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1 Introduction

At low energy, or small curvature, heterotic string theory reduces to ten dimensional V' = 1
supergravity coupled to super Yang-Mills [1]. Successive terms in the o/-expansion may be
expressed as higher-derivative interactions that are strongly constrained by the symmetries
of string theory. There are several reasons to study the higher-order terms in the effective
field theories of the massless string modes. They are needed to evaluate the stringy effects
on solutions to the supergravity equations of motion [2—4], they play a central role in the



tests of duality conjectures [5, 6], in the microstate counting of black hole entropy [7-
9] and in moduli stabilization [10].The swampland program [11] has revealed that the
effective field theories of low energy physics and cosmology are limited by their couplings
to quantum gravity [12—-14], and together with the string lamppost principle [15], reinforces
the interest in the restrictions imposed by string theory on the higher-derivative corrections
to General Relativity.

The first few orders of the heterotic string o’-expansion are known explicitly. The
interactions of the bosonic fields up to O(a’®) were originally determined from the com-
putation of scattering amplitudes of the massless string states at tree [1, 16-18] and one
loop [19-22] levels in the string coupling and from conformal anomaly cancellations [23].
The contributions of the fermionic fields have been computed using supersymmetry and
superspace methods [24-37]. Supersymmetry completely fixes the leading order terms [24]
and it often provides an elegant underlying explanation of the higher-derivative correc-
tions. But it holds iteratively in powers of o/ and the transformation rules of the fields
demand order by order modifications that are further restricted by other string symmetries
and dualities.

In particular, the effective field theories for the massless string fields exhibit a global
O(n, n; R) symmetry when the fields are independent of n spatial coordinates. This con-
tinuous T-duality symmetry holds to all orders in o’ [38] (see also [39-47]) and it has been
explicitly displayed recently for the quadratic and some of the quartic interactions of the
bosonic fields in [48, 49]. This feature motivated the construction of field theories with
T-duality covariant structures, such as double field theory (DFT) [50-56] and generalized
geometry [57, 58], which provide reformulations of the string (super)gravities in which the
global duality invariance is made manifest.

In the duality covariant frameworks, the standard local symmetries are generalized
to larger groups: diffeomorphism invariance is extended to also include the gauge trans-
formations of the two-form and the tangent space is enhanced with an extended Lorentz
symmetry. Interestingly, the duality covariant gauge transformations completely determine
the lowest order field interactions in string (super)gravities even before dimensional reduc-
tion (for reviews see [59-64] and references therein). Moreover, extensions of the duality
group [65, 66] as well as enhancings of the gauge structure of DFT [67, 68] allowed to
reproduce the four-derivative interactions of the massless bosonic heterotic string fields.

Supersymmetry can be naturally incorporated in the duality covariant formula-
tions [69-76]. A supersymmetric and manifestly O(10,10 + ny) covariant DFT reformu-
lation of ten dimensional N' = 1 supergravity coupled to n, abelian vector multiplets
was introduced in [70-73]. Although it is formally constructed on a 20 4 n, dimen-
sional space-time, the apparent inconsistency of supergravity beyond eleven dimensions
is avoided through a strong constraint that admits solutions removing the field dependence
on 10 + ng coordinates, and fermions transform as spinors under the O(9, 1)1, factor of the
local O(9, 1)1, x O(1,9 + ng)r double Lorentz symmetry.

More recently, an exact supersymmetric and manifestly duality covariant mecha-
nism was introduced in [76], in which the global symmetry of the theory is taken to
be O(D,D + k), k being the dimension of the O(1,D + k — 1) Lorentz group. To pre-



serve duality covariance, the O(D, D + k) multiplets are parameterized with elements of
O(D, D). Additionally identifying the O(D, D) vector with the generalized spin connection
of O(D, D + k), the construction produces an exact supersymmetric and duality covariant
generalization of the Green-Schwarz transformation, which requires an infinite tower of
O(D, D) covariant higher-derivative terms in the gauge invariant action.

With the motivation to further understand the structure of the heterotic string o/'-
expansion, in this paper we perform a perturbative expansion of the formal exact construc-
tion of [76] and obtain the first order corrections to N’ = 1 supersymmetric DFT. Fur-
ther parameterizing the duality multiplets in terms of supergravity and super Yang-Mills
multiplets, we show that the supersymmetric duality covariant generalized Green-Schwarz
transformation completely fixes the first order deformations of the transformation rules of
the fields. We also construct the invariant action with up to and including four-derivative
terms of all the massless bosonic and fermionic fields of the heterotic string and up to
bilinear terms in fermions.

The paper is organized as follows. In section 2 we review the basic features of the
N = 1 supersymmetric DFT introduced in [71-73] and we trivially extend it to incorporate
non-abelian gauge vectors. In section 3, after briefly recalling the relevant aspects of the
duality covariant mechanism proposed in [76], we extract the first order corrections to the
transformation rules of the O(10, 10+ n,) generalized fields from those of the O(10,10+ k)
multiplets, and obtain the manifestly duality covariant and gauge invariant N' = 1 super-
symmetric DFT action to O(a’). We then parameterize the O(10, 10 + n,) fields in terms
of supergravity and super Yang-Mills multiplets in section 4 and find the relations between
the duality and the local gauge covariant structures. We discuss the deformations induced
from the generalized Green-Schwarz transformation on the transformation rules of the su-
pergravity fields and compare with previous results in the literature. Finally, in section 5
we present the first order o/-corrections of the heterotic string effective action including up
to bilinear terms in fermions. Conclusions are the subject of section 6. The conventions
used throughout the paper and some useful gamma function identities are included in ap-
pendix A. Details of the proof of closure of the symmetry algebra on the duality multiplets
are contained in appendix B. Finally, in appendix C we compute the deformed supersym-
metry algebra on the supergravity multiplets and prove the supersymmetric invariance of
the first order corrections in the heterotic string effective action.

2 The leading order theory

In this section we review the basic features of the DFT reformulation of A” = 1 supergravity
coupled to ng vector multiplets in ten dimensions that was introduced in [71-73], mainly
to establish the notation. The frame formalism used in [77, 78] is most useful to achieve
a manifestly O(10,10 + n,) covariant rewriting of heterotic supergravity truncated to the
Cartan subalgebra of SO(32) or Eg x Eg for ny = 16. Employing gauged DFT [79], we
further include the full set of non-abelian gauge fields and recover the leading order terms
of heterotic supergravity.



2.1 Review of N = 1 supersymmetric double field theory

N = 1 supersymmetric Double Field Theory is defined on a space with coordinates X™
belonging to the fundamental representation of G= 0(10,10 + ny4|R), with M = (M, 1),
M =0,...,19;7 = 1,...,n4, and n, is the dimension of the gauge group. The theory has
a global G symmetry, a local double Lorentz H = O(9, 1|R)1, x O(1,9 + ny|R)r symmetry,
diffeomorphisms generated infinitesimally by &Y through a generalized Lie derivative ﬁg
and supersymmetry parameterized by an infinitesimal Majorana fermion e transforming as
a spinor of O(9,1)y,. The propagating degrees of freedom are:

0(10,10+n,) .
13 9 DLXOI g WIth
tangent space indices A = (4, A) splitting into O(9,1);, and O(1,9 + ng)r vector

indices, A=0,...,9and A=0,...,9+ ng, respectively,

o EM,: a generalized vielbein parameterizing the coset % = ot

o d: an O(10, 10 + ng) scalar dilaton,

e U a Majorana spinor generalized gravitino, transforming as a spinor of O(9,1)r,
as a vector of O(1,9 + n)gr, and as a scalar of O(10,10 + ng),

o p: a Majorana spinor ‘dilatino’, transforming as a spinor of O(9, 1), and as a scalar
of O(10,10 + ng).

The group invariant symmetric and invertible O(10, 10 + n,) metric is

oty nti 0 oy, 0
N = | Mg v i | = |67 0 0 |, (2.1)
m M Nij 0 0 Ky

with p,v =10,...,9,4,5 = 1,...,n4 and k;; the Killing metric of the gauge group. There
are two constant symmetric and invertible H-invariant metrics nap and Hag. The former
is used to raise and lower the indices that are rotated by H and the latter is constrained to
satisfy HyCHcP = 5%. The three metrics nyn, ap and Hap are invariant under the action
of £, G and H.

The generalized vielbein EM, is constrained to relate the metrics nap and nyn and
defines a generalized metric Hyy from Hyp

nag = EMamunENg,  Hyn = B HapEn® . (2.2)
Hyy is also an element of O(10,10 4+ ngy), constrained as
Hypn"® Hon = 1w Hpcn™P Hpp = naB - (2.3)

It is convenient to define the projectors

1 — 1
PMN = 5 (nMN — HMN) and PMN = 5 (UMN + HMN) ) (24)

satisfying the usual properties

PMQPQN = Pun, PuoP% = Pun, PMQﬁQN = PuoP% =0, Puyn + Pun = nun



and related with the generalized vielbein in the following way

Pap = BvaE™p, Pip=Ey7E"s, Pun = BuaBn?, Pun = EygBEn?.  (2.5)

We use the convention that Pap, P47 and their inverse lower and raise projected indices.
The generalized Lie derivative acts as

5e EMy = LeEMy = NonEMy + (0Men — one™)ENy + fMypeNEF (2.6a)

0eWg = LWy = "o ¥y (2.6b)
N 1 N

ded = Led = &"0md — S0ue", 0¢p = Lep = " Oup, (2.6¢)

where the partial derivatives Oy belong to the fundamental representation of O(10,10+n,)
and the so-called fluxes or gaugings fyunp are a set of constants [77, 78] verifying linear and
quadratic constraints

fune = fome s S fer? =0. (2.7)

Consistency of the construction requires constraints which restrict the coordinate de-
pendence of fields and gauge parameters. The strong constraint

oo™ =0, Oy M=0, fun'Op---=0, (2.8)

where - - - refers to products of fields, will be assumed throughout. This constraint locally
removes the field dependence on 10 4 n4 coordinates, so that fermions can be effectively
defined in a 10-dimensional tangent space.!

The local O(9,1);, x O(1,9 4+ ng)r double Lorentz symmetry is parameterized by an

infinitesimal parameter I'yp satisfying

FA]B = _FBA, (2.9)

in order to preserve the invariance of nyp and Hag. The two projections of a generic vector
VA = VA 4+ VA transform as

SrVA=VErgA VA =vVET A (2.10)

where the I'42 and FZE components generate the O(9, 1)1, and O(1,9 + ny)r transforma-
tions leaving Pyp and F@ invariant, respectively, and dy Hayp = 0 implies I" AB = 0.
The fields transform under double Lorentz variations as

_ 1 1
OBy = EMpl%a,  orWg = Vgl + Tper® Uy, drp=Tpcr™Cp, (211)

where the O(9, 1)1, gamma matrices can be chosen to be conventional gamma matrices in
ten dimensions, satisfying

{m, 'yg} = —2Pap. (2.12)

Some useful identities for the product of gamma matrices are listed in appendix A.1.

LA supersymmetric DFT without the strong constraint was obtained through a generalized Scherk-
Schwarz reduction in [74].



The Lorentz and space-time covariant derivatives act on generic vectors as
VaVe = EaVi +was“ Ve, VmVa = uVa +wma®Ve, (2.13)

with Ey = v/2Ex\M0y, implying WABC] = \/in[ABEMC].
Only the totally antisymmetric and trace parts of wapc can be determined in terms of
EM, and d, namely

V2 1
wianc] = —EnE pEng) — 5 funpEM A ENgEF ¢ = —3Fanc (2.14)
WIB%A]B = —\@e2daM (EMAB_Qd) =—F,, (2.15)
the latter arising from partial integration with the dilaton density
/ Ay Y,V = / VAT,V | (2.16)

for arbitrary V and V2. Only the combinations with the same projection on the last two
indices are non-vanishing.

The covariant derivatives of the (adjoint) gravitino and dilatino are

= 1
Valg = EnVg +w,5° U — JwiBcr? Vg, (2.17a)
_ _ - 1 _
VaVg = Ep\Vg + WAEC\Pg + ZWABC\I’E’YB*C ) (2.17Db)
1 1
Vap = Epp — ZWABCV*BC p, Vap=Exp+ wapc e (2.17c)

The supersymmetry transformation rules are parameterized by an infinitesimal Majo-
rana fermion e transforming as a spinor of O(1,9)r,

1 B 1 1
6 EMy = —fM\IJEEMB, 6 M = igw\szME, Sed = — (2.18a)

5V5=Vge,  dep=—72V e. (2.18b)

Putting all together, the generalized fields obey the transformation rules

SEMy = LeEM ) + EMprE, — ééyA\IIEEME, (2.19a)
SEM = LeEMo + EV5TP o + %a@\lﬁEMﬁ : (2.19b)
od = &Popd — %apgp — iEp, (2.19¢)
00y = MU + TP 0 + ir ey EEU + Ve, (2.19d)
5p = &"0up+ (TP AV ac. (2.19¢)



In appendix B.1 we review the algebra of these transformations, and show that it closes
up to terms with two fermions, with the following parameters

1
M _ M M A
§12 = [fla&](cf) - EE A€1Y €2, (2.20a)
1
T1248 = 26},0pT a8 — 2014 Tajc + Eja (Elm]ez) -3 (éwgez) Fapc, (2.20b)
1
€12 = —51“[1370’73*062} + 2¢] Opeyy (2.20c)

where the Cy-bracket is defined as

€1, &2ty = 26F, Opelt — el Mgy + fogMebed . (2.21)

The transformation rules (2.19) leave the following action invariant, up to bilinear
terms in fermions,

Sn—1 DFT = / 270 X =24 (L + L) | (2.22)

where LLp is the generalized Ricci scalar, which can be written as

1 1 1
Lp =R = < FancFbr (Hmnmnm — 3HADHBEHCF> — HAB (QFAFB + EAFB) ,

up to terms that vanish under the strong constraint, and the fermionic Lagrangian is
—A B _ A —A
Lp =V 7=VpW¥4 — py=Vap +2¥ V4p. (2.23)

Using the Bianchi identity

1
EFAB@FABC = 2B\ FA + FyF® (2.24)
it is useful to rewrite
1 1 =<
R =2E,FA + FyF2 - EFABCF@ -5 Lo AEC. (2.25)

The supersymmetry variation of the bosonic piece of the action gives

25 [e X R(E, d)] = %@R +2AE,5RPA = %sz ~eyAUPRy, | (2.26)
where we have used
S Fape = —3 (E[AAEBC] + AE[ADFBQD> (2.27)
with
AEup = EM) 6 By = —AEpy = { A EAABE:AB_ ZEAB if ;SA v (2.28)
and

OR = —eya 0P | EpPA — EoFpC 4 FpF A€ — FpFghl| = —ey40PRy, .



The supersymmetry transformation rules define the following Lichnerowicz principle
(14V47EV5 - VAV ) e = —%Re, (2.29)
[vz, ’}/EVQ] €= éyﬁR@e, (2.30)
and then, the supersymmetric variation of the fermionic piece of the action
e2ds, (e’m]LF) = —2AE§ZRZB — %EpR — eyp U RAL — %sz, (2.31)
exactly cancels (2.26).

2.2 Parameterization and choice of section

To make contact with ten dimensional A = 1 supergravity coupled to ng vector multiplets,
we split the G and H indices as Ml = (,,,#, i) and A = (A, A), respectively with A =a, A =
(@,i), u,',a,a=0,...,9,i,4=1,...,n,, and parameterize the generalized fields as follows:

Generalized frame

Eu, EVy Eig 1 —epa — Cpuely ey _Apiep@v
EMA = Eﬂa E'u'a El'a = ﬁ eua - Cpulepﬁ e“a _Apiefpﬁ ) (232)
E,LLE E‘U'; EZ; \/iAMiezz’- 0 \/567‘{‘

where e, and ez are two vielbein for the same ten dimensional metric. To guarantee
that the number of DFT and supergravity degrees of freedom agree, we gauge fix e#, =
eta, eua = eug, and identify ez, e,z with the supergravity vielbein ey, e,q, a,b=0,...,9,
respectively, i.e. g, = eH“gabeyb, with gq, the Minkowski metric. C), = b, + %ALAW-,
with A}, being the gauge connection. For consistency, we also need to impose

Py = fgab(;gég, P = Gap0dl Pﬁ = ei;.mjej;, (2.33)

a“p
with eiithe (inverse) vielbein for the Killing metric of the SO(32) or Es x Eg gauge group,

Nij = eiinﬁejj, as required for modular invariance of the heterotic string.
Generalized dilaton and dilatino
1
d=¢— ilog\/—g and p =2+, (2.34)
where ¢,1,, and X are the standard dilaton, gravitino and dilatino fields, respectively.

Generalized gravitino

1 .

\IJA = (07 e#awﬂv ﬁel;Xl) 3 (235)
X; being the standard gaugino field.

The non-abelian gauge sector is trivially incorporated through the gaugings that de-

form the generalized Lie derivative (2.6a) as

i = {fij’f for M, N, P = 4, 5, k

2.36
0 otherwise. ( )

The y-functions ¥& = 205 verify the Clifford algebra {v%,~%} = 2¢%°.



The gauge fixing e#, = e/z implies de”, = det'z, and (2.11) lead to

Ty = (—Aab + éy[awb]) 5eoh, (2.37)

where A, denotes the generator of O(1,9) transformations that parameterizes I'.
The additional gauge fixings 6E'; = 0 and § E¥; = 0 lead respectively to

I = Al-jag.g = fijkgkagag and T = Ay 020t = 2\1@%;@ 52 8, (2.38)
where we have parameterized ¢V = (&, EM, €% and Ag;, A;j are introduced for convenience,
as we will discuss in section 4.

Solving the strong constraint in the supergravity frame, parameterizing (2.18) and
using the non-vanishing determined components of the generalized spin connection listed
in appendix A.2, we recover the leading order supersymmetry transformation rules of the
coupled ten dimensional A/ = 1 supergravity and Yang-Mills fields, namely

1_ 1_ 1_ 1_

Oeen® = S€7" Y, ded = —5EA = —1ép+ 17"y, (2.39a)
_ 1_ » 1

0cbpy = Evuiby) + 567[;0(2141,}2‘ ) dp=~"D, e — ﬂHabcwabce —yH0ye (2.39D)

L () _ab 1 1 b
dethy = Ope — iwualﬂa €, O\ = —57”8M¢e + ﬂHabﬂa ‘e, (2.39¢)
T . 1 .
6614; = 567;0(17 deX' = —ZF;“,’Y”VG, (2.39d)

(+)

where W0 = Whab + %H uab is the spin connection with torsion given by the field strength
of the b-field

Habc = e“[ae”bepc]Hw,p = 3e“ae”bepc (8[Mbyp] - Cl(ﬁ,)p) , (2.40)
with C’l(ﬁ,p the Yang-Mills Chern-Simons form
i 1 i Ad Ak
C), = Al,0,Ay; — S fin AL ALAD. (2.41)

The Lorentz transformations of the supergravity and super Yang-Mills multiplets ob-
tained from (2.11) are

1 1
6Ae,ua = e,ubAba ) ONYa = waba - ZVbcAbc¢a ) oAx = _ZAbc'chXa (2'42)
and the gauge transformations derived from (2.6) are
e Al = 0,8 + f1g AL Sex' = fl€iX", Sebun = 20,8, — O & Ay, (2.43)

where the second term in the gauge transformation of the b-field is the gauge sector of the
Green-Schwarz transformation required for anomaly cancellation.



Parameterizing the DFT action (2.22), using the fluxes listed in appendix A.2, we get

. 1 ) -
S = /dlox e e 2? [R(w(e)) - EHMW)H“ P+ 49,90" ¢ — ZF;VFZ»W
— — 1_. 1 .
— Y'Y, + pp + 20" Dyp — iyllDXi + Xi (’Y“W/ - 4’YWP) F,
1

i _ _ 1 .
+o5pHoor (Wv”"% + 120P474" — P p — 69T p + XW”‘”Xi)] - (244)

2

We use standard notation defined in appendix A. Both the action and the transfor-
mation rules match the corresponding ones in [27], with the field redefinitions specified in
appendix A.3, where (2.44) is rewritten in terms of the standard supergravity dilatino A
instead of p.

3 The first order a’-corrections

In this section we construct the first order corrections to N' = 1 supersymmetric DFT,
performing a perturbative expansion of the exact formalism developed in [76].

The duality structure of the first order o/-corrections to heterotic supergravity was
originally considered in [65, 66]. Exploiting a symmetry between the gauge and torsionful
spin connections that exists in ten dimensional heterotic supergravity [26, 27], the duality
group was extended to O(10, 10+n4+n;), with ny(n;) the dimension of the heterotic gauge
(Lorentz) group. In this construction, the gaugings in the generalized Lie derivative (2.6a)
preserve a residual O(10,10) global symmetry. Including one-form fields in the GL(10)
parameterization of the generalized vielbein, the formalism reproduces the first order cor-
rections to the interactions of the bosonic fields in the heterotic effective field theory. This
construction was supersymmetrized in [75].

The lack of manifest duality covariance and the difficulties to incorporate higher orders
of the o/-expansion in these formulations motivated the search of alternative frameworks.
A deformation of the gauge structure of DFT was proposed in [67], introducing a general-
ized Green-Schwarz transformation that modifies the leading order double Lorentz varia-
tions (2.11) with two derivative corrections. The deformations fix the four derivative terms
of bosonic fields in all T-duality symmetric gravitational theories, including in particular
the bosonic and heterotic string effective actions [68].

The two formalisms described above were merged in the so-called generalized
Bergshoeff-de Roo identification introduced in [76]. In the first part of this section we
briefly review this exact supersymmetric and manifestly duality covariant formulation.
Then we perform a perturbative expansion and extract the first order corrections to the
transformation rules of the O(10,10 + ny) multiplets (2.19). Finally, we construct the
gauge invariant action containing three and four derivatives of the duality multiplets up to
bilinear terms in fermions.

3.1 The generalized Bergshoeff-de Roo identification

The theory has a global O(10, 10+ k) symmetry, where & is the dimension of the O(1,9+k)
group. This differs from the construction of the previous section, where the duality group

~10 -



is O(10,10 4+ ny) and n, denotes the dimension of the SO(32) or Eg x Eg heterotic gauge
group. In the construction of [76] instead the gauge sector encodes the higher derivatives.
The vielbein Ey* is an element of O(10, 10 + k), parameterized in terms of O(10,10)
fields as?
En® = En®, En®= (A2 Ept, Ey" = —AyP es”
£ =0, Eal = Ey®AM,, £ =(02).  es”.
We use calligraphic symbols to distinguish the O(D, D + k) objects. The indices M =
(M,a) = (*,,,a) and A = (A, A) take values M = 0,...,19, A =a =0,...,9,4 =
(@, @),a=0,...,.9and a,a=1,..., k. Ap® is a constrained O(10,10) vector field satisfy-
ing Ay® = Py VAN (the projection is fixed by the choice of O(10,10 4+ k) duality group,
as opposed to O(10 + k, 10) which would give an equivalent Zy transformed theory), and

Oo” = ko — Ao AMP (3.2)
A =nu® — Ay AN (3.3)

(3.1)

The gauge freedom is used to set £, to zero and the bijective map %B relates the Cartan-
Killing metrics of O(k), kag and kg3, as
eaaﬁ@egg = Kag - (3.4)
The parameterization (3.1) preserves the constraint
EmnaBEN® = npaw (3.5)
where nan and 145 are the invariant metrics of O(10,10+ k) and O(9, 1)1, x O(1,9+ k)g,

0 ¢, 0 —gap 0 O
N =1, 0 0 , NAB = 0 g3 O . (3.6)
0 0 kap 0 0 Kap

The generalized O(10,10 + k) gravitino splits as ¥4 = (0, ¥, ¥5), where ¥z is a
generalized O(10,10) gravitino and Ug is a gaugino of the O(1,9 + k)r gauge group, that
will later be identified with a function of the O(10,10) generalized fields. The gamma
matrices are y* = (72,0, 0), with ¥ the O(9, 1), gamma matrices verifying (2.12).

The transformation rules of the O(10,10 4 k) fields have the same functional form
as (2.19), namely

SEMA = EPOpEM™ + (OMmeT — DT EM)EP™ + gfmnT EV ER7

+ 5/\/18713“4 - €’)/[A\I/B}5MB , (3.7&)
1 1
8d = P 0pd — iapgp -5 (3.7b)
5 1
00 = EMOM T + TP 3 V5 + Tien W + Ve (3.7¢)
1
op = EMOpmp+ {Tasy*Ep — 74V ae (3.7d)

2Note that this differs from (2.32) and from previous constructions, e.g. [65, 66], where the generalized
vielbein is parameterized with GL(10) multiplets.

- 11 -



-2

where g7° ~ o' is a dimensionful constant, T 45 parameterizes the local double Lorentz

0(9,1), x O(1,9 + k)r tangent space symmetry,

1
Ve = E e — EwABc’yBCE , (3.8)

with €4 = V2EM 400, and the identifications

Fase = 3E4EN BENe) + V2 rnpEMAEN 5ET ¢ = —Bwiane) (3.9)
Fa= \/§€2daM <5MA€_2d> = —wBAB, (3.10)

g7 for MNP = a, 3,
fan® = 728 = b (3.11)

0 otherwise
Equivalent constraints to (2.7) and (2.8) must be imposed, i.e.

oMM =0, On---0M.. =0, fMapOr - =0, (3.12a)
fane = founrs fan RS =0. (3.12b)

The gauge fixing 6,% = 0 implies
— — 1 —
7o = (07¢alp” — 5V En) (O75) ¢ s, (3.13)

and de,® = 0 determines

1 1 _lig

Tag = (5(D2)a56 —¢P 31:5 +ap§a€ B — 9fug?€? N 5 b€V ‘11[ > a](D 2)%.
(3.14)

The gauge generators (ta)zg implement the map
VZB = —gVa (ta)ZB, (315)

allowing to write
(0% a (0% J— 1 a

— 95 (t") 25 = 15> —9&* (t%)ep = EA CD- (3.16)

They satisfy [ta, tg] = fap”ty and Tr(t%t5) = Xpgd§, where Xp is the Dynkin index of
the representation.
Parameterizing §&3/% one gets

B b -
5AaC7D = f 8PAQC7D — g r.T 2Aa[C K.Tf} Aﬁ?@ + EYQW@, (317)
where
Vos = 026, (1) (3.18)
CD — \[ Chst :
In order to eliminate these extra degrees of freedom, it is convenient to define
, 1
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which allows to establish the generalized Bergshoeff-de Roo identification between the
generalized gauge and spin connections

Ayes = Fues (3.20)

and to determine W55 as the generalized gravitino curvature

1B
since both sides of (3.20) and (3.21) transform in the same way. The main steps of the
demonstration can be found in [76].
We now proceed to extract the first order o/-corrections to the transformation rules of
the O(10,10 + ngy) generalized fields.

3.2 Induced transformation rules on O(10,10) multiplets

The covariant transformation rules (3.7) induce higher derivative deformations on the trans-
formations (2.19) of the O(10,10 + n,) fields. In this section, we work out the first order
modifications, expanding the coefficients (D%)aﬁ and (A%) AN in the parameterization of
the O(10,10 + k) multiplets.

To simplify the presentation, we turn off the gauge sector of the O(10,10 + ny) mul-
tiplets, i.e. we take ny = 0, and obtain the induced transformation rules of the O(10,10)
fields. The gauge sector will be trivially included in the next subsection.

It is convenient to first express the components of the generalized O(10,10 + k)
fluxes (3.9) and (3.10) in terms of the O(10,10) fluxes (2. 14) and (2. 15) Keeping only

the first order terms in the expansion of the coefficients (D2) # and (A'z) , namely
1 1
(D%>aﬁ = "@o/B - §AM()¢AM/B; (A%)MN = NMN — §AMQAN5,‘£Q6, (3.22)

we get the first order deformations

3 ~ 3b * 1 sded 2 *C * *
Fabe = Fape + Fch) Fabe = (E[ Fy ed _ 5 FaianF ded _ 3F ety ed) Fig. (3.23a)
b * * *
]'—E@ = Fape + Fégg ~ F _ (E F[ cd +F eCdFa€L> e (3.23b)
(3) ~ b * * d
JT'.QE Fabc + F ngc + 8Fd fF of F be (3230)
Fave = Fape» (3.23d)
~ @

‘F%cd = Fi _2E[C dlab + 2F*e[ Fj b + cheF* (3236)
ba FO - Lpp _Lp pua_ (3.23¢)
bd abd V2 b" acd ﬂ@b cd .

b * xcd * xed
Fa=Fat FY = Byt o [FPFFy + By (FPgF)] (3.23g)
Ja=1Fq, (3.23h)
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where we used

1
* N 1%
FMbc_PM FNbc \[EM*Fabc TEM <F be Q‘I’b%‘l’c> ) (3.24)

b= the superscripts @ and @ refer to the number of derivatives, and we defined

2
(1-XRr)g?’

1 AB
Facd = mfﬁ@(ta) % (3.25)

The transformation rules (3.7) take the following form:
Vielbein. The identification £y,% = Ej/® implies 6Ey = §E)%, and from (3.7a) we get
SEM® = LeEy® + ExT;" + EME‘IEE + %a@xy%@ . (3.26)
Using the gauge fixing (3.13) and the following relation
AuPF(O)s" = AN (D)™, (3.27)
which holds for any function f, one gets

1
2efyb\Pa(A DN Eny.  (3.28)

The second term in the r.h.s. of this expression allows to identify J— with the I'-; component

SEM™ = LeEa™ + Ea Ty — AnPoP € Ep®(O077) % +

of the Lorentz parameter (2.9). The third term contains the deformation

b _ P
s By = = 3 FrgBn"o"T", (3.29)

which is the leading order of the O(10,10) covariant generalization of the Green-Schwarz
transformation [67]. And finally, the last term in (3.28) contains the first order correction
to the supersymmetry transformation rule (2.18a), namely

b J—
S B = —gefyb‘ll“F* SFREN, . (3.30)

Following a similar reasoning, one can see that the other projection transforms as

b — 1
(S(I)E‘]w2 = 5 F*NCdENQ <_6MFCCI + mgybq] FbchM ) 5 (331)
where we have identified
b wed b_ .
T =Tap +  F By T Zey[a\IJCdF bed (3.32)

Gravitino. From (3.7c) we get the first order corrections to the transformation rules of
the O(10,10) gravitino (2.19d), up to bilinear terms in fermions,

b b
16

where we have kept the leading order terms in the 0(107 10+k) gaugino identification (3.21).

6 = — ByLF W + 5 U Eel + LE® jbec (3.33)

4 abc

Note that there are two corrections to the Lorentz transformations. The first term in the
right hand side can be interpreted as a generalized Green-Schwarz transformation and the
second one depends on the gravitino curvature, that we now define.
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Gravitino curvature. To leading order in (3.21), the induced O(10,10) gravitino cur-
vature is,

1
= Vil + 5w U° (3.34)

cab

From (3.7c), we find that it obeys the transformation rule
SU— = EM Oy U 4 20T 4 Loy @0 BP0 L pe_pcy LF® el (335
o =& OV +2Vg a TtV Vgt el g o B g e T oS e (3.35)

Dilatino. The first order corrections to the transformation rules of the generalized di-
latino (2.19e) that are obtained from (3.7d) are

b
6(1)p _ 7Eb1—‘ F*Cd bcp

b 1
T 8 aF:ch*dbcE € — F() abe 2 (E‘»),Yc6 (336)

12 abc

Note that the transformation rules of the dilaton (2.19¢) as well as the diffeomorphisms
on all the fields are not corrected.

3.3 Including the heterotic gauge sector

It is now trivial to include the gauge sector of the O(10,10 + n,) formulation. We simply
extend the duality group O(10,10) — O(10,10 + n), the right Lorentz group O(1,9)r —
O(1,9 + ny)r and the indices M — M = (M,i),a — A = (a,i), accordingly. Now the
generalized fluxes and gravitino curvature contain the contributions of the gauge sector,
and in particular the structure constants.

A straightforward extension of the indices in equations (3.30)—(3.36) gives the following
transformation rules of the O(10,10 + n,) generalized fields, up to first order,

\ 1
SEn® = LeEv® + Eppl™ — 5 VP B,

b N D
— 5 EntF CD<8MF -

1
by= FCPE > , 3.37a
4\/567 M ( )

P N i R 1 p—
6" = LB + Eygl P + 560" 0" By

40 5 B e (ENAaN Top — %VQ\IJZFNC—DEN b) : (3.37D)
od = gMaMd - %aMgM — %p, (3.37¢)
SW = Lol + TP+ lfbiybiqu + Ve
4 1b6Ebr—F CD ey +g VOB Ty + leFib)y , (3.37d)
op = Egp + leFbc’y—p YAV € + 1b6 EQP@FECD'yb—Cp
g OF 5o PP Bye - 112 Fo)yabee %Fg(:s)’yge. (3.37¢)
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In appendix B.2 we show that the algebra of these transformation rules closes, up to
terms with two fermions, with the following field-dependent parameters

b

SFM *CDel'y €, (3.38a)

1
EM aE17%€2 + bF[ DZ?MF2]CD +

& = €1, 8], - NG

b
P [
Uyoap = 2609 gap — 27 Tyep + 2E F[l Exlyen
b
_ b M cDh _
+ beny Yz EY 50mly FbCD yGua engAB , (3.38b)

b -
Tioap = 26 0T gjap — 2T (14T ) + 5EQF[ClDEQrz}C—D
+bep e WP B P EM 50MTy6p (3.38¢)

1 b N
€12 = —51_‘[1@7@62} —+ 2558}362} Z’y 6[1E bE)MF ]CDF cp . (338(1)

3.4 First order corrections to N/ = 1 supersymmetric DFT

The invariant action under the transformation rules (3.7) is clearly of the same functional
form as (2.22) but it depends on the O(10,10 4 k) multiplets, namely

Sp'—1 DFT = / d20+k x =2 <R(5, d) + @Ayévéqu — Y4V p + 2\I/AVAp> . (3.39)

Hence it contains higher derivatives of the O(10, 10 4 ny) multiplets.

The transformation rules (3.7) define the following Lichnerowicz principle,

= 1
(1AV.41EVs — VAV € = — Re. (3.40)

1
[vj, yﬁvé} €= §7§Rj§e, (3.41)
and then the O(10,10 + k) generalized Ricci scalar
1 1 i
R =264 FA + FaFA - BFMFM ~ 5]—3@?‘@ (3.42)

determines the corrections to the generalized Dirac operator.

In terms of the O(10,10 + ny) generalized fluxes, the O(10,10 + k) generalized Ricci
scalar is, up to first order,

R=R+bRY =R — ) pibe _ TP pate | 9p® pd | op pO)

3 abe
bE FaF*d F*BC bF(Z)ﬁ F(2) cd 3.43
R T b5 (3.43)

where R was defined in (2.25). Replacing the expressions (3.23) with the overlined indices
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extended to include the gauge sector (i.e. ¢,d,... — C,D,...), RM may be written as

RM —

1
[(E EbF*b )F*aCD (E EbF*a )F*bCD + 2(E F*CD)F*Q@FQ

4
+ (EQF*QCD)(E F) + (g F*CD)(E@F*Q@) + 2(E Fy) Foeps P
_|_

(E P )F*CDF*Abc (E e )F*CDFabc + 2(E F*a )Fb*C'DFb

bC'D bC'D

= 4
N 4(E F*C’D) 77EF*QE7+ gkaE *F;EDF*CDFabC + F* F*CDFQFQ

+FjCEF* F*a F*QGD FJCEF* F*a F*bGD FAbdF* FSEFZ@}.

bED
(3.44)
Note that it depends on the generalized gravitino through F;?C
Similarly, we may define B
T4y, U 7 Ly + LY,
Y Vo¥g — p7*Vap + 2 A+ ap =Lr + (3.45)

where Ly was introduced in (2.23) and the first order corrections are given by

LY =

17124 CD <A bd CD
3 Z\I’ va\Il e FbC—D—glll oeey (EéFgcT))Fé

1_7 o, 1=
+16 ¥ VNV FaeFop FdCD+—\I/ Py B P F s Fy©P

Iy by, BT d b D b D
4\11 2 Fb FdACF EF—|—2\I/ ¥ \I/@<EXFQ )—2\11 \IlfFAbCFC

—CD 1—cD - % ~op 1_
—20 B Ve U e Pl — AW U 5 B - 07 By F *PFep

1 1 L
—{—Sp’y@pE FbCDF cp EP'YabCPFabdFd FCD—ﬁi abCPF EFbEDF or

<A b CD <A b d CD
—Z\IJ < (EZFQ )FCD+4\II < FAbdF 5Ee 2\1! F“ 5Eap

C

—CD —CD 1—¢cb
+0 742 )(E, oFyep)— ¥ @b pF, EFbED 5\1: vc‘prachCCD]. (3.46)

In conclusion, the manifestly duality covariant first order corrections to the action of
N =1 supersymmetric DFT (2.22) in terms of O(10, 10 + ny) multiplets are given by the
addition of RW) and ]L%l), up to bilinear terms in fermions. We have explicitly verified that

the action

SN=1 DFT = /d20+ngX6_2d (R +RW 4 Ly + Lg)) ; (3.47)

is invariant under the transformation rules (3.37), up to terms with four derivatives and
two fermions. The structure constants preserve a global O(10,10; R) symmetry.

4 Transformation rules of the supergravity fields

To make contact with the heterotic string low energy effective field theory, in this section
we parameterize the O(10, 10 + n,) duality multiplets in terms of supergravity and super
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Yang-Mills multiplets, we analyze the deformations of the symmetry transformation rules
and compare with previous proposals in the literature.

The deformed transformation rules of the duality multiplets (3.37) induce higher
derivative corrections on the transformation rules of the supergravity and super Yang-Mills
fields that parameterize the generalized fields (2.32), (2.34) and (2.35). We then expect an
o’-expansion of the parameterizations, that we now denote éua,gw, gz~5, ﬁ;, 1,;“, X, Xi, in terms
of the gauge and Lorentz covariant fields, e.g. €,* = e,% + O(&) , by = by + O(&)) , ¢, =
Y, +0O(d), ete.

To find the relations between both sets of fields, it is convenient to first work out
the parameterizations of the generalized fluxes and curvatures and their transformation
rules. From the first order terms in the action (3.47), we see that only the leading order
expressions are necessary. We denote the parameterization of F:@ as

QCLCD = (w(g;d)a Fai(ﬁ AGJU) I (41)
where the hats distinguish objects that contain fermions and the collective indices of the
tangent space C' = (¢, i) include the gauge indices. In terms of supergravity and super
Yang-Mills fields, the components are

(= 4 1
wz(zbc) = <w£bc) - 2%%%) eta, (4.2)
with w((l:li:c) = Wape £ %Habm
[ 4 1 i 1 i\ o pu v
Fapy' = _ﬁ F,Lw - iw[/ﬁ%/]x € a€ b, (43)
and .

The generalized gravitino curvature W7 is parameterized as

~ 1. 1 - ] A
Uap = Uup — =Ouapt = dap — ——Qianx’ — ~Qoant, 45
AB AB ~ 5 ABY = aB W) ABX' ~ 5 ABY (4.5)
with
Yab = eu[aeyb}D£+)¢u ) (4.6&)
1 1o+ b L o b )
wi = —= | OeXi — Xi — —=LbeiV Ya ) 4.6b
(0 2\@<X 1 Dabe VX 2ﬁb’7¢ (4.6b)
J S c
i = mFbc[ﬂb Xj] (4.6¢c)
and

A

Qiap = (Fabia Agij, \/§fijk) (4.7)

is the parameterization of the generalized flux component Fyz-.
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Parameterizing the Lorentz and supersymmetry transformation rules of F™* oBO namely
b D _
5FQ*B—C —E 55+ 1= F;BC 2T [EF%]BQ + & Y5, (4.8)
we get
5Quen = —0uhep + 20,5 p AP o) + e Ven (4.9)

where the generalized Lorentz parameters I'gp and I'gz are parameterized as —/N\ab —i—E’y[asz]
and Aap = (/~\ab,/~\a,~,1~XU), with Aup = Aap + O(a’), and Ay is the generator of O(1,9)
transformations, while Ay = ﬁ?yaxi and A;; = fijkgk depend on the supersymmetry
and gauge parameters according to (2.38).

The transformation rule (4.9) contains, other than the standard Lorentz transforma-
tions, the supersymmetry variation of the torsionful spin connection [26, 27]

~(— _ 3_ N
6€w;(¢bc) = G’Y,ﬂﬁbc + ZGV[pXiF,iy]ebePCa (4.10)

the supersymmetry and gauge transformations of the Yang-Mills field strength,

. 1 _ _ 1_ 1 L A .
deFuci = 5 | Dy (Evexi) — YuDexi + ZE'WL <2chp’7 PXi — Fupiy pr)] (4.11)

2
and 65F e = fijkﬁj F ”Ck , as well as the leading order gauge and supersymmetry transfor-
mations of the Yang-Mills connection, (2.39d) and (2.43) respectively.
Similarly, from the transformation rule of the generalized gravitino curvature

ol 1 1 = 1
_ C d C *C ( )
we obtain 1
§Wep =2WppAPc) + g Ruwep™e, (4.13)
where we have defined
Ruvep = —20,, 0100 + 20" QuEp | (4.14)
which has components
ﬁz R;(wid FMTiFy)\ieT[ce)\d] ) (415)
N . N A 1 . A
Ruve' = V2 (D[(u )in}c + 4X1’7[MXJFV]CJ'> ) (4.16)
S L 1 U
R = Fly [+ X E), + 5Dy (X)) - (4.17)

In particular, (4.13) contains the supersymmetry transformation rule of the supergravity

gravitino curvature
1 A (— 3 A
661/}(117 = g <Rfu/()1b + 5 ,LLVllb> ’)/'U'VG, (418)

~(=)

where R )b is the two-form curvature computed from the torsionful spin connection wM b

nra

and T,ul/ab = F[ Fab}u in agreement with [26, 27].
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Now we turn to the parameterization of the elementary fields. We start from the de-
formed transformation rules of the components Fp/® and Ej/% given in (3.37a) and (3.37b).
Of course, different definitions lead to supergravity multiplets that obey different transfor-
mation rules. An interesting one is the following

_ b
B =t — 2 (o0 4 2T + Ay A7) e, (4.19)

b=¢— 7( —acd g (— )—{—2T—|—AmJAmj) 7 (4.20)

where Ty, = Flei [ and T = Fécﬁi“c. The quadratic terms in spin and gauge connections
are known to be necessary in order to remove the non-standard Lorentz transformations of
the supergravity vielbein e,* and dilaton ¢ fields [67, 68]. Together with the gauge covariant
T terms, these parameterizations determine e, and ¢ fields that obey the leading order
supersymmetry and Lorentz transformation rules (2.39a) and (2.42). To get this result,
the gauge fixings etz = e¥, = eV, 5Eilf = 0 and 0 E#; = 0 are used to absorb several terms
into the Lorentz parameters. As a consequence, the following parameterization is needed
for the duality covariant gravitino

" b b opa
VYo = Ya — §QaCD\IJCD + gQaCDQbCD¢b- (4.21)

Interestingly, these parameterizations induce a deformation of the gravitino supersym-
metry variation (2.39c) that can be absorbed into the torsion of the spin connection through
the following modification of the two-form curvature

b L b~ ci n b k i j
H,pr =3 |:a[p, vp) CCI(;IJ/p + 20'181/2; =+ F[ D( )Fp}ci + éA[Mal’ (X 'Yp]X]) fijk

b—i j m b—z j £ ci 1
+§X ’Y[MX] (8 Ap] Af/Ap] fklm> fijk - éX ")/[NXJF,, F[],]C:| . (422)

The Yang-Mills Chern-Simons form C’(,,)p was defined in (2.41), the coefficient

1
¢=145be,  ory= FM fiue (4.23)
and CELVL denotes the Lorentz Chern-Simons form of the torsionful spin connection wa al)),
A(L) _ p(Dedg () 4 20 (Dbep () o ()d
wag) =y, Gywp}cd + 30 Byeatly) - (4.24)

The gaugino bilinear terms in (4.22) may be absorbed into the first order deformation of
the Yang-Mills Chern-Simons form replacing AL — Aﬂjk, but this is not convenient for
reasons that will become clear shortly.

The modified three-form H wp (4.22) may be rewritten as the compact expression

b

Hywp =3 |0buy — C19), + 5é,wp , (4.25)
where 9
Cuvp = 0S8 P Qpiep + Qe Oy s (4.26)
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Likewise, a parameterization of the dilatino analogous to (4.21) also induces the
replacement of the lowest order H,,, by ﬁIWp in the supersymmetry transformation
rule (2.39¢), so that the combination p = 2\ + 791, and its supersymmetry transformation
rule are not deformed, i.e. p = p and d.p = 550)/).

From 5El/T and §¥; in (3.37), one can see that the gauge and gaugino transformation
rules are not deformed and hence it is not necessary to redefine these fields.

Finally, from the transformation rules of the components E,; or E,,, and using the

parameterizations defined above, we get
N b N B .
50, = -3 (8[MACDQV]CD + GV[MWCDQV]CD) . (4.27)

This compact expression contains information about the gauge, Lorentz and supersymme-
try transformations of the b—field, which we now analyze separately.
Expanding the first term in (4.27) one gets

b, \cDg b ed (=) kA i Lo (oei) £
~ 30uA P ep = —3 ((%A @ + 0" Ay fige = 50 (e’y Y ) F,,]ci) . (4.28)
The first term in the r.h.s. is the Lorentz sector of the Green-Schwarz transformation [80],
which requires the Lorentz Chern-Simons form (4.24) in H uvp- 1t cannot be eliminated
(=)
d

through redefinitions of the b-field [67]. The bilinear fermionic terms in o,

may be
canceled redefining EHV = by, — %wm“l@cfyy} g4, but we choose not to do this because (4.24)
is defined with the corresponding fermionic contribution and then H,,,, is Lorentz invariant.

The bosonic piece of the second term in (4.28), i.e. ga[uﬁkA,,]lfﬁjfijk, is the first
order correction to the Yang-Mills Green-Schwarz transformation in (2.43), reflecting the
o deformation of the Killing metric in (4.23). This transformation cannot be eliminated
through redefinitions of the b-field either. Instead, it is convenient to cancel the fermionic

terms in flm-j redefining
_ b . .
buu = buu + gAﬁlY 'Yu]xjfijk ) (429)

in order to compare with standard results. With this redefinition (4.22) becomes
~ _ 3b RN 1 . Al 1. .
HMVP = HHVP + 5 (D[(H )FVCZ plei T EXlV[uX]FI/mFZ]C + 4XZ’Y[uX]FVp]kfijk> ) (430)

where

— b I
Hyp =3 <8[“bl,p] —¢CY, + 2054) : (4.31)

Finally the third term in (4.28) together with the second term in (4.27) contain the
first order deformations of the supersymmetry transformation of b, i.e.

b/ (Vede (- . A b A
6(1)17#1/ = 5 (’LU[(# Je 56“’1(4011 - QAiudeAV}i + F[MCZ(SEFV]ci + D[(# ) (67 Xl) Fu]bi) : (432)
The first term in (4.32) was originally introduced in [25] to restore manifest Lorentz co-
variance to the supersymmetry variation of the b-field curvature. It was later reobtained
in [26] as a consequence of the assumption that the Yang-Mills and torsionful spin con-
nections should appear symmetrically in ten dimensional N' = 1 supergravity coupled to
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super Yang-Mills. The second term in (4.32) reflects the o deformation of the Killing met-
ric (4.23) in the zeroth order supersymmetry transformation (2.39b). These two terms are
the obvious analogs of the Lorentz and Yang-Mills Green-Schwarz transformations

b N
by = —58[MAde£]6317 Sebuy = —COYE" AL (4.33)

as already noticed in [25]. Here, these transformations follow directly from the manifestly
duality covariant formulation of the theory.

Interestingly, the second term in (4.27) can be obtained from the leading order trans-
formation of the 2-form in (2.39b) with the identifications AL “ QMCD, X' UOP e a

generalization of the symmetry AL “ uA),(f)Cd, X! ¢ ¢ that was used in [26, 27] to obtain
the Riemann squared superinvariant. The generalized identification plays a crucial role in
the proof of supersymmetric invariance of the first order action, as we discuss in the next
section and show in appendix C.

Summing up, the definitions (4.19)—(4.21) and (4.29) lead to supergravity and super
Yang-Mills fields that obey the leading order transformation rules, except for the first
order deformations in (4.32) and the replacement H,,, — I;TW,) in the supersymmetry
transformations of the gravitino and dilatino, i.e.

1+ 1 1 ~
Sethy = Ope — wamgfyabe, O\ = —§7M6#¢6 + ﬂHabC'y“bce, (4.34)
with @l(;g = Wyab + %f] uvp€” a€ly. We show in appendix C.1 that these deformed transfor-

mation rules obey a closed algebra including up to three-derivative terms and bilinears in
fermions.

Clearly, the transformation laws depend on the choice of parameterization. For in-
stance, we could define

b _ _ N "
=~ L (#7100 4 Ay ) e (9

¢ =¢- % (@oedipl) + A A, ) (4.36)
and similar ones for their superpartners, which are related to the previous parameterizations
through gauge and Lorentz covariant field redefinitions. This parameterization is known
to reproduce the four-derivative terms in the bosonic sector of the heterotic string effective
action when b = o/ [68]. Moreover, the fields defined in this way obey the same classical
dynamics as the previous (4.19) and (4.20) because the corresponding effective actions
will differ by terms proportional to the leading order equations of motion. However, the
definitions (4.35)—(4.36) induce complicated first order corrections in the supersymmetry
transformation rules of the supergravity fields. Hence, we prefer to keep the fields that
obey transformation laws with the smallest amount of deformations.

Before turning to the construction of the invariant action under the modified trans-
formations, we analyze the deformations that were proposed in references [26, 27]. In
particular, we wonder if there is a parameterization of the duality covariant vielbein in
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terms of a gauge covariant one that transforms as proposed in [26] or [27], i.e.

3a/ 3a/ ;
5(1)e/ia = _S%E’VUT/V/L@Z)VT/\VUTQAG or 5(1)eua = %E/Y[XXZFVP]iHﬂVpeAa (437)

respectively, written here in our conventions. Note that we only examine the gauge de-
pendent terms since the gravitational sectors coincide up to the order we are considering.
Specifically, we search for a quantity £,* such that

e, =e, +E,° and Ve, =30F,;°. (4.38)
The most general expressions that can reproduce either one of (4.37) can be schematically
written as
B =al" (@..’y"'w.e)u “+ay @_'Y”'XFe)M ‘ (4.39)
or as

B, = b HyogHe,” + 5" (v He), + 05 (pyv. He),* + 0 (xy 4. Fe) ,°
+05" (v xFe)u” + b6 (pyxFe)® + b7 (v xHe)u" (4.40)

where the terms between parenthesis refer to all possible contractions of indices and num-
bers of v-matrices, numerated by the supraindex m, while ). and 1, denote the gravitino
and gravitino curvature, respectively. We found that neither of (4.37) can be reproduced.

Indeed, the supersymmetric generalized Green-Schwarz transformation (3.37), param-
eterized with the fields that reproduce the bosonic terms of the heterotic effective action,
strongly constrains the possible deformations of the theory. In particular, it does not ad-
mit the proposals (4.37). This does not imply that the latter are in conflict with string
theory. In order to establish the invariance of the action that implements those super-
symmetries under O(n,n) transformations, it should be dimensionally reduced to 10 — n
dimensions. We stress that the deformations (4.32) and (4.34) were obtained from the
transformation rules of the O(10,10 + k) multiplets, whose algebra closes exactly. Hence
the theory avoids an iterative procedure which only guarantees consistency up to a given
order. Moreover, supersymmetry is manifest to all orders and dimensional reductions will
preserve the expected T-duality invariance of the theory.

5 Heterotic string effective action to O(a’)

In this section we parameterize the O(10, 10) invariant N' = 1 supersymmetric action (3.47)
in terms of the supergravity and super Yang-Mills fields that transform under local super-
symmetry according to (2.39a), (2.39d), (4.32) and (4.34). We obtain all the terms of
the heterotic string effective action, up to and including four derivatives of the fields and
bilinear terms in fermions.

It is a straightforward though heavy exercise to parameterize the action (3.47). In-
terestingly, using Bianchi identities and integrations by parts, the action of the theory to
O(a’) may be written in the following compact form:

S = /dwx ee 2L, (5.1)
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with

1 ~ ~
L= R+40,¢0"$ — EHWHW 4F;VFW + CR wApRIAB

- . — 17 _ v 1 v ]
— V'Y Dy, + py Dypp + 29" Dyp — §XW“DH>@ +Xi <v“¢ - p) E,

1 _ 1.
5 4pr (w POy + 12077 — pyP7T p — 647 p + 2><Wp‘”xz->

_ 1 N
TADD, (0, Wy — o T T s~ T (v“w” - 47%) Rowan

where we have taken b = o/ and defined { = YyHPH,,,, and

+ad

Y

1
Zwucd’YCd‘IjAB . (5.2)

As expected, the bosonic fields reproduce the expression obtained from the scattering

Dy(w, D)W ap = 0,V ap + 22,4 V0 —

amplitudes of the heterotic string massless fields up to first order in o’ and field redefini-
tions [16-18], i.e

Slbos = / dOzee2? [R+4au¢aﬂ¢ HWPHWp (FZVFZF‘”

o 3 o
+— (RIS;)abR(—)uuab _ iprle _ 2T,u1/pUTMVpU> + Z

S e.o.m.] , (5.3)

where we have included only the terms involving purely bosonic fields (recall that the
hatted expressions contain fermions) and e.o.m. refers to the leading order equations of
motion Ag,,,A¢, AA,; and Ab,, that are given in appendix A.3, namely

1 1 . .
e.om. = 5 Ay, T (4A¢TW + A(AD),AA;, + A;AipAbAHAbﬂy> g, (5.4)

with A(Ab):, = (AAiV - 2Af\Ab’\V). The first order correction to the Killing metric in-
cluded in the coefficient ¢ and all the terms in e.o.m. may be eliminated through gauge
covariant field redefinitions. However, as we argued in the previous section, the redefined
fields would obey more complicated supersymmetry transformation rules. Reversing the
argument, we can think that by adding terms proportional to the equations of motion in
the action, the deformations of the supersymmetry transformation rules can be minimized.

The apparent simplicity of the first order corrections that involve bilinears in fermions
n (5.1) is due to the definitions (4.1), (4.5) and (4.14). The terms that are independent
of the super Yang-Mills fields (i.e. those in which all the collective indices A, B, ... take
the values a,b,...) exactly agree with equation (2.11) of [27]. The latter was obtained
replacing AL — wff)Cd and x’ — 1 in the leading order Lagrangian (2.44). Actually, one
can recover the Lagrangian £(R?) of [27] replacing

(=)

\IIAB — waba jz;wAB — Ruyaby H,uup — H,uup

n (5.1). However the structures with collective tangent space indices A, B, ... contain
super Yang-Mills fields in addition to the supergravity fields. Note that H,,, involves the
generalization of the Lorentz Chern-Simons form (4.24) defined in (4.26). As expected,
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the terms in which the collective indices take the values i,7j,... do not agree with the
corresponding expressions £(RF?)+£L(F*) in [27], since the supersymmetry transformation
rules of the fields differ by Yang-Mills field-dependent terms.

The supersymmetric invariance of the action (5.1) is shown in appendix C. It simply
results from the observation that both the action and the transformation rules of the fields
have the same structure as the corresponding ones in [27], albeit with collective indices,
except for the terms contained in the parameter A, = ﬁg%Xh which cancel in the
variation of the action.

6 Outlook and final remarks

In this paper we have obtained the first order corrections to A/ = 1 supersymmetric DFT
performing a perturbative expansion of the exact supersymmetric and duality covariant
framework introduced in [76]. The action has the same functional form as the leading
order one constructed in [71-73], but it is expressed in terms of O(10,10 + k) multiplets,
where k is the dimension of the O(1,9 + k) group. Decomposing the O(10,10 + k) duality
group in terms of O(10, 10 + ny) multiplets, the theory contains higher derivative terms to
all orders. We kept all the terms with up to and including four derivatives of the fields and
bilinears in fermions.

The transformation rules of the O(10, 10 + k) multiplets obey a closed algebra and in-
duce higher-derivative deformations on those of the O(10,10+ny) fields. In particular, they
produce a supersymmetric generalization of the duality covariant Green-Schwarz transfor-
mation that was found in [67]. We showed that the algebra of deformations closes up to
first order and constructed the invariant action with up to and including four derivatives
of the O(10, 10 4+ ny) multiplets and bilinears in fermions.

To make contact with the heterotic string low energy effective field theory, we param-
eterized the duality covariant multiplets in terms of supergravity and super Yang-Mills
fields. The inclusion of higher-derivative terms requires unconventional non-covariant field
redefinitions in the parameterizations of the duality covariant structures. The definitions
that reproduce the four-derivative interactions of the bosonic fields of the heterotic string
effective action were found in [67, 68]. Here, we worked with a set of fields related to
the latter through gauge covariant redefinitions. Except for the two-form, the fields de-
fined in section 4 obey the leading order transformation rules with a modification of the
two-form curvature in the supersymmetry variations. The Lorentz and non-abelian gauge
transformations of the two-form are deformed by the standard Green-Schwarz mechanism,
as expected, and its supersymmetry transformations are deformed by Green-Schwarz-like
terms plus some extra Yang-Mills dependent higher-derivative terms.

The deformed transformations obey a closed algebra, which guarantees the existence of
an invariant action. We constructed such action in section 5, by parameterizing the man-
ifestly duality covariant expression (3.47) in terms of the fields that obey supersymmetry
transformation rules with the minimal set of deformations. As expected, the interactions
of the bosonic fields agree with the results obtained from the heterotic string scattering
amplitudes [16—18], up to terms proportional to the leading order equations of motion. To
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our knowledge, the three-derivative low energy interactions involving fermions have not
been constructed directly from string theory. The action and transformation rules that
we have obtained follow from an exact supersymmetric and duality covariant formalism.
Hence the theory avoids an iterative procedure which only guarantees consistency up to a
given order. Moreover, supersymmetry is manifest to all orders and dimensional reductions
will preserve the expected T-duality symmetry of the theory.

Supersymmetric extensions of the Yang-Mills and Lorentz Chern-Simons forms
have been constructed using the Noether method. In particular, a supersymmetric
L(R) + L£L(R?) invariant was obtained in [26, 27] from the leading order action (2.44), us-
ing the symmetry between the gauge and torsionful spin connections. The three-derivative
terms that are independent of the Yang-Mills fields in the action (5.1) coincide with those
results. But not surprisingly, the Yang-Mills field-dependent terms disagree with the corre-
sponding expressions of the £L(RF?)+ L(F?) invariants proposed in those references, since
the deformations of the transformation rules differ by Yang-Mills field-dependent terms.
The supersymmetric and T-duality covariant generalized Green-Schwarz transformation
strongly restricts the modifications to the leading order supersymmetry transformation
rules, and in particular, it does not allow the proposals of [26, 27]. As argued in section 4
this does not imply that the latter are in conflict with string theory. In order to establish
if they are compatible with the required T-duality symmetry, the corresponding invariant
action should be dimensionally reduced.

The effort employed in the construction of the higher-derivative fermionic sector of
the heterotic string effective field theory is justified for various reasons. First of all,
an intriguing consequence of the duality covariant formalism is the natural appearance
of the generalized collective tangent space indices C, D, ..., which allows to include the
h1gher derivative Yang-Mills field-dependent terms into gmmtatwnal structures such as
JQWC D, QHC p or Yop. In particular, it leads to relatively mild modifications of the leading
order supersymmetry transformation rules of the fields, which permits the use of the lead-
ing order Killing spinor equations to obtain classical solutions containing higher-derivative
corrections [2]. These features not only simplify the construction of new supersymmetric
solutions but also allow to easily extend the known solutions for the gravitational sector
to the Yang-Mills sector.

The fermionic contributions to the action are also relevant for applications to four-
dimensional physics. Both the superpotential and D-terms can be more easily computed
from the fermionic couplings [10] and the higher derivative corrections to these terms
as well as to the Yukawa couplings could also have interesting consequences for string
phenomenology and moduli fixing.

An obvious natural extension of our work would be to determine further interactions
beyond the first order. The quartic interactions of the Yang-Mills fields that we have
reproduced are mirrored by corresponding quartic Riemann curvature terms [16-18]. Con-
sequently, we expect that the higher orders of perturbation will reproduce these higher-
derivative corrections. It would be interesting to see if the generalized structures with
capital indices persist to higher orders. If they do, the formulation would contain informa-
tion about higher than four-point functions in the string scattering amplitudes.
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Nevertheless, there is another quartic Riemann curvature structure that has no analog
in the Yang-Mills sector [16-18]. At tree level, these terms are proportional to the tran-
scendental coefficient ((3). The analysis of the higher-derivative terms is technically more
challenging but also more interesting, since further duality covariant structures, or even a
more drastic change of scheme, seem to be necessary as advocated in [81].

Performing a generalized Scherk-Schwarz compactification of the sub-leading correc-
tions to N' = 1 supersymmetric DFT would be another promising line of research, as
this would produce higher-derivative corrections to lower dimensional gauged supergravi-
ties [68, 82]. We hope to return to these and related questions in the future.
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A Conventions and definitions

In this appendix we introduce the conventions and definitions used throughout the paper.
Space-time and tangent space Lorentz indices are denoted p, v, ... and a, b, . . ., respectively.
The covariant derivative acting on a gauge tensor G uCi and on a spinor € is, respectively,

D;(li)GIZ/c = BMGf/c - FZ,VG;)C - w/&%)dexd - AilG]chfl]ka (Al)
1 a
Dlgi)e = Ou€e — waab’y be, (A.2)
with 1
Ffw = §ggp (augup =+ al/gup - 3pg,w) , (A3)

and the torsionful spin connection

1
wgc) = (wabc + 2Habc> 5 (A4)

where
Wype = €,” (—e“[ae”b@ueyc + e [qe” g Opewy + e“[be”c]aueya) . (A.5)
The identity D e,* = 0,e,* — Fﬁyepa - w,ﬁbeyb = 0 implies

Wy = —€’00ue,’ + Fzyeobe”a ) (A.6)

The commutator of covariant derivatives acting on gauge tensors and spinors is

[D;(Li)7 Dz(/i)} Foei = =R pu Foei + Rfui/ngpdi - F,ul/jFPCkfijk (A7)
1
[D/(Li)’ Dl(ji)} €= zR(i)m/ab’}/abG , (A.8)
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where the Riemann tensor is defined as

R o = 0,17, — 0y Fp + FZHF’;”U FWFZU
= epaeabR,uuab = e €o (_28[,uwu}ab + w,uacwucb - wuacw,ucb) ) (Ag)
and the Yang-Mills field strength is
F}, =20, A} — [1jALA; . (A.10)
The Ricci tensor and scalar are

Ry =Rup,  R=g"Ru = Ru"e e, (A.11)

A.1 Some useful gamma function identities

To distinguish O(1,9)g and O(9, 1), tangent space indices in DFT we use @,b,... and
a,b, ..., respectively. The Clifford algebra {v,,7} = —2P, determines the following
identities for the O(9, 1)1, gamma matrices

YaVb = Yab — Pab , (A.12a)
YabYe = Yabe — 2V[a Pl ; (A.12b)
YaYoe = Yabe = 2FP4pe] (A.12¢)

72 = T2 — 4’7[2[4PQ]£] + 2P[Q[£ Pg}@ ; (A.12d)
Vab e = e — 67,22 Py< + 641 PR Pyd (A.12¢)
Yabe % = Yane™ — 670 Py + 67 P Py (A.12f)

Yabe V2L = Yape 2L — 9y Py 4 18+, L PAPS — 6P P Py Y (A.12¢)
CreCl=-(",  C 'l = —(vw), (A.12h)

where C~1 = Ct = —C and a,b=0,...,9.

A.2 Leading order components of the generalized fluxes

Using the parameterizations introduced in section 2 and solving the strong constraint in
the supergravity frame, the non-vanishing determined components of the generalized spin
connection are, to leading order,

1

FE@ = - (wabc + 2Habc) = _wz(zzg , (A13a)

1

FaE = <wabc - 2Habc) = w((zbc) ) (A.13b)
1

F% =3 <w[abc} - 6Habc> s (A.13c)

1
Fape = =3 (w[abc] + 6Habc> ) (A.13d)
1
Fiap = P = Fagi = = 5" ac"0e, Fl (A.13¢)
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F— —eigejjeﬂaAukfijk 7 (A.13f)

aij

FiTk = ﬂe%e%e%fijk , (A.13g)
Fy = Fy = (Ouelt + ehiefOuel, — 2¢440,0) (A.13h)
where
. 1 o
Hape = elﬁzezegHMW) = 3ejepel (8[Mbw)} - AfuaVAP]i + 3fijkALA¥/A];) ) (A.14)

and fj;, are the structure constants of the SO(32) or Eg x Eg gauge groups.

A.3 The leading order action and equations of motion

Here we rewrite the zeroth order action (2.44) in terms of the dilatino A of the supergravity
multiplet and compare with the corresponding expression in [27]. We also list the leading
order equations of motion of all the massless fields derived from it.

Rewriting the generalized dilatino p = 2A + v#1, in terms of A and 7 and integrating
by parts, the action (2.44) takes the form

1

1 .
- EHMVPHP«VP +48N¢(9“<;5 - *FZ FMV

4

S = /dlox ee [R(w(e))
G Dty + A3 Dy, + 0D\ — XD
+ 4y YA, B — 20, Dy — ifm“v””Fﬁp (w# + :1))7#/\>
+ o (P70 ABATN = DAL X)L (A1)
It matches the corresponding expression in [27] with the following field redefinitions: ¢—3 —

e R— —R, Hyn — %ﬁHMVN B, — %buw A — \%)\, A, — %A#, X — %X'

The leading order equations of motion of all the massless fields, written in terms of p,

are
1 1 .
Ae,® = §elﬂA¢ +2R," +8D,¢D") — iHu)\oHa)“’ — PN
— 20,7 Dap® — 20™y,e”* Doty + 257, D%p + 4p, D%p — X', DX

1— 1 1 . _
_|_ Z¢A7uJTwAHagT _ *ﬁ’)’uJTpHam— + 7YZ’}/HO-TX'[H&UT _|_ 1[10’)’“7,0Hag-,—

4 8
1— — — 1—
_ §¢M’YUTPHMT + 2wu70¢THaoT o wo’)ﬂul/}THaoT + E¢#7p07waHpaT
+ 22X AN = X PN = XyuapFN (A.16)
Ap =—2L, (A.17)

1
Ab,, = §DMHWP — DMoH,,,

1 — _ _ 1_,
- gD'u (¢A7uup1/})\ + 12¢[#7y¢p} = PVuvpP — 6w[u7Vp]p + 5? 7uupXi>

1 /— — _ 1_,
t1 (W'mupl/u + 129,75 — DVpvpp — 6V Ypp + X wupxz) D¢,
(A.18)
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AA, = %HWPF”’” + A AV, — DVF,,)' 4 2F,,' D" ¢ — %yﬂ%x’f Flin

—~ éF”m <w>\7,ul/pw)\ + 12007015 — PYuwpp — 6V + %Yj %prj>

+2D"Y' (’Y[,ﬂ/}u] 1’Yuup> +2x'D” (V[M/JV] 1%up>

— 4x’ ( ] — ww) DY, (A.19)
Atpy = 2D, 7" — 20,7 0,6 + 2D,p +7 v,bw Hpor — iHWp (Mpv” - m”ﬂ) ;

' XY (A.20)
Ap = 2D, 7" + 2p7y* 0,0 — 2D, " + 4" 0,6 — i Hpor ( POT 4 30p ‘”) ;
_% XA (A.21)

1 1
AXi = D,uYi'VM - Yifyuau(b + yiﬂ’ypm—Hpa‘r - (w 7 - ZP’Y > F;wz’ . (A'22)

B Algebra of transformations of O(10, 10 + n,) fields

In this appendix we show that the algebra of transformation rules closes, up to terms with
two fermions. We first review the algebra of zeroth order transformations (2.19) and in B.2
we include the first order corrections. We define [01, d2] = —d12.

B.1 Leading order algebra

We focus on the algebra determined by the leading order transformations (2.19) and show
that it closes with the parameters (2.20). We split the algebra of transformations on the
generalized fields into the following commutators:

e Supersymmetry transformations of the dilaton

1 1
[0cy, 0ey ] d = 5@ ( “\fE Oner) — 47“wabc'ybcel])

= —¢5 Oud + 58M51%4 = —b¢1d, (B.1)

where we have used €17%€5 = —€ay2%€; and €17a—bceg = 627@61, and defined

1 - _c
= _EEMQ (e17%€2) - (B.2)
e Diffeomorphisms on the dilaton
[0c,,0¢,]d = —&12 Oprd + aMg"M = 0 d, (B.3)
with

1o =2¢ff oy’ (B.4)
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e Mixed supersymmetry and double Lorentz transformations on the dilaton

1— c
dp,qd = —ngfug’)’bﬂ) = —0¢,d, (B.5)
where we have defined ojr g = [0r,, 0c,] + [d¢;, Or,] and
1 a
€y = —§F[1a7b€2]’}’*b- (B.6)
e Mixed diffeomorphisms and supersymmetry variations on the dilaton
1 _
6[e,§]d = 55[]\1/[3M€2]P = _55’1’2da (B7)
with
" M =
€1p = 2§[; Omey) - (B.8)

e Supersymmetry variations of the frame

1 5 1 g
[551,562]EM2 = EENﬁaN (E[l’ygez}) EMB - 3 (€[1’ygeg]> MEQQEMB . (Bg)
Projecting with EM@ we get
EY5 [0, 0e,) Buia = —E"g6¢r_ Eng (B.10)
where we have used (2.14) and &Y is the generalization of (B.2), i.e.
1 _
Projecting with EMQ we find
EMg[éeuéez]EMg = _ENQ5F32ENQ (B.12)
with 1
g = Bl (e, ) - 5 (E17ea) F2. (B.13)
Following similar steps, we get
M M M M
EVc[0e,, 06| Eyg = —F ¢ Bz, E 5l0e1,0es| Eyg = —F oo, Eyvia s
with o 1 o
Iy = =5 (@7%e2) F47%. (B.14)
e Diffeomorphisms and double Lorentz variations of the frame
S g BV = — (5% + 553,2) EM, (B.15)
where
Toan = 26800 Tgap — 2012 CT B.16
1248 = 2§71 OmT'ojap 1a Tocm (B.16)
et = 2efopel) — loMegn + frgMET e . (B.17)

Note that £/ in (B.4) does not contain the second and third terms in the r.h.s. of
this expression, due to the strong constraint.
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e Mixed diffeomorphisms and supersymmetry variations of the frame
e P = €Y O V5B P = —6 B, (B.18)
where €/, is defined in (B.8). A similar result is obtained for EM—.

e Mixed double Lorentz and supersymmetry variations of the frame
O g BV = %HPQ}M%Q%EME = 0 E", (B.19)
where €}, is defined in (B.6). A similar result is obtained for EM—.
e Mixed diffeomorphisms and supersymmetry transformations of the gravitino
Sie W = (26 Onrer) — gwmn=e ey = ~Vgely = ~0 ¥ (B:20)
e Mixed supersymmetry and double Lorentz transformations of the gravitino
1
orqg¥a =5V (Paserer)) = —Vgeho =~ U (B.21)
« Diffeomorphisms and double Lorentz transformations of the gravitino
oW = — (ory, + ey, ) U (B.22)

e Mixed supersymmetry and double Lorentz transformations of the dilatino

1 a C a
dr,qgp = —37 Va(Tpper¥er) = 14Vaely = =0 p. (B.23)

€12
e Diffeomorphisms and double Lorentz transformations of the dilatino
dr,gp = —(5p/1/2 + 5§3/2)p. . (B.24)
o Mixed diffeomorphisms and supersymmetry transformations of the dilatino

Oe,qp =1*Vaely = —0er,p.. (B.25)

Summarizing we have found, up to bi-linear terms in fermions,

EMZ[61,62] Bra = —E"5 (66,5 + 01y, + 0e15) Enia » (B.26a)
EM [61,05] By = —E™. (0¢y, + 01y + 0e1y) By » (B.26b)
EM=[61,60) Bz = —EM 560, By (B.26¢)
EY.[61,85] Bvtg = —E" cbry5 Bna (B.26d)
[01,02]d = — (8¢, + 0erp) (B.26e)

(01, 0] Weg = — (8, + Oy + 0 ) Wz, (B.26f)
(61,02 p = = (ep, + Ory + 61z (B.26g)

where 61 = 551 + (561 + 5I‘1 and §IIM2I = 511\2& + fi/QM, I'oan = F/12AB + F/1/2AB? €12 = 6’12 + 6/1/2.
The commutator of supersymmetry variations on the gravitino and dilatino as well as the
missing terms 5§i2p and 6532\112 are not included as they are of higher order in fermions.
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B.2 First order algebra

We now work out the algebra of first order transformations (3.37) and show that it closes
with the parameters (3.38), up to terms with two fermions. Here we denote § = §(9 +
M and [61,8] = 5%1)550) + 550)651) —(1+2) = —5%). We split the algebra as in the

previous section.

Double Lorentz transformations on the generalized frame
A b k A &
Gy 60) B = 5 [, (Fi2°) Ex"0N Ay — 0n, (FirOP) En*0VAygp| - (B.27)
Rewriting
on, (FirP) EnA0" Ayeg = (— 0wASP + 2P0 A 50) En 20" Ay (B.28)
with Oy = Oy + Oy and

— 2B A P Oe A gy = B [0 (—Mi PO Agepy ) + 06 (M POy )|, (B.29)

we get
[5A1,(5A2}EMA = — (5A(1)/ +6 (1)/) EMA, (B.30)
12 12
where b
1) D 1
¢ = bAGP v Ay AQAB 5F5 FASP ExAyes - (B.31)

Repeating the procedure for Eyé, we find
[5A1,5A2]EMQ = — (6/\(1)/ + 5 (1)/) EMQ, (B32)
12 12

with €™ defined in (B.31) and

b
A, = EbA[l Eyhyop - (B.33)

Mixed supersymmetry and double Lorentz transformations on the generalized
frame. Using

1 _= D S 1 A-7D
§OFyCP = et (2\IJAEMAJ-7,CD + By VP U + QEMb‘I’AfCDA) , (B.34)
we get the first order contribution to the mixed transformation rules of EMZ

5 bl 1 5 B i 1 4. \CD
Sjen Bt = 3 {—QGWWBEMBFZ,CDENA@N Az — iégvquA@MA?DFQC—D

1 T 7P 1
+*62’}/ Alcd'}/ \IJA]:MCD.FQ@ 4627*\I/A.FMCD.FGCDA11)

16
L o D, by 1
+ ZFMCDEIVQ\I}AENgaNAQ@ + 462’}/*\I/A8MACD]—"I)@
1 _
—§€279ENQ8NA1@]-“ CD. ey By — (165 2)] (B.35)
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The first two terms are a Lorentz transformation with parameter

AW

s = b e U BN ONAGP Fyes (B.36)

Bl
From the second line, only one term survives after commuting the gamma matrices, which
corresponds to a first order supersymmetric variation with zeroth order parameter €, =
11—
—5€17 A ea-
In the same way, from the remaining terms we find a first-order supersymmetry pa-
rameter

’ b D
@y = Zg[lEMgaMAch)}- e (B.37)

Consider now the component Ep%

1 J— —_
~ e P Fu“PEN 0N A (o5

2

b 1 = _
O B = 2 [_ §€179\I/BEM§EN§3NA2@}-QCD _

1 1 e | .
+580" (_AlchCd\I]B> FypF " Bu” — e Vg Fpp Ent 0N AT By

1 1
+=Ey? EQ’Y*\II EN 8NA10D.7“C*—§627 Eyg (—

1
5 *ENQaNAch.F CD bc\I]B>

4

1 c wCDnm B
+ZE2'YQ\P§ (*ENbaNAlchJrfngDAIQ> ]:*CDEMB - (1 > 2)} . (B.38)

The first line is a zeroth order Lorentz transformation with parameter
1 " _ - —_
A = b €Y Fy TP EM 500 Ay (B-39)

Commuting the gamma matrices in the first term of the second line, the second contribution
in the fourth line is canceled and we get again a supersymmetry transformation with zeroth
order parameter €/, = —%E[lfy@AQ]@ . Finally, commuting the gamma matrices in the
second term of the third line, various cancellations leave a supersymmetry transformation

with first order parameter (B.37).

Supersymmetry variations on the generalized frame

é 1
2
+./TN .7:[ CDaNEPd]EPA)’y €1+— 62.7:A d]: CD]:bCDfV €1

EMQI:561>662]EMZ: ( [dE ap}_N ]‘—JCD—FE —EF [cap}—N ]:JCD

1 1
+ 6k ZapdengoD’ydel—ZE 40P (e7e1 Fyop) FeCP — (143 2)

The first and last terms of the r.h.s. combine into a Lorentz transformation with

parameter
A b e 2 (B.40)
1248 4617 €2/ AB> -
while the other terms form a diffeomorphism with first order parameter
1 " b
5%2&[ SfMCbe 617%2- (B.41)

The same result holds for EMg [0e1, Oey ] EMg, While
EMS[6e,, 00 Bz =0, EM [6c,,0c,] B = 0. (B.42)
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Mixed diffeomorphism and Lorentz variations of the generalized frame. Re-
calling that diffeomorphisms are not deformed, we get to first order

O Brva = b EX 40p(26 On A }CD)P}CD, (B.43)

which is a first-order Lorentz transformation with a zeroth order parameter. We use the
convention A[ZBQ = %AZBQ - %AEBg to interchange projected indices.

Mixed diffeomorphism and supersymmetry variations on the generalized frame.
This case is similar to the previous one. We start with

b 1 =
O 1By = 3 <_4£§8P61> 'YQ\I/Z}"MCD}"Q@ —(1+2), (B.44)

which is a first order supersymmetry transformation with a zeroth order parameter. It is
straightforward to see that the same result holds for Fy,.

Double Lorentz variations on the generalized gravitino
b 1 1
A7 (05 5) —  Amer™ (04 ¥ 5)

5“( (EMy0nAsep PPy C\I'A)+(2VD‘IJCwEDC\IJE)EMAaMAQCD)

[5/\1 ) 51\2]

— (2VP0C - PO 50 (B 50mAep) | - (145:2). (B.45)

After some straightforward manipulations, we finally obtain Lorentz transformations with
the following parameters

b b

c 1’ CD (1)’ CD
Ayap = A[lA A2]CB’ A12AB *E sAn T Eg A]CD and A12ab QEA[chE Ag)
Mixed Lorentz and supersymmetry transformations on the generalized grav-
itino
b B 1 ab(3) _cd (1) M
5[A7€] \IJZ = 5 A2A6£1) B + EAQQV*-F%@”Y*Q + 5/\ E Z&MGQ
M CD_ bc (1)
- ZE vOMAepFe VeV e 5 ) Fape e
— 200(VPUYEMap Ay + wEDC 5§1>mpBEM O Ayes
L 0) =(3) _be
—15(&)]—“%; ey — (14 2)] . (B.46)

Commuting the gamma matrices in the second term of the r.h.s, and combining it with the
corresponding term in the (1 <» 2) operation, we recognize a supersymmetry transformation
with zeroth order parameter ¢}, = —%E[lvleQ]@.

The first term in the second line together with the corresponding term in the (1 <> 2)
operation, gives a zeroth order supersymmetry transformation with first order parameter
egz) = b bce[ EM oA, sjonse OD The remaining terms cancel and then we get

_ (0) 1)

up to terms with two fermions.
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Mixed diffeomorphisms and supersymmetry transformations on the generalized
gravitino
Sjeq Vg = 5 bCaMe g = —0) W, (B.48)

with €10 = 25[]\1/[81\/162].

Double Lorentz variations on the generalized dilatino
1 1 1
01 0aalp = _ZAQ‘MQ( —if Y00 A iepFa o) - ZAlEQEMQaMAQCD}—dCD'dep

1 —_ —_ _ J—
- ZEMgaMAzﬁ( — BN ONM P + FuOP M+ 27 PPN 597

1 rolal 1
= 1 EM b0 Agep PP (= Aaa ™) — (145 2). (B.49)
In the second line (adding the (1 <+ 2) operation) we recognize a Lorentz transformation
with first and zeroth order parameters

vy _b cD _ c
A12@ = §E2A[107DEQA2} and AIQE = —2A[2073A1]z . (B50)
Commuting the gamma matrices of the third line, it is straightforward to see that the
remaining terms cancel.

Mixed Lorentz and supersymmetry transformations on the generalized dilatino.
This computation is similar to the one associated to the gravitino. We find the following
supersymmetry parameters

1_ ., rb oy, reiol
6’12 = —56[1’)/&/\2]@ and 6%12) = ZVLG[QEMQaMAl}CTIQCD, (B51)
so that finally
Sleap = —0L)p- (B.52)
Mixed diffeomorphism and supersymmetry transformations on the generalized
dilatino
1
Sie.qp =& Om ( f(3) abee, ~1 (wcdcfd “=pFa oD 4 EN 0N (Flap5F CD)) 7“61)
— (14 2)
1
=—0tp. (B.53)

In equations (3.38) of the main text we collect the parameters that appear in this
algebra of first order transformation rules.

C Supersymmetry of heterotic string effective action

In the first part of this appendix we prove that the higher-derivative deformations of the
transformation rules of the supergravity fields satisfy a closed algebra up to O(’) and up
to terms with two fermions. In the second part, we show that the action (5.1) is invariant

under these supersymmetry transformations.
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C.1 Supersymmetry algebra

It is well known that the algebra of leading order transformations of supergravity and super
Yang-Mills fields closes. Moreover, the replacement H,,, — H uvp i the supersymmetry
transformations of the gravitino and dilatino does not affect the leading order closure on
any field except for the b-field. Hence we focus on the algebra of first order transformation
rules on b, .

It is convenient to first look at the brackets acting on 5“1, = by + gAfuyi’yy] p% fijk- Up
to first order and bilinear terms in fermions, we need the following transformation rules:

b0 = Yo — 7" Bugthy + e — JLIA e, (C12)
SAl = 0,8 + 1 Al + %mxi : (C.1b)

ox = [/ x" - iAbwaX - iﬂiﬂ’”ﬁ, (C.1c)

Sbyy = 20,6, — COWE Ay — g (8[MACDQ,,]CD 1 EPy[N\IICDQV}CD) : (C.1d)
8cp = —0uhep + 20, 5pAf o + @1, Yep = —DuAep + 1, %ep (C.1e)
SRwep = 2R, ppAF o) — 2Dy, (e Yep) | (C.11)
0Wop = 2V A ey + %ﬁMVCDVWE- (C.1g)

We exclude the diffeomorphisms since it is trivial to see that all the transformation rules
of by, (i.e. Lorentz, supersymmetry, abelian and non-abelian gauge transformations) trans-
form as tensors under diffeomorphisms and hence their commutators are trivial. Therefore,
we compute the brackets

= @ 1) <(0 1) <(0)\ 7 0) <(1 0) ¢(1)\ 7
(161, 02Jbp ) = (61765” — 057617 By, + (817 05" — 68761 ) b . (C2)

The first term in the r.h.s. gives
5507 _3a ¢
1703 b — (14 2) = e €1Cuwn, (C.3)
and the second one can be written as

A

0{76b,, — (14 2) = a0y, (ASP0)Mep) + /0y, (ATPAS ) Quyp
/

o A T « ey
+ Z€2’Y)\519[;LCD:RV])\CD - 58[;1 (€2’y 61Qc¢7) Qu]ci- (04)

Adding both contributions, we get

T (1) o A o - o_ O A
([5la 52]b,ul/> = 26[M£12u] - Ea[MA%DQV]CD - 58[;1 (62'7 GIQCU) Ql/]ci ) (05)
with .
o 1 A A
§120 = 5 [AQCD&/AMJD + 4627>\619VCDQ/\CD] : (C.6)
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and
1 A
AICQD = QA?EAQED + 5@7)‘619)\6@ . (07)
To see the algebra of transformations on b, note that
/

(161,0) b = (191,0205) " = % (018D (45T fise) (O

and it is easy to see that the second term in the r.h.s. vanishes. Rewriting (C.5) in terms
of supergravity and super Yang-Mills fields, the brackets that mix supersymmetry with
Lorentz and abelian gauge transformations vanish, while the supersymmetry algebra gives

cd A o 7
(Ber: 8e))™) By = Opu(12)1) — @0 AR e — o 0O)uEl2 A (C.9)
with

/

o ~ ~
(&12)y = ZGQ’Y’\QQVCDQACD,

1_ (=
A12 = 4627)\6110& )Cd,
i 1.y 4
12 = —5€2 €14y . (C.10)

C.2 Invariance of the action
Here we prove the supersymmetric invariance of the action
S = /dwx ee 2L, (C.11)
with
n 1~ TV 1 U 104 R j{,uZ/CD
L =R+40,¢00 ¢—EHW,)H _ZF’“’F —|— g Ruvep
_ — 1 1 ;
=y Dby +py" Dyp+29 D yp— ifv“DHXi +X; (’Y“w” - 7“”/0) F
T g T agT gT 1 gT
24Hpa'r (@W PP 1205977 =T p— 60T p+ 5X TP Xz)

_ . 1 _ _
+a <\IICD7“DM(w,Q)\IlCD—M\IJCDH\PCD—\I!CD( Hap¥ — 77 p> RWCD). (C.12)

Since the leading order action is known to be invariant [24], we analyze the O(d)
variation, namely

D= / d'zee? [—e, 200t LD — 250 gL M 4 6O L1 4 5NLO] - (C13)
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Using the transformation rules (C.1) we get

(1) Ck/i DUV 14 durCD 30/7 (pp1,\) o v

(69)" = g P (HWPG“ p— 59%””0[)9%“ ) + < & Hap™ Hpy pCAVP
3a/ o 1 o 1 - A 3a’ ) ~

- 7?7“'(1}” (ap¢€uup - igpeuup + R,upCDRupCD> + ?gyuXZFupielwp

/ . . 1 “ " "
+ %5@9“@ (Ab’“’Q,,oD G H" PRy +20,¢RP — @,,93#”017)

/

o . N ~ ~ ~

+ §5(0)wu (')’paTT/Juepar + 12,YJ¢T ep,aT o 3’YUTPG;LU7- + SfYV\IICD:RMVCD)

O[/

-8
_ A 1 1 1 A
+2a/60FCP <IZ)(U}, N)Vep— <(3¢+ 24H> Vep+sg <7“¢V - 4VWP) RW/CD>

+6Wh,, AW — 25D Ax, +26MpAp. (C.14)

/
~ ~ o . ~
(O)ﬁ ((’ngT,O‘F?)’YUTQ/)p) epaﬂ' - 2’7#V\I’CD92,LWCD> + E(S(O)yz,ypcm'xiepo_‘r

The variations (C.1) depend on the supersymmetry parameter explicitly and through
Ay = 2—\1@%%)@-. The explicit dependence has the same structure as the corresponding
transformations in [26, 27], replacing the collective indices C, D, ... by ¢,d,.... Since the
corresponding actions also have the same structure, we can assure that those terms cancel
in (C.14). The A.-dependent terms are contained in 5(0)QMCD, 5(1)6,“, and 6OUqp. We
can disregard the latter as they are higher than bilinear in fermions. The former two may
be written as

Oé/

(65)Y = 5D, [9,A°P e - 0P pApe| HM?
of A of A
+ ED,,?DMACDJQ‘“’CD — ZQMACDH’“"”RW)CD :
which can be easily shown to vanish after performing some integrations by parts.
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