Zmin for B and M trajectories, respectively), and Z0 the initial
and final He-surface distance, for which VPS is negligible. The
difference

φ(dyn) = φ(SIVR) − φ(HCW) (7)

thus isolates the dynamical contribution to the SIVR phase,
which evolves steered by the potential landscape experienced
by the projectile along the trajectory [see Eq. (3)]. In Fig. 6,
this effect is visualized for B and M trajectories with E⊥ =
10 meV, whose phases φ(dyn) are plotted as functions of the
He-surface distance Z , together with the respective axial po-
tential curves.

From Fig. 6, the evolution of the phase φ(dyn) with Z can be
directly associated with the features of the potential and, for
very low E⊥, this significantly involves the attractive region.
For the incoming M trajectory, φ(dyn) increases from Z0 down
to the position of the well bottom Zwb, together with its first
derivative, while the kinetic energy of the normal motion
increases. Note that at Zwb there is an inflection point in φ(dyn).
From Zwb to the position of the potential root Zwe (well edge),
the derivative ∂φ(dyn)/∂Z decreases as does the normal kinetic
energy and at Zwe the phase φ(dyn) reaches a local maximum.
The last incoming interval is from Zwe to Ztp, where φ(dyn)

and its derivative decrease as does the normal kinetic energy.
In summary, ∂φ(dyn)/∂Z follows the normal kinetic energy
[Fig. 6(b)] and is proportional to the momentum pz throughout
the incoming part of the M trajectory and an analogous direct
connection can be made for its outgoing part, as well as for
the complete B trajectory.

As enlightening as Fig. 6 is, it still does not by itself pro-
vide the explanation of the experimental corrugation depicted
in Fig. 5. The next step in our analysis is then to separate
the accumulated phase resulting from the attractive part of
the potential, �

(dyn)
att , from that resulting from the repulsive
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φ (SIVR) − φ (HCW) due to dynamical effects and (b) the axial potential
along each trajectory. Both quantities are plotted as functions of Z.

part, �
(dyn)
rep , associated with the reflection process. Given the

symmetry of the problem, we can restrict our analysis to the
incoming part of the trajectory. The accumulated phases are
then given by

�
(dyn)
att = φ(dyn)(Zwe) − φ(dyn)(Z0),

�(dyn)
rep = φ(dyn)(Ztp ) − φ(dyn)(Zwe), (8)

and they are plotted, as functions of E⊥, for B and M trajec-
tories in Fig. 7. From Fig. 7, we can obtain the difference of
the accumulated phase along B and M trajectories for both the
attractive and repulsive regions,

	�(dyn)
rep = (

�
(dyn)
B − �

(dyn)
M

)
rep,

	�
(dyn)
att = (

�
(dyn)
B − �

(dyn)
M

)
att. (9)

Then, adding up these contributions we get

	�(dyn) = 	�(dyn)
rep + 	�

(dyn)
att , (10)

and, through Eq. (4), the phase difference 2	�(dyn) (the factor
of 2 is required to include the outgoing part of the trajectory)
provides the dynamical contribution to the corrugation. It is
clear in Fig. 7 that 	�

(dyn)
rep becomes negligible in the low

E⊥ limit. Thus it is 	�
(dyn)
att that determines the low E⊥ be-

havior of the SIVR and experimental corrugations displayed
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FIG. 7. Accumulated phase �(dyn) for border (B) and middle (M)
trajectories (incoming path) as functions of E⊥. Solid and dashed
lines, respectively, correspond to �(dyn) evaluated in the attractive and
the repulsive regions.

in Fig. 5. This proves that the experimental corrugation in-
crease for low E⊥ results from dynamical effects due to the
physisorption well. What is more, a similar analysis easily
extends the validity of the result to the 〈110〉 channel.

At this point, it is worth noting that the role of the ph-
ysisorption well as the dominant source of dynamical effects
is restricted to the low E⊥ region, E⊥ � 30 meV. For higher
normal energies, the repulsive region of the axial potential
provides the dominant dynamical contribution to 	�(dyn) as
straightforwardly deduced from Fig. 7.

D. Dynamical contribution to the rainbow angle

Within the SIVR approximation, the rainbow peak is the
intense outermost maximum in the intrachannel contribution
to a GIFAD pattern. In this section, we will address how SIVR
trajectories differ from HCW paths regarding the predicted
location of the rainbow peak. As in the previous section,
we restrict our analysis to SIVR simulations with the PBE
potential.

The surface corrugation and the rainbow angle complement
each other as the former probes the flatter regions of the po-
tential landscape, while the latter examines the steepest ones.
Another relevant difference is that SIVR trajectories con-
tributing to the rainbow peak inspect a much more extended
area across the channel than their corrugation counterparts (B
and M trajectories which run along the channel), making the
rainbow angle much more sentient to dynamical effects and
changes in the potential.

In Fig. 8, we show the rainbow angle 
rb obtained from
the processing of experimental GIFAD patterns as a function
of E⊥, contrasting it with the HCW rainbow 


(HCW)
rb , geomet-

rically obtained from the potential [see Fig. 4], and the SIVR
rainbow, 


(SIVR)
rb , evaluated from simulated pure intrachannel

patterns.
The experimental rainbow angle in Fig. 8 is approximately

constant for E⊥ > 60 meV and slowly increasing for lower
E⊥. In this latter region the data spread a little, and this
spreading is larger than the one obtained for the corrugation
due to the larger uncertainty involved in the evaluation of a
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FIG. 8. Rainbow angle as a function of E⊥. Symbols and lines
analogous to Fig. 5.

second derivative (the maximum slope). The rainbow angle



(HCW)
rb obtained from the potential (PBE PES) corresponds to

an unrealistic HCW dynamics and yields, for decreasing E⊥, a
monotonic decreasing behavior in poor accord with the exper-
iment. Instead, 


(SIVR)
rb obtained from simulated intrachannel

patterns greatly improves the agreement with the experimental
data as they both include dynamical effects.

As was the case for the corrugation, dynamical effects for
low E⊥ can be traced to the presence of the physisorption
well. This is clearly visualized in Fig. 9 where, in the top
panel [Fig. 9(a)], a selection of trajectories contributing to the
rainbow peak is plotted within an equipotential map, while the
bottom panel [Fig. 9(b)] depicts the corresponding axial po-
tential curves. Any of these trajectories zt (yt ) can be split into
three sections—incoming, reflection, and outgoing—where
the potential V 2D(yt , zt ) is, respectively, attractive, repul-
sive, and attractive again. Note that in the latter region, the

FIG. 9. (a) SIVR trajectories deflected to 
 f ∼ 
rb, with E⊥ =
10 meV and the PBE potential. (b) Axial potential along each of the
depicted rainbow trajectories zt (yt ).

trajectory’s inflection point, determined from the maximum of
dzt/dyt , occurs at (Y, Z ) coordinates which give the minimum
potential along the trajectory. Another feature worth mention-
ing is that the maxima of the potentials along the selected
trajectories are slightly below 10 meV because trajectories
transfer a little momentum to the direction across the channel
(pz → py) before reaching their turning points, where pz = 0.

At this point, we will return to Fig. 8 where it is evident
that for the 〈100〉 channel, dynamical effects are not lim-
ited to the low E⊥ region but rather they are clearly visible
in the whole normal energy range considered. However, for
E⊥ � 100 meV, rainbow trajectories are not altered by the
shallow attractive potential and dynamical effects take place
in the reflection region due to the repulsive potential. We can
then conclude that the relevance of the attractive and repulsive
regions depends on the E⊥ value, this being observed both for
the corrugation and the rainbow angle through the respective
analysis of the SIVR phase and the rainbow trajectories.

E. The role of van der Waals interactions

Heretofore, our theoretical analysis of the surface corruga-
tion and rainbow angle has been made with a PBE potential,
which disregards interactions between induced dipoles, i.e.,
vdW interactions. This level of approximation yielded excel-
lent agreement with experiment for the 〈110〉 channel [2] and
it also performed very well for the corrugation along 〈100〉, as
shown in Fig. 5. However, the SIVR-Experiment accord for
the rainbow angle depicted in Fig. 8 was not as rewarding.
This discrepancy could be associated with the higher sen-
sitivity of the rainbow angle to details of the potential, in
particular the neglect of vdW interactions, which markedly
affect the physisorption well, as shown in Fig. 3. Therefore, in
this section we will study the role of vdW interactions on the
corrugation and rainbow angle for the 〈100〉 channel.

Motivated by the unsatisfactory description of low
electron-density regions provided by local and semilocal
exchange-correlation functionals, several approaches have
been developed to incorporate vdW interactions within DFT
[31–33,44–49]. In this paper, we compare the performance of
three of them, already introduced in Secs. III B and IV B. Note
that while both vdW1 and vdW2 incorporate vdW interactions
in a self-consistent fashion and may additionally alter (i.e., im-
prove) the PBE functional in regions where vdW contributions
are negligible, vdW3 was the method used in early GIFAD
and rainbow scattering studies of He-KCl(001) [14], which
introduces a semiempirical correction at large distances, is not
self-consistent and is matched to the PBE potential at small
distances.

The intrinsic (PES) and SIVR corrugations obtained with
vdW1, vdW2, and vdW3 potentials are displayed in Fig. 10
together with the effective corrugation derived from exper-
iments. The reference PBE-PES and PBE-SIVR curves are
included as well. The qualitative behavior of the SIVR and in-
trinsic corrugations is not altered upon switching from PBE to
the vdW PESs. When compared to the PBE SIVR corrugation,
vdW1 and vdW3 yield a poorer agreement with experiment.
In contrast, vdW2 satisfactorily matches the experimental
values which, for very low E⊥ fall between the PBE and
vdW2 curves, suggesting this latter vdW functional gives an
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FIG. 10. Corrugation as a function of E⊥. Symbols and color
lines analogous to Fig. 5 with (a) vdW1, (b) vdW2, and (c) vdW3
potentials. In all panels, red thin lines correspond to PBE-SIVR i
(solid) and PBE-PES (dashed) results, and are meant to be used as a
reference.

appropriate representation of the flat regions in the potential.
However, the comparison of the corrugations obtained with
PBE-SIVR and vdW-SIVR allow for no strong claims regard-
ing the role of vdW in GIFAD for He → 〈100〉KCl(001).

In fact, the rainbow angle is, as previously mentioned, a
more interesting physical quantity for addressing vdW effects
and, in Fig. 11, experimental, PBE-SIVR, and vdWs-SIVR
rainbow angles are displayed together with the HCW values
taken from the respective potentials. From a first inspection,
it is clear that vdW3 does not provide a good description of
the rainbow angle, so we will focus our discussion on vdW1
and vdW2 approaches. The HCW rainbows obtained from
vdW1 and vdW2 are very similar to the PBE reference, in
poor accord with the experimental data. This is to be expected
as a single equipotential curve determines the rainbow angle
for each E⊥ and therefore the effect of the physisorption well
is mostly neglected. In contrast, the SIVR rainbow angle for
a single E⊥ carries information of the potential throughout
the rainbow scattering trajectories, resulting in a much higher
sensitivity. Remarkably, both vdW1-SIVR and vdW2-SIVR
improve the accord with experiment, particularly so for E⊥ <

80 meV. What is more, vdW1 quantitatively reproduces the
experimental rainbow for the whole normal energy range con-
sidered.
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FIG. 11. Rainbow deflection angle as a function of E⊥. Symbols
and lines analogous to Fig. 10.

Combining the information obtained from Figs. 10 and 11
we can say that both vdW1 and vdW2 provide a satisfactory
description of the interaction potential. vdW1 gives a very
good performance for the rainbow, i.e., better describes the
highest-slope regions of the potential landscape, while vdW2,
though not as good as the vdW1 rainbow description, provides
a more general improvement over the PBE potential, involving
both flat and high-slope regions.

V. CONCLUSIONS

In this paper, we have addressed fast He diffraction from
KCl(001) for grazing incidence conditions along the 〈100〉
channel. Our study has focused on the physisorption well
showing that, for low E⊥, it is a source of dynamical effects
which deviate the surface corrugation and rainbow angle from
the HCW predictions, producing an increase of both quan-
tities. This connection is accomplished through respective
thorough analysis of (a) the SIVR phase associated to in-plane
scattering and (b) rainbow trajectories.

Upon inclusion of vdW interactions, the resulting slight
changes, of just a few meV, on the physisorption region trans-
late into alterations of the surface corrugation and rainbow
angle, the latter being particularly significant. Therefore, the
present paper achieves a robust description of the hitherto
elusive vdW effects on GIFAD-related physical quantities,
thus positioning GIFAD and the SIVR method in the map
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of sensitive quality checks for different approaches aimed to
describe vdW interactions within DFT [50].

Additional points worth mentioning are (a) theoretical
and experimental results are obtained independently, (b)
the physisorption well persists even in a no-polarization
no-vdW scenario, such as that provided by the 〈100〉 in-
cidence and the PBE potential and, (c) for the 〈100〉
channel, dynamical effects are not restricted to the low
E⊥ region. For higher normal energies, E⊥ � 60 meV, the
repulsive potential is a relevant source of dynamical ef-
fects, while the role of the physisorption well becomes
negligible.

As future perspectives, the analysis tools developed in this
paper for He-KCl(001) could be applied to other alkali-halide
surfaces and/or noble gas atoms to check if vdW interactions
are also relevant for those systems and compare the perfor-
mance of the different approaches.
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