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We study the shadow produced by a class of rotating black holes surrounded by plasma. The metric for
these black holes arises by applying the Newman-Janis algorithm to a family of spherically symmetric
spacetimes, which includes several well-known geometries as special cases. We derive a general expression
for the shape of the shadow in the case that the plasma frequency leads to a separable Hamilton-Jacobi
equation for light. We present two examples in which we obtain the shadow contours and the observables
resulting from them. In one, we analyze Kerr-Newman-like geometries, including braneworld and
Horndeski gravity black holes, while in the other, we consider scalar-tensor 4D Einstein-Gauss-Bonnet
gravity spacetimes. In both cases, we find that the presence of plasma leads to a smaller and less deformed
shadow.
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I. INTRODUCTION

Two years ago, the international Event Horizon
Telescope (EHT) Collaboration announced the first recon-
structed image [1] of the supermassive black hole at the
center of the giant elliptical galaxy M87 [2], which shows
the shadow surrounded by the light coming from the
accretion disk around M87*; the observed bright emission
ring has a diameter of 42� 3 μas. This telescope consists
of a very long baseline interferometry (VLBI) array of
instruments spread over the Earth, operating in millimeter
radio waves (230 GHz). The shadow of the supermassive
black hole Sgr A* at the center of the Milky Way [3] is also
of interest for this kind of observation, but its imaging has
not been fully achieved yet. The shadow or apparent shape
of a black hole—as seen by a faraway observer—is a
consequence of the particular behavior of the photons in the
vicinity of these compact objects. In the case of a non-
rotating black hole, it has the shape of a circle, while
rotating ones present a deformation that increases with the
spin [4,5]. Many articles have been published on this topic
in the years previous to the EHT discovery, both in Einstein
theory [6–9] and in modified gravity [10–14]. In general
relativity, the size and the shape of the shadow depend on
the mass, the angular momentum, and the inclination angle
of the black hole, along with other variables that can appear
due to the presence of matter or fields; while in modified

gravity, they can also depend on other parameters related to
the particular theory adopted. There has been a surge in the
number of articles published on this topic since the EHT
discovery; we can mention Refs. [15–20] among them. For
an up-to-date review of analytical studies, see Ref. [21].
Interesting discussions about the physical nature of the
black hole photon ring and the shadow have recently
appeared in the literature [22]. The study of black hole
shadows can be a useful tool for a better understanding of
astrophysical black holes at the centers of galaxies. The
measurement of black hole shadows has been proposed for
testing general relativity in the strong field regime, allowing
for a comparison with other theories of gravity [23]. An
improvement in the observations by the EHT is expected in
the coming years, which would lead to a more detailed
picture of M87* and also to the acquisition of images of
other nearby supermassive black holes [24–26].
The presence of plasma surrounding an astrophysical

object results in a change of the trajectories of light rays
with respect to those in a vacuum background. But plasma
is also a dispersive medium, so photons with different
frequencies follow distinct trajectories; as a consequence,
the optical properties are chromatic. In the context of
geometrical optics, the plasma can be considered as a
dispersive medium characterized by an index of refraction
depending on the frequency. One particular aspect that has
been analyzed in recent years is the influence of plasma on
the shadows of black holes, both in the spherically
symmetric [27] and in the rotating [28–32] cases. In this
article, we investigate the shadow cast by a class of rotating
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black holes surrounded by plasma, which results from
applying the Newman-Janis algorithm to spherically sym-
metric spacetimes. We obtain a general expression for the
contour of the shadow when the plasma frequency leads to
a separable Hamilton-Jacobi equation. We present exam-
ples corresponding to Kerr-Newman-like and scalar-tensor
4D Einstein-Gauss-Bonnet theory black holes, for which
we introduce and calculate the observables. The paper is
organized as follows: In Sec. II, we separate the Hamilton-
Jacobi equation in the case of photons in plasma. In Sec. III,
we find the contour of the shadow. In Sec. IV, we show the
examples. Finally, in Sec. V, we discuss the main results.
We adopt units such that G ¼ c ¼ ℏ ¼ 1.

II. HAMILTON-JACOBI EQUATION FOR LIGHT
RAYS IN A PLASMA

The motion of photons in a pressureless, nonmagnetized
plasma is governed by the Hamiltonian [33,34]

Hðx; pÞ ¼ 1

2
ðgμνðxÞpμpν þ ωpðxÞ2Þ; ð1Þ

where gμν is the inverse metric, x ¼ ðx0; x1; x2; x3Þ denotes
the spacetime coordinates, p ¼ ðp0; p1; p2; p3Þ represents
the conjugate momentum, and ωp is the plasma electron
frequency, given by

ωpðxÞ2 ¼
4πe2

me
NeðxÞ; ð2Þ

with e and me being the electron charge and mass,
respectively, and Ne the electron number density. The
vacuum case corresponds to ωpðxÞ ¼ 0. The plasma is a
dispersive medium, with a squared index of refraction [29]

nðx;ωÞ2 ¼ 1 −
ωpðxÞ2
ωðxÞ2 ð3Þ

that depends on the photon frequency ωðxÞ with respect to
the plasma. Light propagation in this medium is only
possible if

ωðxÞ ≥ ωpðxÞ; ð4Þ

which guarantees a real and non-negative index of
refraction.
In what follows, we assume that both the metric and the

plasma frequency are stationary and axisymmetric, so that
in the Boyer-Lindquist coordinates ðt; r; θ;φÞ neither the
components gμν nor ωp can depend on t and φ. Since for a
light ray Hðx; pÞ ¼ 0, the form of the Hamiltonian intro-
duced in Eq. (1) implies that light in the presence of plasma
follows timelike worldlines for the metric gμν. A given ωp

also fixes the normalization of the curve parameter, with the
Cartesian components of the four-momentum having units

of frequency. For this reason, we will follow Ref. [29] and
use the name ω0 ≡ −pt for the conserved photon energy
E ¼ ω0; the quantity ω0 is the photon frequency measured
by an observer at infinity.1 Another consequence of the
presence of plasma is the existence of forbidden regions,
where light rays cannot exist. When the frequency ω0 is
small enough compared with the plasma frequency ωpðxÞ,
the propagation of light in the plasma is not possible. The
analysis carried out in Ref. [29] for the Kerr spacetime can
be straightforwardly generalized to an arbitrary stationary,
axisymmetric, and asymptotically flat metric, with the
result that

ω2
0 ≥ −gttω2

pðr; θÞ ð5Þ

is a necessary and sufficient condition for at least one
light ray with a given frequency ω0 to exist at a given
spacetime point.
We adopt the Gürses-Gürsey geometry [35], defined by

the line element that in Boyer-Lindquist coordinates reads

ds2 ¼ −
ρ2Δ
Σ

dt2 þ Σsin2θ
ρ2

�
dφ −

2amðrÞr
Σ

dt

�
2

þ ρ2

Δ
dr2 þ ρ2dθ2; ð6Þ

where

ρ2 ¼ r2 þ a2 cos2 θ; ð7Þ

Δ ¼ r2 − 2mðrÞrþ a2; ð8Þ

Σ ¼ ðr2 þ a2Þ2 − a2Δ sin2 θ: ð9Þ

Here mðrÞ is a function that approaches the mass M of the
black hole as r → ∞, and a ¼ J=M is the angular
momentum per unit mass of the black hole. This spacetime
arises in different contexts; it was first derived from a
metric of the Kerr-Schild class by using the Newman-Janis
complex transformation [35], and it was subsequently
reobtained [36] by applying the Newman-Janis algorithm
to a spherically symmetric seed metric of the form2

ds2 ¼ −
�
1 −

2mðrÞ
r

�
dt2 þ

�
1 −

2mðrÞ
r

�
−1
dr2

þ r2ðdθ2 þ sin2 θdφ2Þ: ð10Þ

1Note, however, that there is a difference from Ref. [29] in our
definition, in which ω0 is positive for a future-directed vector pμ,
since we are interested in future-directed rather than past-directed
rays.

2An extra dependence on the angular coordinate θ is intro-
duced in Ref. [36]: i.e., mðr; θÞ, which is not relevant for our
work.
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The Newman-Janis algorithm should be applied with care
outside general relativity [37], because the static and the
resulting rotating solutions may correspond to different
energy-momentum tensors. The shadows of black holes
defined by the metric (6) were recently studied [14] without
the presence of plasma. In order for the geometry of Eq. (6)
to represent a rotating black hole, we assume that the
equation ΔðrÞ ¼ 0 has one or more positive solutions, the
largest of which corresponds to the event horizon. It is
easily seen that this spacetime is asymptotically flat,
stationary, and axisymmetric, and therefore the quantities
pt ¼ −ω0 and pφ are conserved along the geodesics of
photons; pφ is the z component of the angular momentum.
Since ωp is a function of the r and θ coordinates only, these
quantities are still conserved in the presence of plasma. A
third constant of motion is H ¼ 0.
To find one more conserved quantity and bring the

equations of motion to first-order form, we write down the
Hamilton-Jacobi equation for light rays,

H
�
x;
∂S
∂x
�

¼ 0; ð11Þ

and we attempt to separate variables with the ansatz

S ¼ −ω0tþ pφφþ SrðrÞ þ SθðθÞ: ð12Þ

Substituting into Eq. (11), we arrive at

ΔðS0rÞ2 −
1

Δ
½ðr2 þ a2Þ2ω2

0 − 4amðrÞrω0pφ þ a2p2
φ�

þ ðS0θÞ2 þ a2ω2
0 sin

2 θ þ p2
φ

sin2 θ
þ ρ2ω2

p ¼ 0; ð13Þ

where the prime denotes the derivative with respect to r or
θ, as appropriate. It can be seen, as previously shown for the
Kerr spacetime [29], that this equation is separable if and
only if the plasma frequency can be written in the form

ω2
p ¼ frðrÞ þ fθðθÞ

ρ2
; ð14Þ

with fr and fθ being functions of their respective coor-
dinates. We take the plasma frequency to be of this form
from now on. By substituting this expression forωp into the
Hamilton-Jacobi equation (13), we can separate it as

ðS0θÞ2 þ
�
aω0 sin θ −

pφ

sin θ

�
2

þ fθ

¼ −ΔðS0rÞ2 þ
1

Δ
½ðr2 þ a2Þω0 − apφ�2 − fr: ð15Þ

Since the left-hand side is a function only of θ and the right-
hand side a function only of r, they must both be equal to a
constant K. For future convenience, we use instead the

Carter constant [38], defined by Q ¼ K − ðpφ − aω0Þ2, as
the fourth conserved quantity of motion.
From Hamilton equations, the derivatives of the t and φ

coordinates can be found from _xμ ¼ pμ ¼ gμνpν, where the
dot represents the derivative with respect to a curve
parameter λ, which does not have a direct physical meaning
in the presence of plasma [29]; in vacuum, λ is the affine
parameter. By setting the covariant momenta equal to the
derivatives of S, i.e., pν ¼ ∂S=dxν, the equations of motion
can then be brought to the first-order ones:

ρ2_t ¼ r2 þ a2

Δ
PðrÞ − aðaω0 sin2θ − pφÞ; ð16Þ

ρ2 _r ¼ �
ffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð17Þ

ρ2 _θ ¼ �
ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
; ð18Þ

ρ2 _φ ¼ a
Δ
PðrÞ − aω0 þ

pφ

sin2 θ
; ð19Þ

where

RðrÞ ¼ PðrÞ2 − Δ½Qþ ðpφ − aω0Þ2 þ fr�; ð20Þ

ΘðθÞ ¼ Qþ cos2 θ

�
a2ω2

0 −
p2
φ

sin2 θ

�
− fθ; ð21Þ

PðrÞ ¼ ðr2 þ a2Þω0 − apφ: ð22Þ

We have finally arrived at the equations of motion for
photons in a spacetime of the form given by Eq. (6) in the
presence of plasma. Note that the dependence with mðrÞ
comes through Δ. After a suitable identification of the
metric functions, it is straightforward to verify that our
results agree with those obtained in Ref. [32].3

III. PHOTON ORBITS AND THE SHADOW
OF THE BLACK HOLE

We are now interested in the spherical photon orbits,
defined as the geodesics that stay at a constant value of r.
These trajectories will serve as the limiting case for the rays
that form the boundary of the black hole shadow.

A. Spherical photon orbits

Finding the trajectories with constant r requires, by the
radial equation of motion, to obtain the solutions of the
simultaneous equations RðrÞ ¼ R0ðrÞ ¼ 0. We assume that
such solutions exist and that they are unstable, satisfying
R00ðrÞ > 0. We follow the standard method, described for

3In this related work, the Hamilton-Jacobi equation is sepa-
rated in the presence of plasma, but it is not explored how this
affects the shadow.
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example in Ref. [14], for the calculation of the constants of
motion pφ and Q in terms of the radius r of the spherical
photon orbit. From the equation RðrÞ ¼ 0, we can easily
solve for Q:

Qþ ðpφ − aω0Þ2 þ fr ¼
½ðr2 þ a2Þω0 − apφ�2

Δ
: ð23Þ

Then, substituting this result into R0ðrÞ ¼ 0, we have

R0 ¼ 4ω0r ½ðr2 þ a2Þω0 − apφ�

−
Δ0

Δ
½ðr2 þ a2Þω0 − apφ�2 − Δf0r ¼ 0; ð24Þ

which is a quadratic equation for pφ, with the solution

pφ ¼ ω0

a

"
r2 þ a2 −

2rΔ
Δ0

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Δ0f0r
4ω2

0r
2

s !#
; ð25Þ

where Δ0 ¼ 2½r −m0ðrÞr −mðrÞ�. Finally, Eq. (25) has to
be substituted into Eq. (23) to solve forQ as a function of r.
A possibly helpful intermediate step is to use Eq. (24) to
arrive at the relation

Δ0

Δ
a2ðpφ − aω0Þ2 ¼ 2aω0r

�
rΔ0

Δ
− 2

�
ðpφ − aω0Þ

þ 4ω2
0r

3 −
Δ0

Δ
ω2
0r

4 − Δf0r; ð26Þ

which gives the square of pφ − aω0. Putting this all
together, we get

Q ¼ −
ω2
0r

4

a2
þ 4ω2

0r
2Δ

a2Δ0

�
r −

2

Δ0 ðΔ − a2Þ
�

×

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Δ0f0r
4ω2

0r
2

s !
þ Δf0r
Δ0a2

ðΔ − a2Þ − fr: ð27Þ

For a radius r and a frequency ω0, Eqs. (25) and (27) give
the critical values of the conserved quantities pφ and Q
associated with the corresponding spherical orbit. From
Eq. (18), we see that any trajectory must have Θ ≥ 0. If for
a fixed r we then substitute the critical values of pφ and Q
into the inequality Θ ≥ 0, we arrive at

Qþ cos2 θ

�
a2ω2

0 −
p2
φ

sin2 θ

�
− fθðθÞ ≥ 0; ð28Þ

whereQ and pφ are given by Eqs. (25) and (27). The region
defined by Eq. (28) is known as the photon region, and
spherical photon orbits exist at values of r and θ for which
this inequality is satisfied. The range of possible radii in
Eqs. (25) and (27) consists of those values of r for which
there exists at least one value of θ satisfying Eq. (28).

B. Black hole shadow

For a faraway observer, the black hole shadow is the
set of directions in the sky which, when propagated
backwards in time, never reach infinity and instead cross
the event horizon. Its boundary consists of those rays that
asymptotically approach the spherical photon orbits of the
spacetime, and which therefore have the same conserved
quantities as them. In order to relate the directions in the
sky with the constants of motion of the light rays, we take
an observer at rest in the asymptotically flat region (large
ro) with an inclinaton angle θo from the spin axis of the
black hole, and we construct the orthonormal tetrad

et̂ ¼ ∂t; ð29Þ

er̂ ¼ ∂r; ð30Þ

eθ̂ ¼
1

ro
∂θ; ð31Þ

eφ̂ ¼ 1

ro sin θo
∂φ; ð32Þ

so that the corresponding components of the four-momen-
tum for a photon with frequency ω0 are given by

pt̂ ¼ ω0; ð33Þ

pr̂ ¼ pr; ð34Þ

pθ̂ ¼ ropθ; ð35Þ

pφ̂ ¼ ro sin θopφ ¼ pφ

ro sin θo
: ð36Þ

For the plasma model, we assume that

lim
r→∞

ωpðr; θÞ ¼ 0; ð37Þ

or equivalently

lim
r→∞

frðrÞ
r2

¼ 0; ð38Þ

so photons propagate in vacuum far away from the black
hole. We then adopt the celestial coordinates for an
observer at infinity [4,5]:

α ¼ −ro
pφ̂

pt̂

����
ro→∞

; ð39Þ

β ¼ −ro
pθ̂

pt̂

����
ro→∞

; ð40Þ
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and we insert the expression (18) for pθ as a function of the
conserved quantities to finally arrive at

α ¼ −
pφ

ω0 sin θo
; ð41Þ

β ¼ � 1

ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qþ cos2θo

�
a2ω2

0 −
p2
φ

sin2θo

�
− fθðθoÞ

s
: ð42Þ

For a given ω0, the contour of the black hole shadow is
described by a parametric curve ðαðrÞ; βðrÞÞ, with pφ and
Q given as functions of r by Eqs. (25) and (27), and r
bounded in the region rþ ≤ r ≤ r−, with r� being the
values for which βðr�Þ ¼ 0. Comparing with Eq. (28), this
is the intersection of the photon region with the cone
θ ¼ θo. The directions of α and β are, respectively,
perpendicular and parallel to the spin of the black hole.

C. Observables

In order to characterize the black hole shadow, following
our previous work [20], we calculate three observables: the
area of the shadow, its oblateness, and the horizontal
displacement of its centroid [8,17,20]. The area is simply
defined by

A ¼ 2

Z
β dα ¼ 2

Z
r−

rþ
βðrÞjα0ðrÞjdr; ð43Þ

with the factor 2 arising from the up-down symmetry of the
shadow, since the curve ðαðrÞ; βðrÞÞ only describes half of
the contour because we are taking the plus sign in Eq. (42).
The oblateness is related to the deformation of the shadow
as compared to a circle, and is defined as

D ¼ Δα
Δβ

; ð44Þ

where Δα and Δβ are the horizontal and vertical extents of
the shadow, respectively; the Kerr shadow has D ≤ 1, with
D ¼ 1 for the limiting case of a circle. Finally, the
horizontal coordinate of the centroid is given by

αc ¼
2

A

Z
αβ dα ¼ 2

A

Z
r−

rþ
αðrÞβðrÞjα0ðrÞjdr; ð45Þ

with the same factor of 2 as in the definition of the
area.

IV. EXAMPLES

In this section, we obtain the contour of the shadow for
two black hole geometries by using the formalism
described in Sec. III, and we calculate the three observables
defined there in order to characterize their size and shape as
functions of the parameters of each example. We adopt the

well-known case of dust that is at rest at infinity, first
considered by Shapiro [39], as our model for the plasma. In
the Kerr spacetime the mass density, and by Eq. (2) the
squared plasma frequency, go as r−3=2, being independent
of θ to a very good approximation.4 However, such a
plasma distribution cannot be put into the separable form
given by Eq. (14); therefore, following Ref. [29], we take
the frequency to have an additional θ dependency by
choosing

frðrÞ ¼ ω2
c

ffiffiffiffiffiffiffiffiffi
M3r

p
; ð46Þ

fθðθÞ ¼ 0 ð47Þ

so that

ω2
p ¼ ω2

c

ffiffiffiffiffiffiffiffiffi
M3r

p

r2 þ a2 cos2 θ
; ð48Þ

where ωc is a constant andM is the mass of the black hole.
At large distances from the black hole, the metrics
considered in this work approach the Kerr metric as long
as we have mðrÞ → M, so we expect that the Shapiro
solution is still valid. At small distances, the particular
metric may be quite different from the Kerr one, so we will
work under the assumption that the plasma density given by
Eq. (48) is not significantly affected. It is not difficult to
see, by combining Eqs. (25) and (27) with Eqs. (41) and
(42), that the contour of the shadow for a given photon
frequency ω0 is determined by the ratio ωc=ω0.

A. Kerr-Newman-like black holes

In our first example, we take the metric obtained by
substituting into Eq. (6) the function

mðrÞ ¼ M −
q
2r

; ð49Þ

with M being a positive constant representing the mass of
the black hole and q an arbitrary real constant. If q is posi-
tive and we set q ¼ Q2, the resulting metric corresponds
to the Kerr-Newman spacetime with electric charge Q.
However, we also allow negative values of q; such a metric
arises in the absence of the electromagnetic field in
alternative theories of gravity or within general relativity
in the presence of certain matter fields. Horndeski gravity
[40] is the most general scalar tensor theory with second-
order derivative equations of motion, being the main
theoretical framework for scalar-tensor models in which
cosmological observations can be interpreted. Recently, the

4The density actually goes to a constant at infinity, with ρ ∼
r−3=2 only being true at distances below the capture radius of the
black hole. We consider the density at infinity to be negligible,
and take ρ ∝ r−3=2 everywhere.
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study of black holes has been of interest both in Horndeski
and beyond Horndeski theories—with equations of motion
of higher order in the derivatives, but with the property that
the true propagating degrees of freedom obey well-behaved
second-order equations. Special cases of Horndeski gravity
admit a solution [41] having the same form as the Reissner-
Nordström geometry in general relativity, but with the
squared charge replaced by a constant that depends on
parameters of the theory and can have any sign. Another
interesting case arises within the Randall-Sundrum brane-
world model [42], in which the ordinary matter is in a three-
dimensional space, the brane, embedded in a larger space,
the bulk, where only gravity can propagate. The simplest
(named “second type”) of these theories consists of a
positive-tension brane in a bulk with only one extra
dimension and a negative cosmological constant. The field
equations, obtained with the help of the Gauss-Codazzi
equations, admit a four-dimensional black hole solution on
the brane [43], where q is understood as a tidal charge
generated by gravitational effects coming from a fifth
dimension; for more details, see for example Ref. [11],
where the shadow without the presence of plasma is
analyzed, and the references therein. For that reason and
in analogy with the electric charge, in the following we will
use the name “charge” for it. As in the Kerr-Newman case,
the inequality a2 þ q ≤ M2 is a necessary and sufficient
condition to avoid a naked singularity, and we assume that
it is satisfied.
As described in Sec. III B, the black hole shadow can be

obtained by plotting the parametric curve ðαðrÞ; βðrÞÞ that
determines its contour, with α and β given by Eqs. (41) and
(42). Following Ref. [29], it is straightforward to show that,
for our chosen plasma density,5 the minus sign in Eqs. (25)
and (27) is not physically realized, since the corresponding
trajectories would have K < 0, which can be shown to
contradict the requirement that Θ ≥ 0. In addition, for the

plasmamodel adopted here, a forbidden region appears if the
frequency is low enough,where the condition ofEq. (5) is not
satisfied. This axially symmetric region initially develops
around the poles and expands towards the equator as the
frequency decreases, eventually enveloping the black hole.
The contour of the shadow for a black hole with

a ¼ 0.9M and some values for the photon frequency is
displayed in Fig. 1, and the corresponding observables are
shown in Fig. 2. It is clear from the plots that the shadow
becomes smaller and less deformed, and has the centroid
closer to the origin as the photon frequency decreases; it
disappears entirely below a certain frequency, due to the
appearance of the forbidden region. We see that overall, the
dependency of the observables on the frequency is stronger
than on the charge q, except for the oblateness at small
frequencies and near-extremal charge.

B. Black holes in the scalar-tensor 4D
Einstein-Gauss-Bonnet gravity

Recently, a novel gravitymodelwas proposed by rescaling
the coupling constant and taking the limit D → 4 in
D-dimensional Einstein-Gauss-Bonnet theory [44], with
the purpose of bypassing the standard result that four-
dimensional Einstein-Gauss-Bonnet theory is purely topo-
logical and thus equivalent to general relativity. However,
this formulation is based on some particular solutions and it
lacks of a complete set ofwell-defined four-dimensional field
equations [45]. Furthermore, it does not have an intrinsically
four-dimensional description in terms of a covariantly con-
served rank-2 tensor in four dimensions [45].Aproper theory
should require additional scalar fields (of the Horndeski or
Galileon type) to appear [45]. In order to solve these
problems, a well-defined theory in four dimensions with a
Gauss-Bonnet term was subsequently presented [46], which
propagates a scalar field in addition to the metric tensor, and
the full action belongs to the Horndeski class of scalar-tensor
theories of gravity. The action is obtained by a regularization
procedure in away that is free fromdivergences andproduces

FIG. 1. Shadow of a Kerr-Newman-like black hole with spin a=M ¼ 0.9 surrounded by a Shapiro-type plasma distribution with
frðrÞ ¼ ω2

c

ffiffiffiffiffiffiffiffiffi
M3r

p
, as viewed by an equatorial observer, for three values of the charge q and three values of the photon frequency ω0.

5The proof in fact works for any plasma density with fθ ≥ 0
and fr ¼ Crk, with C ≥ 0 and 0 ≤ k ≤ 2.
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well-behaved second-order field equations [46]. The result is
a new theory, dubbed scalar-tensor 4D Einstein-Gauss-
Bonnet gravity, that includes a nonvanishing contribution
coming from the Gauss-Bonnet term [46]. Spherically
symmetric black holes have been studied within this regu-
larized theory [46,47]. A rotating solution was found [48] by
applying amodified version of theNewman-Janis algorithm,
resulting in a metric of the form shown in Eq. (6), with the
function mðrÞ given by

mðrÞ ¼ r3

64πγ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 128πγM

r3

r
− 1

!
; ð50Þ

where γ is a parameter of the theory, with units of mass
squared; see Ref. [49] for a discussion of observational
constraints on its value. The black hole mass isM, since we
have mðrÞ → M as r → ∞. The limit γ → 0 corresponds to

the Kerr geometry. The Newman-Janis algorithm does not
guarantee [37] that the rotatingmetricwill be a solution of the
original field equations, so an appropriate set of field
equations, possibly with an unknown matter component—
transparent at the observed light frequency—is assumed for
this example. In general relativity, the energy-momentum
tensor associated with the Gürses-Gürsey geometry has the
form of an anisotropic fluid—isotropy is destroyed in the
radial direction—possibly describing a string fluid; for
details, see Ref. [35] and references therein; in our case, it
deserves a further study not necessary for our purposes. We
will only consider positive values for γ, since the square root
in Eq. (50) becomes imaginary for a finite value of r if γ is
negative. Astrophysical constraints on compact objects
within this theory have been recently presented [50].
As in the previous subsection, we have plotted the black

hole shadow for various values of the parameters, as shown
in Figs. 3 and 4. We have again chosen a spin a=M ¼ 0.9;

FIG. 2. The area (A), the oblateness (D), and the centroid (αc) of the shadow of a Kerr-Newman-like black hole with spin a=M ¼ 0.9
in a Shapiro-type plasma distribution with frðrÞ ¼ ω2

c

ffiffiffiffiffiffiffiffiffi
M3r

p
, as viewed by an equatorial observer. Top: the three observables as

functions of the photon frequency ω0 for three values of the charge q. Bottom: the three observables as functions of q for three different
values of ω0.

FIG. 3. Shadow of a scalar-tensor 4D Einstein-Gauss-Bonnet black hole with spin a=M ¼ 0.9 surrounded by a Shapiro-type plasma
distribution with frðrÞ ¼ ω2

c

ffiffiffiffiffiffiffiffiffi
M3r

p
, as viewed by an equatorial observer, for three values of the parameter γ and three values of the

photon frequency ω0.
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by solving the equations Δ ¼ Δ0 ¼ 0 numerically, it can be
seen that the spacetime contains an event horizon if
γ=M2 < 0.00129, and there is a naked singularity for larger
values of γ. Unlike in the previous example, it is not obvious
in this case that the minus sign in Eqs. (25) and (27) is not
relevant for the shadow; however, it can be verified numeri-
cally in this case that K < 0 for the parameter values
considered in this work. Similarly to the Kerr-Newman-like
black hole, when including the Shapiro-type plasma distri-
bution, a forbidden region develops as the frequency of light
decreases, resulting in a dramatic decrease of the shadow
size, as seen inFig. 3. This is also shown inFig. 4,which plots
the three observables as functions of the parameters. The
overall behavior of the observables is very similar to the one
obtained for theKerr-Newman-like black hole,with a smaller
variation when changing the parameter, since the range of
allowed values for γ is much smaller than the one corre-
sponding to the charge q.

V. CONCLUSIONS

In this article, we have analyzed how the presence of
plasma modifies the size and the shape of the shadow
corresponding to a class of rotating black holes obtained by
the Newman-Janis procedure. These spacetimes lead to a
Hamilton-Jacobi equation for light rays that is always
separable, as long as the plasma frequency ωp satisfies
the same condition previously adopted in the Kerr case
[29]. The presence of plasma makes light follow timelike
curves, leading to a modification of the photon regions and
frequency-dependent forbidden regions, where light cannot
travel. We have not considered the gravitational influence
of the plasma itself, taking it to be negligible compared
with that of the black hole, nor any processes of scattering,
emission, or absorption. These effects should be included if

the goal is to produce a realistic image of the surroundings
of a black hole and not only the shadow boundary.
Assuming that the plasma frequency obeys the sepa-

rability condition introduced in Ref. [29], we have obtained
the expressions for the celestial coordinates of the shadow
contour as viewed by a faraway observer, which reduce to
the already known ones [14] when the plasma frequency is
set to zero, or equivalently when the photon frequency
tends to infinity. These expressions are the central result of
this paper: for a metric obtained by the Newman-Janis
algorithm and a plasma distribution satisfying the sepa-
rability condition, one can plot the black hole shadow as
seen by an observer at infinity, once given the values of the
observer inclination and the photon frequency. One can
also calculate various observables, such as the three we
have defined: the area, oblateness, and centroid of the
shadow. These can be contrasted with observations of black
hole shadows by the EHT or other future instruments, in
order to place bounds on the parameters of alternatives to
the Kerr metric. Among our observables, the displacement
of the centroid is perhaps the most difficult one to
determine observationally, since it requires an independent
knowledge of the true position of the black hole in the sky.
We have also applied our results to two example geom-

etries, considering in both cases an equatorial observer for
simplicity. For our plasma distribution, we have chosen a
variation of the one proposed by Shapiro [39], which models
dust surrounding a Kerr black hole and that is at rest at
infinity. The original formulation is a function of r only and
thus does not obey the separability condition for the plasma
density, sowe have added a slight θ dependency to be able to
use it within our formalism. Sincewe are not considering the
Kerr metric but rather alternatives to it, especially at short
distances, we also assume that the form of the corresponding
plasma densities is not significantly altered from the original

FIG. 4. The area (A), the oblateness (D), and the centroid (αc) of the shadow of a scalar-tensor 4D Einstein-Gauss-Bonnet black hole

with spin a=M ¼ 0.9 in a Shapiro-type plasma distribution with frðrÞ ¼ ω2
c

ffiffiffiffiffiffiffiffiffi
M3r

p
, as viewed by an equatorial observer. Top: the three

observables as functions of the photon frequency ω0 for three values of the parameter γ. Bottom: the three observables as functions of γ
for three different values of ω0.
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one, derived by assuming a Kerr black hole. As in the Kerr
case, the presence of the plasma introduces a dependency on
the photon frequency ω0 through the ratio ωc=ω0 (where ωc
is a constant) and thus this dependency is relative to the
frequency scale set byωp. In our first example, we have used
a metric that we have named “Kerr-Newman-like,” since it is
identical in form to the Kerr-Newman metric but allows the
parameter replacing the squared charge to take either sign.
This metric arises in various scenarios involving matter
fields, alternative theories such as Horndeski gravity, or
possible effects of extra dimensions. The second example
comes from a recently proposed theory, dubbed scalar-tensor
four-dimensional Einstein-Gauss-Bonnet gravity, which
has turned out to be of great interest. The shadows in both
examples are qualitatively similar: for a given set of
parameters of each model and fixed ωc ≠ 0, the shadow
becomes smaller and less deformed asω0 decreases, with the
clearest feature being the appearance of a forbidden region
around the black hole. This forbidden region starts as two
caps around the poles and grows towards the equatorial plane

for decreasing ω0, which leads to a sharp reduction of the
shadow size and its eventual disappearance. The presence of
plasma always results in a smaller and less deformed shadow
than in its absence (ωc ¼ 0).
For the supermassive black holes at the centers of the

Milky Way and the galaxy M87, which are the main focus
of attention of current observational efforts by the EHT, it is
expected that plasma effects start to become relevant at
radio wavelengths of a few centimeters or more [27].
However, present and planned instruments focus on the
submillimeter range, where scattering and self-absorption
do not have a significant effect on the emitted radiation in
the area surrounding the black hole, so that a realistic
observation of the influence of a plasma on the shadow
does not seem feasible at the moment.
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