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Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in
neurodegenerative diseases as well as pain conditions. Classically, ASICs are described
as transiently activated by a reduced pH, followed by desensitization; the activation
allows sodium influx, and in the case of ASIC1a-composed channels, also calcium to
some degree. Several factors are emerging and extensively analyzed as modulators,
activating, inhibiting, and potentiating specific channel subunits. However, the signaling
pathways triggered by channel activation are only starting to be revealed. The channel
has been recently shown to be activated through a mechanism other than proton-
mediated. Indeed, the large extracellular loop of these channels opens the possibility
that other non-proton ligands might exist. One such molecule discovered was a toxin
present in the Texas coral snake venom. The finding was associated with the activation
of the channel at neutral pH via the toxin and causing intense and unremitting pain. By
using different pharmacological tools, we analyzed the downstream signaling pathway
triggered either by the proton and non-proton activation for human, mouse, and rat
ASIC1a-composed channels in in vitro models. We show that for all species analyzed,
the non-protonic mode of activation determines the activation of the ERK signaling
cascade at a higher level and duration compared to the proton mode. This study adds to
the growing evidence of the important role ASIC1a channels play in different physiological
and pathological conditions and also hints at a possible pathological mechanism for a
sustained effect.

Keywords: ASIC1a, proton activation, non-proton activation, ERK, MitTx, pain

INTRODUCTION

ASICs, also called proton-gated channels belong to the degenerin/epithelial Na+ channel gene
family (Boscardin et al., 2016). Five genes encode at least seven ASIC subtypes in rodents and
humans, and three subunits constitute a functional unit in either homotrimeric or heterotrimeric
structures (Boscardin et al., 2016). These channels are primarily expressed in the nervous system
(Zha, 2013) and linked to several physiological (Uchitel et al., 2019) and pathological conditions
(Chu and Xiong, 2013), thus different pharmacological tools have been developed as potential
therapeutic treatments.

Abbreviations: ASIC, Acid Sensing Ion Chanel; eASIC, eGFP-ASIC1a; eASICx1 or eASICx3, eGFP-ASIC1a expressed at
a single or triple-level; ERK, extracellular signal-regulated kinase; CaMKII, Calcium/Calmodulin kinase II.
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ASICs are Na+-selective ion channels, and ASIC1a,—a key
subunit in the central nervous system (Wang et al., 2016)—,
show, in addition to its Na+ permeability, a small permeability
to Ca2+ (Gründer and Chen, 2010). ASIC1a has been linked to
neurodegenerative diseases (Friese et al., 2007; Wong et al., 2008;
Sluka et al., 2009; Sun et al., 2011), ischemia (Xiong and Xu,
2012), and pain (Duan et al., 2007;Wemmie et al., 2013; Fan et al.,
2018). The unique permeability to calcium compared with other
subunits makes ASIC1a a candidate to play a prominent role in
neuronal death (Hoagland et al., 2010).

Under experimental conditions, ASICs are activated only by
rapid pH drops, and, particularly homomeric ASIC1a channels
desensitize rapidly in the continuous presence of acidic pH (Chu
and Xiong, 2013). This fact remains puzzling, as to whether
a significant amount of ASIC1a current can be activated in
pathological conditions, and as to whether the effect of its
activation could be long-lasting (Chu and Xiong, 2013; Tikhonov
et al., 2019; Alijevic et al., 2020); thus the functional significance
of these channels remains to be determined. As pointed out
by Zha (2013), although the canonical ligands for ASICs are
protons, the massive extracellular domain of ASICs has led
to the speculation that these receptors may also respond to
other ligands (Zha, 2013) like MitTx purified from the venom
of the Texas coral (Kweon and Suh, 2013). The toxin has
been instrumental to document ASIC1a channels in an open
state (Baconguis et al., 2014). MitTx elicits robust pain-related
behavior in mice via activation of ASIC1 channels on capsaicin-
sensitive nerve fibers (Bohlen et al., 2012).

Gautschi et al. (2017) on the unresolved question of the
unphysiological pH values used to activate the channels and the
transient nature of the proton evoked ASIC current, described
another type of activation other than acid, as a ‘‘non-proton’’
mechanism (exemplified by MitTx), that activated a large
sustained and non-desensitizing current at neutral pH and
exceeding in magnitude the maximal current evoked by the
proton mode (Gautschi et al., 2017).

Many studies have focused on the mechanism regulating the
trafficking of the channel (Zeng et al., 2014; Boscardin et al., 2016;
Wu et al., 2016), leading to changes in the amount of channel
at the plasma membrane. The downstream signaling of ASIC
channels, however, is only starting to be documented.

As an example, the activation of ERK via ASIC1a
(downstream ASIC1a activation) has been analyzed in different
pathological conditions (Chen et al., 2016; Sun et al., 2018; Zhu
et al., 2020, 2021). In addition, this pathway has also been linked
to inflammation (Yu et al., 2015). Conversely, the effect of MAP
kinases on ASIC1a (upstream of ASIC1a activation) has also
been analyzed in different scenarios (Duan et al., 2012; Aissouni
et al., 2017; Peng and Kellenberger, 2021; Wei et al., 2021)
especially in association to its effect on the insertion of channels,
and thus increase of channels in the plasma membrane.

Work by Yu et al in striatal neurons established a critical
link between ASIC1a activity and CaMKII-ERK signaling
in the regulation of striatal synaptic remodeling (Yu et al.,
2018). In addition, they showed up-regulation of the
ERK pathway in HEK cells via acid activation of ASIC1a
endogenous channels.

The ERK kinase belongs to the family of mitogen-activated
protein kinases (MAPK) that operate within signaling cascades
(Maik-Rachline et al., 2019). The activation of this pathway
and the duration of the activation (Marshall, 1995; Kriegsheim
et al., 2009) can lead to different biological responses that can
determine the fate of a cell. In addition, the activation of the
pathway has been implicated in pain research. Activation of the
kinase via phosphorylation in the dorsal root ganglia has been
linked to different models of pain in animals (Cruz and Cruz,
2007; Maruta et al., 2019). Different levels of activation of ERK
were distinguished in response to acute noxious stimulation or
chronic noxious stimulation by Cruz and Cruz (2007), with more
intense levels of ERK phosphorylation and longer duration in
animals with chronic inflammation of the hind paw or joint. In
the study, spinal ERK activation was upregulated and became
persistent (Cruz and Cruz, 2007).

In this study, we aim to address aspects of the downstream
effects triggered by non-proton activation of ASIC1a channels.

MATERIALS AND METHODS

Cellular and Molecular Biology
Human embryonic kidney 293 (HEK) cells [passage 18–26,
American Type Culture Collection (ATCC) number CRL-1573]
were maintained by serial passages. Primary striatal cultures
were prepared from mice of the C57BL/6 genetic background
as control and ASIC1a−/− mice (generated using mice of the
C57BL/6 genetic background) were provided by the laboratory
of Dr. John A. Wemmie (University of Iowa, Iowa City, IA)
as used before (González-Inchauspe et al., 2017) and prepared
according to the protocol used in Sodero et al. (2011). All
experiments involving mice were performed following national
guidelines for the humane treatment of laboratory animals from
the University of Buenos Aires (CICUAL Protocol #112), which
are comparable to those of the USANational Institutes of Health.
For biochemical analysis, six or 12-plates were coated with
0.1 mg/mL of poly-L-lysine (PLL, Sigma, P2636), and dissociated
neuronal and HEK cells were plated at a density of 2.2 × 105 or
1.4 × 105 cells respectively. HEK cells were grown in Dulbecco’s
Modified Eagle’s Medium containing 4 mM L-glutamine, 4.5 g/L
glucose, and 110 ml/L sodium pyruvate and supplemented with
10% Fetal Calf Serum (NatoCor). Transfection of the cells was
performed with the calcium phosphate method as described
previously (Weissmann et al., 2013). The eGFP-ASIC1a encoding
plasmid used was a gift of Dr. Stefan Gründer. Transfected cells
were used 2 days after transfection. Neurons were grown in
Neurobasal mediumTM (Thermo Fisher) with B27 supplement
(Thermo Fisher) and used after 7–8 days in vitro. HEK and
neurons were both kept at 37◦C and under 5% CO2. For
microscopy experiments, cells were plated on glass coverslips
(12mm rounded Carolinar Assistant-Brand Cover), coated with
1 mg/ml of PLL (Sigma, P2636). All materials were purchased
from Sigma unless stated otherwise.

Drugs and Treatments
Incubation of cells: ASIC inhibitors were used at the following
concentrations before incubation with other reagents: Pctx-1
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(Alomone, STP-200), 20 nM, 30 min before; as previously used
in Salinas et al. (2020). MitTx (Alomone, M-100) was used at
a concentration of 20 nM for 2, 10 min according to Alomone
Labs and (Bohlen et al., 2012). Solutions used for the different
incubations were prepared as follows: for incubation of cells
with the different reagents and controls were: solution at pH
7.3, containing the following (in mM): NaCl 128, KCl 2.5,
CaCl2 2, MgCl2 1, glucose 15, sucrose 15, HEPES 5, MES
5 adjusted to pH 7.4; and for treatments to activate through the
proton mechanism solution were adjusted to pH 6 with HCl
(‘‘pH6’’).

Western Blotting (WB)
Western blots were performed according to standard procedures.
In brief, cells were resuspended in a 1% SDS HEPES
pH 7.4 lysis buffer containing a protease inhibitor cocktail
(Roche, cOmpleteTM); in the case of lysates used for detection
of phosphorylated ERK, the buffer included 50 mM sodium
fluoride, 2 mM sodium orthovanadate. Proteins were resolved by
4–10% polyacrylamide gels and transferred onto Immobilonr-
FL PVDF membranes. Non-specific binding was blocked by 1%
non-fat powdered milk in TBS containing 0.2% Tween-20 for
60 min at RT. Membranes were incubated overnight at 4◦C with
primary antibodies in 1% BSA in TBS, followed by the addition
of secondary antibodies in 1% non-fat powdered milk in TBS.

The following primary antibodies were used: rabbit polyclonal
anti ASIC1 (Alomone ASC-014, 1:1,000); mouse monoclonal
anti-tubulin (DM1a; Cell signaling #3873, 1:5,000); rabbit
polyclonal anti total ERK (Santa Cruz, C9, 1:500); rabbit
polyclonal anti phosphoERK (Cell Signaling, SC-7383, 1:500);
pCaMKII (Phosphosolutions, p1005-286). Initially, each
antibody was detected in full membranes to verify that only
the expected MW bands were present and the optimal dilution
was decided upon. Accordingly, membranes were cut using
MW standards as a guide to detect different proteins in the
same membrane. No membrane stripping protocols were
performed, thus bands of the same MW were obtained from
the same samples run on different membranes. Reactive bands
were detected by the LI-COR Odyssey system, using secondary
antibodies: 926-68073 IRDye 680RD Donkey anti-Rabbit IgG or
926-32212 IRDye 800CW Donkey anti-Mouse.

Images were taken using the LI-COR Odyssey system and
quantified with ImageJ software (NIH, USA).

Detection of Proteins by
Immunofluorescence (IF)
Cells grown on PLL-coated glass coverslips were fixated with
4% p- formaldehyde in PBS, permeabilized with 0.1% Triton
x-100 (10 min), and treated with blocking solution (1% BSA,
0.01% Triton x-100 in PBS) for an hour at RT. Coverslips
were incubated then with the primary antibody for overnight
in blocking buffer, washed in PBS, and incubated with the
secondary antibody for 60 min in blocking buffer. After a final
wash in PBS, coverslips, were placed onto a slide and covered
with a mounting medium. The antibodies used were rabbit
polyclonal antibody against mouse monoclonal anti-tubulin
(DM1a; Cell Signaling, #3873, 1:2,000); rabbit polyclonal

anti-phospho ERK (Phosphosolutions, p160–202, 1:100). Images
were taken using an Olympus FV300/BX61 microscope with a
60× (1.4 NA) oil-immersion objective. Alexa-647 and Alexa-
488-conjugated secondary antibodies (ThermoFisher) were used.

RESULTS

Activation of pERK Through ASIC1a via
Non-proton Mechanisms
The effect of MitTx on the activation of ERK on mouse striatum
cells was studied since the toxin can activate ASIC1a channels
at neutral pH and for a longer duration (Bohlen et al., 2012).
The effect was studied at the mouse striatum neurons as these
cells are enriched in ASIC1 channels composed predominantly of
ASIC1a subunits constituting homomeric channels (Jiang et al.,
2009). Furthermore, Yu et al. (2018) showed at the striatum that
a decrease in pH triggered the activation of the CaMKII signaling
pathway leading to the activation of ERK kinases.

We decided to analyze whether the downstream effects of
MitTx activation would lead to the same signaling pathways as
those triggered by proton activation.

For this purpose, mouse striatal cultures were treated with
MitTx and compared to cultures treated with acidic solutions.
As shown in Figures 1A–D, MitTx-treated cultures evidence an
increase in phospho ERK levels following the same pattern as
phospho CaMKII activation which is much stronger than that
shown for pH6-treated cultures at 2 min (as documented by
Yu et al., 2018) or 30 min. The signal ratio of pERK/tERK for
pH6 2’ treated cells is four times greater than control cells (pH6
2’ 3.77 ± 0.07), and MitTx for 2’ leads to more than a 5-fold
increase (MitTx 2’ 5.39 ± 0.08). This effect is not present in
striatal cultures obtained from ASIC1a knock-out cultures and
treated either with pH6 solutions or MitTx (Figure 1B).

Proton and Non-proton Activation of
ASIC1a Human Subunits
The effect of the non-proton activation of ASIC1a channels was
analyzed further with MitTx on HEK cells that endogenously
express ASIC1a subunits (Gunthorpe et al., 2001). Human,
rat, and mice ASIC1a channels show differences, as shown
for instance by a different degree of glycosylation that leads
to different surface channel levels (Kadurin et al., 2008) and
levels of activation (Xu et al., 2018). Therefore, we also tested
the mechanism on this subunit. The activation of the pERK
pathway has also been shown through the treatment of HEK
cultures with pH6 solutions (Yu et al., 2018). Figure 2 shows
the effects of either pH6 or MitTx treatments of cultures for
different durations and also after incubation of cultures with
Psalmotoxin (Pctx-1) a toxin that stabilizes the desensitized state
of the channel constituted byASIC1a subunits (Chen et al., 2005).

The degree of ERK phosphorylation is not only greater
through the non-protonmechanism [compare pH6 2’ 6.10± 0.13
(6-fold increase) vs. MitTx 2’ 7.98 ± 0.10, 8-fold increase] but
also, these levels increase in time compared to the transient
activation of ERK via the proton mechanism (MitTx 10’
10.90 ± 0.17, 10-fold increase to control levels). In both cases,
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FIGURE 1 | Non-proton activation of ASIC1a in striatal neurons. Representative membranes of lysates from 7 DIV wild type (A), and ASIC1a knockout (B) C57 mice
striatal neuronal cultures were incubated with MitTx and compared to treatment with pH6 solutions for the time indicated (2, 10, or 30 min). The detection was
performed with anti ASIC1, tubulin (Tub), phospho ERK (pERK), total ERK (tERK), or phospho CaMKII (pCaMKII) antibodies, and Licor secondary antibodies. (C)
Examples of images of striatal cultures used and treated with MitTx and stained with tubulin (red) and phosphoERK (green) antibodies and secondary Alexa fluor
antibodies, 60× objective used. Scale bar 10 µm. (D) Result of the bands detected in (A) for pERK/ERKt levels relative to control samples showing an increase in
both, pH6 or MitTx treatments and the same pattern of increase for pCaMKII. Notice the lack of effect in ASIC1a knock-out derived cultures. (A) Notice that plots are
the result of the signal intensity of the bands detected for each antibody, and tERK and tubulin are used as loading controls between loaded samples. Data are
presented as the mean ± SEM ANOVA and Dunnet post hoc test for treatments against the control were performed, mean values above bars; n = 3 membranes,
****p < 0.0001; ***p 0.0001–0.001; ns: no significant differences. Mean values expressed relative to control (Ctr) levels ± SEM are as follows: for pERK/tERK: pH6
2’ 3.77 ± 0.07; pH6 30’ 1.32 ± 0.09; MitTx 2’ 5.39 ± 0.08. For pCaMKII/Tub: pH6 2’ 4.97 ± 0.14; pH6 30’ 1.20 ± 0.07; MitTx 2’ 6.37 ± 0.28.

Pctx-1 can inhibit the activation of ERK to control levels.
Phosphorylated ERK was detected even after 30 min incubation
with MitTx (not shown).

Effect of Proton and Non-proton Activation
and Different Levels of ASIC Channels
Different pathological conditions show an increase in ASIC1a
levels (Duan et al., 2007). To model this situation and analyze
the signaling pathway triggered by the non-proton activation of
the channel, we used HEK cells transfected with different levels
of ASIC1a channels using a plasmid encoding for the rat ASIC1a
subunit fused to eGFP (eASIC), thus distinctively detected inWB
via the different molecular weights (due to the eGFP tag added),
as used before (Salinas et al., 2020).

As depicted in Figure 3, rat ASIC1a is also activated
to a greater level when incubated with MitTx instead of
pH6 (MitTx 3.42 ± 0.15 vs. pH6 1.85 ± 0.08). When
HEK cells overexpress the channel (Figures 3B,C), the
activation of the ERK pathway is increased at basal levels

(compare Ctr and eASICx1 bands, Figure 3A; and eASICx3
3.16 ± 0.06, normalized to eASICx1 levels), and is activated
further via the proton or non-proton signaling mechanism.
But as the increase becomes greater (compare transfection
of plasmids to different levels, either ‘‘1x’’ or ‘‘3x’’), the
non-proton mechanism is still able to activate the channel
to greater levels (eASICx3 MitTx 9.96 ± 0.12), whereas the
proton activation is no longer able to reflect this change
(Figures 3A,B). Interestingly, the pERK/tERK ratio of eASICx1-
MitTx/eASICx1 and eASICx3-MitTx/eASICx3 remains about
the same (3-fold increase).

DISCUSSION

In this study, we analyzed the signaling pathway triggered
by the activation of ASIC1a channels through a non-proton
mechanism.

We show that this mechanism determines the activation of
the CaMKII-ERK pathway for a longer period than that resulting

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 October 2021 | Volume 15 | Article 735414

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Salinas Castellanos et al. Downstream Signaling in ASIC1a Activation

FIGURE 2 | Proton and non-proton activation of ASIC1a in HEK cells. (A) Representative membranes of lysates of HEK cells treated with pH6 or MitTx for 2 or
10 min or preincubated with Pctx-1 compared to untreated cells (control, Ctr) and detected with phosphoERK (pERK), total ERK (tERK), and ASIC1 antibodies. (B)
Representative membrane of the same lysates to detect pCaMKII levels. (C) Plots showing detected levels of pERK (top panel) or pCaMKII (lower panel). Notice that
the increase in kinase levels goes further at a later time point (2 vs. 10 min) in MitTx treated cultures compared to pH6 treated ones that show an increase at 2 min
followed by a reversal to control levels consistent with the proton-activated desensitizing mechanism. (A) Notice that plots are the result of the signal intensity of the
bands—with tERK and tubulin used as loading controls between loaded samples—and expressed relative to control samples. Data are presented as the
mean ± SEM ANOVA and Dunnet post hoc test for treatments against the control were performed, mean values above bars; n = 3 membranes, ****p < 0.0001; ***p
0.0001–0.001; ns: no significant differences. Mean values expressed relative to control (Ctr) levels ± SEM are as follows: for pERK/tERK: pH6 2’ 6.10 ± 0.13; pH6
10’ 1.23 ± 0.11; pH6 2’ Pctx 1.39 ± 0.08; MitTx 2’ 7.98 ± 0.10; Mittx10’ 10.90 ± 0.17; MitTx 2’ Pctx 1.18 ± 0.05; MitTx 10’ Pctx 1.42 ± 0.05. For
pCaMKII/Tub: pH6 2’ 7.31 ± 0.21; pH6 10’ 1.16 ± 0.06; pH6 2’ Pctx1.14±0.07; Mittx 2’ 8.88 ± 0.15; Mittx 10’ 10.76 ± 0.32; Mittx 2’ Pctx 1.17 ± 0.07.

from proton activation. This mechanism was conserved for the
different ASIC1a subunits analyzed (mouse, in Figure 1, human
in Figure 2, and rat in Figure 3) in the different in vitro models.
Furthermore, the mechanism could even reach higher levels if
ASIC1a subunits were expressed at higher levels (Figure 3). The
fact that mouse striatal KO cultures showed no evidence for
this mechanism reinforces the argument that these mechanisms
analyzed act via ASIC1a and no other pH-sensitive receptor.

The pathway (downstream ASIC1a activation) has been
shown as signaling for different events relevant in physiological
as well as pathological conditions (Kriegsheim et al., 2009). The
mechanism, which is dependent on a stimulus that leads to the
three-tier activation cascade with sequential kinase activation,
has also been shown to crosstalk with the CaMKII pathway in
many cells (Illario et al., 2003; Salzano et al., 2012). Accordingly,
for some stimuli and cell models, CaMKII is necessary for

ERK activation, and the activation of both has been shown for
striatal cells through the proton-mediated activation of ASIC1a
channels (Yu et al., 2018). Nevertheless, whether the mechanism
requires the conducting channel is a matter of debate. We
showed that the presence of Pctx-1 prevents this mechanism
and that CaMKII is activated, but whether the mechanism could
rely on a conduction-independent pathway cannot be ruled
out. As an example, ASIC1a phosphorylation by RIP1 leading
to necroptosis pathways does not rely on conducting channels
(Wang et al., 2015, 2020). Future experiments will reveal more
details on the mechanism.

A comparative analysis of both mechanisms analyzed in
this work shows that the proton mechanism leads to transient
activation of ERK which can no longer be detected after
5 min. Increases or a decrease in pERK levels were detected
in previous work via ASIC1a. Amiloride significantly decreased
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FIGURE 3 | Proton and non-proton activation of overexpressed ASIC1a channels. (A) Representative membranes of lysates of cells control (ctr) or transfected with
eGFP-ASIC1a (eASIC) at two levels (1x or x3) to obtained different levels of expression of the protein (“eASICx1 or eASICx3”), and treated with pH6 or MitTx with or
without pre-incubation of Pctx-1 or untreated. (B) Plots showing the increase in pERK and pCaMKII levels calculated from membranes as that shown in (A),
consistent with the increase in eASIC expressed. Notice the level of increase achievable via MitTx incubation at the highest overexpressed level of eASIC, higher than
that obtained via pH6. (C) Representative membrane showing the different levels of eASIC in cells overexpressing the channel (1x or 3x), detected with an
ASIC1 antibody. (D) Comparison between the different ASIC1 proteins expressed (the endogenous human ASIC1a; of approx. 67 kDa) and the overexpressed
eASIC (approx. 110 kDa, and expressed at different levels; x1 or x3). (A) Notice that plots are the result of the signal intensity of the band detected,—tERK and
tubulin are used as loading controls between loaded samples—and expressed relative to eASICx1 levels. Data are presented as the mean ± SEM ANOVA and
Dunnet post hoc test for treatments and conditions were performed, mean values above bars; n = 3 membranes, ∗∗∗∗p < 0.0001; ns: no significant differences.
Mean values expressed relative to eASICx1 levels ± SEM are as follows: eASICx3 3.16 ± 0.06; eASIC MitTx 3.42 ± 0.15; eASICx3 MitTx 9.96 ± 0.12; eASIC
MitTx Pctx 1.10 ± 0.05; eASIC pH6 2’ 1.85 ± 0.08; eASIC pH6 2’ Pctx 1.08 ± 0.05; eASICx3 pH6 2’ 4.00 ± 0.12.

(an approximately half-fold) the levels of CaMKKß and ERK
phosphorylation in a cell line of hepatic fibroblasts stimulated
by high glucose and PDGF (Wang et al., 2019). Zhu et al.
(2020) showed a contribution of ASIC1a to increased ERK
phosphorylation in the mechanism of liver fibrosis, as Pctx-1
treatment decreased the approximate 2-fold increase (without
treatment) to a 1.5-fold increase. The same can be observed in
ERK phosphorylated levels as the bands show a greater intensity
for ERK-mediated NF-κB activation through ASIC1 in response
to acidosis (although not quantified; Chen et al., 2016). In
striatal and HEK cells, Yu et al. (2018) showed an increase

in phosphorylation levels through pH 6 incubation reaching
approximately 230% for ERK1 and 250% for ERK2 higher levels
than control cells. In this work, we detected an increase in
total phosphorylated ERK levels via the proton mechanism.
In contrast, the non-proton activation of ASIC1a channels
leads to the phosphorylation of ERK to a greater extent and
for a longer period, as no desensitization is present (still
active at 30 min). Thus, the activation of the channel in
a non-proton mechanism (as in a Texas coral snake bite)
would trigger sustained phosphorylation of ERK that could
lead to further signaling. Additionally, we noted that the
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increased phosphorylation of ERK (measured as the signal
detected in pERK to tERK levels) reached the same level
whether channels were expressed at higher levels as if the
signaling could be the result of a fraction of occupied receptor
mechanism (Andrews et al., 2016) that should be analyzed in
the future.

The kinetics of ERK phosphorylation has been the subject
of various studies (Kriegsheim et al., 2009; Ahmed et al.,
2014; Shindo et al., 2016; Maik-Rachline et al., 2019). These
studies revealed different aspects of the complexity in the
regulation of ERK signaling, providing mathematical models
accounting for different levels of regulation. Among these,
negative feedback on ERK activation through upregulation of
phosphatases that dephosphorylate ERK, as well as depletion
of the stimulus (either through internalization or removal from
the extracellular medium; Cirit et al., 2010) were shown to
play a role in the transient shape of the signal. Additionally,
ERK translocation to the nucleus and binding to cytosolic and
nuclear substrates and dephosphorylation was also shown to
play a main role in the kinetics of ERK signaling (Ahmed
et al., 2014). Indeed, the translocation of ERK was later
interpreted as a key to transforming a graded response
(stimulus activating ERK) into a switch (ERK translocated to
the nucleus) that can determine the fate of a cell (Shindo
et al., 2016). Thus, ERK phosphorylated transiently (up to
5 min) or in a sustained manner determines a different
biological response.

Nuclear ERK can determine the stabilization of immediate
early gene products that can trigger further effects as observed
by c-fos-mediated signaling when ERK is activated in a sustained
manner (Murphy et al., 2002).

Our studies show that the proton-mediated activation of
ASIC1a channels acts transiently activating ERK, the channel is
desensitized and can no longer trigger the activation mechanism.
This could be comparable to depletion of the stimulus.

The ERK pathway has been described as a network
functioning as a potential switch, oscillator, or memory (Shindo
et al., 2016). All these mechanisms concerning pain could lead
to acute or persistent effects. Whether endogenous ligands for

ASIC1a exist, however, remains to be determined. Nevertheless,
the possibility that this pathway might explain aspects of pain
warrants further analysis for potential therapies.
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