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1 Introduction

The astronomical observations point in the direction that we live in a flat universe whose
expansion is currently undergoing acceleration, in a phase that can be approximated by de
Sitter (dS) geometry. In an opposite direction, the construction of a consistent dS vacuum
in 1+3 non-compact directions in string theory has proved to be extremely difficult [1].
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Moreover, a no-go theorem states that there are no (macroscopic) stable or unstable dSn
solutions for n ≥ 4 at tree-level in heterotic and type II string theories (in the absence of
RR fluxes) [2], and even further, it is conjectured that no stable or meta-stable dS vacua
can exist in a consistent quantum theory of gravity [3–5].

Understanding the cosmological consequences of classical string theory requires the
knowledge of the infinitely many higher order corrections that it induces on the Einstein
equations. But so far, only the first few lowest orders have been computed explicitly.
Since the truncated expansion may not display the properties of the full string theory,
alternative models for the evolution of the universe have been constructed from duality
invariant theories with higher-derivative corrections to all orders that are relevant for cos-
mology [6, 7]–[10].

The motivation for the so-called α′-complete cosmology follows from the observation
by Sen [11] that the string low energy effective field theory in d + 1 dimensions displays
an O(d, d;R) symmetry, also named duality symmetry, to all orders in the inverse string
tension α′, when the fields do not depend on the d spatial coordinates. As discussed in [12],
the dimensionally reduced theory can be obtained from compactification in a d-torus T d,
ignoring all Kaluza-Klein excitations that arise from field configurations in which the fields
depend on the compact space.

Using O(d, d;R) multiplets as field variables, and assuming that their duality transfor-
mations remain unchanged to any order in α′, all higher-derivative terms consistent with
duality invariance for purely time-dependent backgrounds were classified in the seminal pa-
pers [6, 7] into single- and multi-trace factors, involving only first derivatives of the fields.
This simplification is accomplished by performing duality covariant field redefinitions or-
der by order in α′, and assuming that all non-derivative dependence on the dilaton is
contained in the exponential prefactor of the integration measure. Implementing an ansatz
with a d+ 1 dimensional isotropic Friedmann-Lemaitre-Robertson-Walker metric and van-
ishing Kalb-Ramond field, Hohm and Zwiebach showed that α′-complete cosmology admits
non-perturbative dS solutions in the string frame [6, 7]. This type of solutions were also
obtained in presence of matter sources in [8], while the conditions to get dS vacua in the
Einstein frame with non-constant dilaton were stated in [9] in terms of a quite non-trivial
second order non-linear differential equation for a function that describes the Lagrangian.

A more realistic cosmological model was constructed in [10], extending the isotropic
ansatz of [6, 7] to geometries with two scale factors: a dynamical one in n < d spatial
dimensions and a constant one in the remaining d− n spatial coordinates. Inspired by the
String Gas Cosmology scenario [13–15], the non-perturbative equations of the α′-complete
cosmology were shown to be (in principle) compatible with a dynamical mechanism in
which the universe emerges from a phase with R × T 9 spacetime geometry, with matter
made of a gas of strings and evolves towards four large spacetime dimensions with the six
internal dimensions stabilized around the string length.

In the first part of this paper, we reconsider the non-isotropic ansatz of [10] in the
vacuum and rederive the equations of motion. We find the following conditions to get string
frame dS solutions in n+ 1 ≤ d+ 1 dimensions when the O(d, d) Noether charge vanishes:

F ′n(H0) = 0 , Fn(H0) = c2 ≥ 0 , ∂Φ
∂t

= −c , (1.1)
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where Fn(H) describes the Lagrangian of the theory and is well-defined for non-infinitesimal
values of

√
α′H, H = H0 = constant is the Hubble parameter, Φ is the generalized dilaton,

and c is a real constant. The configurations described by (H0, c) have constant dilaton if
c = nH0 and are dS in both the string and the Einstein frames. Thus the conditions to
obtain dS vacua in the Einstein frame are now simple algebraic equations because they
have constant dilaton. These solutions are stable (unstable) if c > 0 (c < 0), and they can
be easily classified in expanding or contracting dS geometries.

Both the isotropic and non-isotropic ansatze considered in [6, 7]–[10] lead to the ad-
ditional simplification that the multi-trace terms give the same structural contributions as
the single-trace term. However, for more heterogeneous metrics or non-vanishing Kalb-
Ramond field, the multi-trace terms cannot be absorbed into single-traces and have to be
fully considered. This issue is the subject of the second part of this paper. We include the
multi-trace corrections in the equations of motion of the O(d, d) invariant cosmology and
examine a generalized ansatz in which the metric, its time derivative and the time deriva-
tive of the b-field are commuting matrices. Although this is a rather general assumption, it
turns out that the metric can be made diagonal and both the b-field and its derivative can
be made block diagonal matrices, without loss of generality due to the duality symmetry.

Despite the fact that the multi-trace corrections cannot be absorbed into single traces,
still the field equations can be worked out and allow non-perturbative isotropic and
anisotropic dS solutions in n ≤ d spatial dimensions. These solutions may have constant
dilaton, thus being stable or unstable dS geometries in both the string and the Einstein
frames. The new vacua are also found in the sector of vanishing O(d, d) Noether charge
Q = 0, which is then identified as a rich source of non-perturbative dS solutions. On
the other hand, an interesting effect of the b-field dynamics is that it must be turned on
in dimensions with non-zero eigenvalues of a Noether charge block (hence in the Q 6= 0
sector), and the scale factors of such spatial dimensions must be bounded, thus precluding
dS solutions.

Besides providing the equivalence between the string and the Einstein frame vacua, the
solutions with constant dilaton φ0 have the advantage that one can take gs = eφ0 � 1. This
is consistent with classical string theories, which are some particular points in the space
of duality invariant theories. However, these special points may admit non-perturbative
dS solutions only if they evade the assumptions of the no-go theorem of [2]. In addition,
the string low energy effective Lagrangian is an asymptotic expansion in powers of α′, and
even if all the perturbative contributions were known, we will argue in section 6 that non-
perturbative information is necessary in order to be able to assert that the theory admits
non-perturbative dS solutions. In any case, specifying the conditions that allow dS and
other intriguing cosmological solutions in duality invariant theories is an interesting result,
which may reveal general features that apply to string theory.

The paper is organized as follows. In section 2, we present a brief review of α′-
complete cosmology and rederive the equations of motion in order to include the multi-
trace corrections. Considering an ansatz with one dynamical scale factor in n ≤ d spatial
dimensions and a constant one in the remaining d − n dimensions with vanishing b-field,
in section 3 we determine the conditions to have dS solutions with constant dilaton. We
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also analyze the stability of the solutions and classify them. In section 4 we introduce
the generalized ansatz of commuting matrices and work out the corresponding equations
of motion, leaving details of the calculations to appendix A. We find dS solutions of the
new field equations in section 5, with anisotropic geometries or with non-vanishing b-field.
These have Q = 0, which is a rich sector for dS solutions, as explained in appendix B. A
summary of the procedure to follow in order to obtain non-perturbative dS solutions and a
discussion of their non-perturbative character is the subject of section 6 and appendix C.
Finally, an outlook and conclusions are contained in section 7.

2 O(d, d) invariant α′-complete cosmology

In this section we briefly review the O(d, d;R) invariant cosmology to all orders in α′

introduced by Hohm and Zwiebach [6, 7], mainly to set the notation. We refer to the
original papers for details. In 2.2 we generalize the derivation of the equations of motion
in order to include the contributions from the multi-trace corrections, which enable the
construction of non-isotropic solutions and the addition of non-vanishing b-field in the
forthcoming sections.

2.1 Field variables and action

The seminal framework developed in [6, 7] is based on Sen’s observation [11] that the low
energy effective field theory of the universal gravitational sector of string theory in D = d+1
dimensions displays a global O(d, d;R) symmetry to all orders in α′, when the fields do not
depend on the d spatial coordinates. This symmetry, also referred to as ‘duality’, contains
the scale-factor duality a ↔ a−1 [16, 17]. Following [18] and using string field theory
arguments [19], Hohm and Zwiebach assumed that the O(d, d;R) transformations remain
unchanged to all orders in α′ if the theory is expressed in terms of the duality invariant
dilaton Φ,

e−Φ =
√

det gij e−2φ , (2.1)

and an O(d, d) covariant matrix S, constrained to satisfy S2 = 1 and St = ηSη, where
η = ( 0 1

1 0 ) is the O(d, d;R) invariant metric. Every matrix S that verifies these constraints
can be written in terms of symmetric and antisymmetric matrices g and b, respectively, as

S =
(
bg−1 g − bg−1b

g−1 −g−1b

)
, (2.2)

where g and b are the spatial components gij and bij of the space-time metric and Kalb-
Ramond fields, that are taken as:1

gµν(t) =
(
−n2(t) 0

0 gij(t)

)
with n(t) > 0 and bµν(t) =

(
0 0
0 bij(t)

)
. (2.3)

1Without loss of generality for fields that only depend on the (non-periodic) time coordinate.
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Further assuming that all non-derivative dependence of the action on the dilaton is
contained in the exponential prefactor of the integration measure and performing duality-
covariant field redefinitions, Hohm and Zwiebach showed that every O(d, d) and time repa-
rameterization invariant action describing the dynamics of S and Φ can be brought to
the form

I(S,Φ, n) =
∫
dt n e−Φ

[
−(DΦ)2 −F(DS)

]
, (2.4)

where Φ(t) and S(t) are scalars under time reparameterization, while n(t) is a density.
Under h ∈ O(d, d;R) ⇐⇒ hηht = η with h constant, S transforms as S → S ′ = hSh−1

preserving the constraints, while Φ and n are invariant. The covariant time derivative is
D ≡ 1

n(t)
∂

∂t
, and a time parameterization tS can always be chosen such that n(tS) = 1.

The function F(DS) is defined by the following asymptotic expansion

F(DS) ≡ −c1tr
[
(DS)2

]
−
∞∑
k=2

α′ k−1 ∑
P∈ Part(k,2)

ck,P
∏
m∈P

tr
[
(DS)2m

]
, (2.5)

which contains all the α′-corrections. Part(k,2) is the set of p(k,2) = p(k)−p(k−1) parti-
tions P of the number k with numbers greater or equal than 2. Notice that F(DS) contains
single-trace corrections, corresponding to partitions with exactly one element, and also
multi-trace corrections, corresponding to partitions with more than one element (|P | ≥ 2).
The coefficients c1, ck,P are arbitrary dimensionless real constants that parameterize and
classify the (well defined perturbatively in α′) duality and time reparameterization invariant
theories I(S,Φ,n). In particular, the values c1 =−1

8 and c2,{2}= 1
64 ,

1
128 or 0 correspond to

the dimensionally reduced low energy effective actions of the bosonic, heterotic or Type II
string theories, respectively, and the higher ck,P are only partially known in string theory.

Since F(DS) only depends on traces of even powers of DS, it is easy to check that it
is a scalar (under time reparameterizations) invariant under global duality transformations
as well as under time-reversal t → −t. Therefore the whole action I(S, φ, n) is O(d, d;R),
time reparameterization invariant and (up to a sign) also time-reversal invariant. Thus,
the equations of motion are also expected to share these symmetries.

It is convenient to define a dimensionless scalar function F̃(X̃ ) ≡ α′F(DS) that only
depends on the dimensionless matricial variable X̃ ≡

√
α′ DS, and verifies F̃(X̃ ) = F̃(−X̃ ).

Then the classical theory described by the action I(S,Φ, n) can either be studied pertur-
batively, order by order in α′ (assuming infinitesimal values of X̃ 2), or non-perturbatively.

Finally, notice that it is possible to add a cosmological constant term 2ΛS = O(α′−1)
in the definition of F(DS) when considering the non-perturbative theory. This amounts
to adding an O(α′0) dimensionless constant c0 ≡ 2α′ΛS to F̃(X̃ ). For instance, 2ΛS =
2(D −Dc)

3α′ in the low energy effective action of non-critical string theory.

2.2 Equations of motion including multi-trace corrections

In this section we derive the equations of motion following from (2.4). We generalize the
results obtained in [6, 7] in order to include the multi-trace corrections, which are necessary
to consider solutions with non-vanishing b-field or generic non-isotropic metrics.
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Varying the action I(Φ,S, n) with respect to Φ,S and n,

δΦ,S,nI =
∫
dt n e−Φ

(
δΦEΦ + tr(δSFS) + δn

n
En

)
, (2.6)

one can define EΦ, FS and En, which are scalars under time reparameterizations. While
EΦ = 0 and En = 0 are the equations of motion for Φ and n, respectively, FS = 0 is not the
equation of motion for S because the variation δS must verify the conditions δS = −SδSS
and δSt = ηδSη, in order to preserve the constraints S2 = 1 and St = ηSη, respectively.

To impose the constraints on S and δS we define the projectors

P0(A)≡ 1
2(A−SAS) onto the subspace of matrices that verify A=−SAS ,

P±(A)≡ 1
2(A±ηAtη) onto the subspace of matrices that verify A=±ηAtη ,

PT ≡P+◦P0 =P0◦P+ onto the subspace of matrices that verify A=−SAS and A= ηAtη .

All of these linear operators P are effectively projectors since P 2 = P , and they also verify
the property

tr [P (A)B] = tr [AP (B)] = tr [P (A)P (B)] , (2.7)

for every matrix A,B ∈ R2d×2d. Moreover, considering a local variation δXP = P (δX)
constrained to belong to the image of a certain linear projector P (which we assume to
verify (2.7)), the conditions imposed on a matrix A satisfy the following equivalences:∫

dt n tr(δXPA) = 0 ∀ δXP (t) = P (δX) constrained

⇐⇒
∫
dt n tr [δXP (A)] = 0 ∀ δX(t) unconstrained ⇐⇒ P (A) = 0 .

(2.8)

Thus, the only relevant information on A for a constrained variation is its projection P (A).2

In particular, considering δX unconstrained, we impose both constraints on δS taking:

δS = PT (δX) = 1
4(δX + ηδXtη − SδXS − SηδXtηS) . (2.10)

Hence, according to (2.8), the equation of motion for constrained S variations is

ES = PT (FS) = 0 , (2.11)

and using (2.7), it follows that tr(δSFS) = tr(δXES) = tr(δSES). This is consistent
with the definition ES = P0(FS) used in [6, 7], because the explicit calculations verify
ηEtSη = ES .

Moreover, noting that the image of P− is the so(d, d) = {τ ∈ R2d×2d : τη + ητ t = 0}
Lie algebra, the variation δS in (2.10) can be written as

δS = [τ,S] , (2.12)
2Taking A = A1 −A2 in (2.8) and using that P (A1 −A2) = P (A1)− P (A2), one can show that∫

dt n tr(δXPA1) =
∫
dt n tr(δXPA2) ∀ δXP (t) constrained ⇐⇒ P (A1) = P (A2) . (2.9)
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with τ ≡ P−(δX S/2) ∈ so(d, d). Therefore, we see that every variation δS that pre-
serves the constraints can be written as a local infinitesimal O(d, d;R) transformation
such as (2.12). Conversely, every local infinitesimal duality transformation of the form
δτS = [τ,S] preserves the constraints. Indeed, δS = −SδSS is verified due to (2.12) and
δS = ηδStη because τ ∈ so(d, d). In particular, for constant τ , O(d, d;R) is a global
symmetry of the theory and there is an associated conserved Noether charge Q.

The explicit relation between Q and the equation of motion for S can be found noting

δI =
∫
dt n e−Φ tr(δSFS) =

∫
dt n e−Φ tr [τ 2SP0(FS)] , (2.13)

because of (2.12). Then, imposing τ∈ so(d,d), one can project P−(SP0(FS)) =SP+(P0(FS))
=SES . Further recalling the usual trick to compute the Noether charge, i.e.

δτI =
∫
dt n tr [(Dτ)Q] = −

∫
dt n tr(τDQ) ,

one can take Q,DQ ∈ so(d, d) since τ,Dτ ∈ so(d, d), and use (2.9) in footnote 2 to find
the relation

DQ = −2e−ΦS ES . (2.14)

Hence the equation of motion for S turns out to be equivalent to the conservation of the
Noether charge Q. This generalizes the result found in [6, 7] for functions F(DS) that
contain only single-trace corrections, to generic functions involving multi-traces.

To get the precise expression for Q, it is convenient to define J as

δτI =
∫
dt n tr [D(δτS) J ] =

∫
dt n tr ((Dτ)[S, J ]) , (2.15)

where we used (2.12) and assumed that J is a linear combination of odd powers of DS
(we will show below that this is the case) so that [DS, J ] = 0. Therefore, using (2.9) and
[S, (DS)2k−1] = 2S(DS)2k−1 ∈ so(d, d), as implied by the constraints on S, we can identify

Q = P−([S, J ]) = P−(2SJ) = 2SJ ∈ so(d, d) . (2.16)

Varying the explicit form of the action we get

δτI = −
∫
dt n e−Φ δτ [F(DS)] = −

∫
dt n e−Φ tr

[
δτ (DS) F ′(DS)

]
, (2.17)

where we define the derivative F ′(A) of a scalar function F(A) with respect to a matrix
A, as a matrix such that δ [F(A)] = tr [δA F ′(A)] [20, 21], and then

J = −e−Φ F ′(DS) =⇒ Q = −2 e−Φ S F ′(DS) . (2.18)

We see that J is in fact a linear combination of odd powers (DS)2k−1. Actually, explicitly
deriving the asymptotic expansion (2.5), we get

F ′(DS) =−2c1DS−
∞∑
k=2

α′ k−1 ∑
P∈ Part(k,2)

ck,P
∑
m0∈P

2m0 (DS)2m0−1 ∏
m∈P−{m0}

tr
[
(DS)2m

]
,

(2.19)
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where we used ∂ {tr [g(X)]}
∂X

= g′(X) for g(X) polynomial, since δ [tr(Xn)] = tr
[
δX nXn−1]

for all n∈N0 [20, 21]. Hence, we confirm that Q is a linear combination of terms like
S(DS)2m0−1 ∈ so(d,d), and consequently Q∈ so(d,d).

We now turn to the simpler equations of motion for Φ and n. The former is trivial

EΦ = 2D2Φ− (DΦ)2 + F(DS) = 0 . (2.20)

To calculate En, we consider

δn [F(DS)] = tr
[
δn(DS) F ′(DS)

]
= −δn

n
tr
[
DS F ′(DS)

]
(2.21)

and
δn
[
(DΦ)2

]
= −2δn

n
(DΦ)2 , (2.22)

which lead to

δnI =
∫
dt n e−Φ δn

n

{
(DΦ)2 −F(DS) + tr

[
DS F ′(DS)

]}
, (2.23)

from where we can identify En.
Summarizing, the field equations including the multi-trace corrections, are

En = (DΦ)2 −F(DS) + tr
[
DS F ′(DS)

]
= 0 (2.24a)

EΦ + En = 2D2Φ + tr
[
DS F ′(DS)

]
= 0 (2.24b)

ES = −1
2e

ΦS DQ = 0 ⇐⇒ DQ = 0 ⇐⇒ Q = constant ∈ so(d, d) (2.24c)

Notice that the first one is a constraint between DΦ and DS, while the other two determine
the dynamics of Φ and S, since they contain second derivatives. All of them are O(d, d;R)
and time reparameterization invariant. Furthermore, they are also invariant under time
reversal t→ −t as expected, since F(DS) only contains even powers of DS. In other words,
for a given solution S(t),Φ(t), n(t) there is also a time-reversed solution S̃(t) ≡ S(−t),
Φ̃(t) ≡ Φ(−t), ñ(t) ≡ n(−t).

The Bianchi identity, which follows from the time reparameterization invariance,
is [6, 7]

DEn = (DΦ)(EΦ + En) + tr [(DS)ES ] (2.25)

Then, if DΦ 6= 0 for (almost) all times, it is only necessary to solve the equations

En = 0 , ES = 0 ⇐⇒ Q = constant , (2.26)

since they imply (together with the Bianchi identity) that EΦ + En = 0.
Moreover, it is always sufficient to consider

EΦ + En = 0 , ES = 0 ⇐⇒ Q = constant , En(t0) = 0 , (2.27)

where En(t0) is evaluated at a certain initial time t0, as they imply En(t) = 0 for all times.
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To solve these equations perturbatively, one should replace F(DS) and F ′(DS) by
their asymptotic expansions up to a certain order. More precisely, one should solve the
two-derivative equations and then correct them perturbatively. On the other hand, to
find non-perturbative solutions, one should consider F(DS) as a general scalar function
of DS, or more precisely consider F̃(X̃ ) as a general dimensionless scalar function of the
dimensionless matrix X̃ 2, which may take non-infinitesimal values.

Notice that adding a cosmological constant 2ΛS , so that F(DS) → F(DS) + 2ΛS ,
produces only a constant shift in F(DS), without changing F ′(DS). Consequently, the
only change in (2.27) is the initial condition, which becomes En(t0)− 2ΛS = 0.

In the forthcoming sections we will look for dS solutions of these equations, i.e. solutions
with a Friedmann-Lemaitre-Robertson-Walker metric with curvature k = 0 and scale factor
a(t) = eH0t, with constant Hubble parameter H0.

3 Non-perturbative dS vacua in n+ 1 ≤ d+ 1 and b = 0

Setting the b-field to zero and the spatial metric to gij = a(t)2δij , it was shown in [6, 7]
that the equations of motion (2.24) reduce to the (string) Friedmann equations (as found
for instance in [22]) corrected with higher derivatives. These equations can be integrated
perturbatively to arbitrary order in α′ and furthermore, it was argued that they may admit
dS solutions in the string frame that are non-perturbative in α′. A necessary condition to
have d dimensional dS solutions in the Einstein frame with non-constant dilaton was found
in [9], in the form of a second order non-linear ordinary differential equation (ODE) to
be satisfied by the function that describes the α′-corrections. Additionally, d dimensional
isotropic dS solutions were also discussed including duality covariant matter sources in [8].

In this section we consider the simplest possible extension of the isotropic ansatz,
namely a metric with one dynamical scale factor a(t) in n < d isotropic spatial dimensions3

and another constant scale factor a0 in the other d− n isotropic spatial dimensions, i.e.

b = 0 , ai =

a(t) if 1 ≤ i ≤ n
a0 = constant if n+ 1 ≤ i ≤ d

(3.1)

This ansatz was analyzed in [10] in presence of matter sources.
If one considered different constant scale factors aj,0 for each of the d − n spatial

dimensions xj , a global O(d, d;R) transformation could always be performed, corresponding
to a reparameterization xj → x′j = a0

aj,0
xj [11, 12], which amounts to replacing all the

different constant aj,0 with a single one, thus obtaining (3.1) (the b-field is not affected

since b = 0). The interval ds2 = −n2(t)dt2 +
n∑
i=1

a2(t)dxidxi+
d∑

j=n+1
a2

0dx
jdxj certainly has

a potential to describe our 4-dimensional universe if n = 3. In principle, any rotation that
mixes the n spatial dimensions having dynamical scale factor with the d − n remaining
ones is not a symmetry of the theory.

3It should be clear from the context when n refers to the number of spatial dimensions or to the
g00 = −n2(t) component of the metric.
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As observed in [10], in this case it is not necessary to include the multi-trace corrections
in (2.5). The function F(DS) will be a single-variable n-dependent function Fn(H) of the
unique dynamical Hubble parameter H = D ln(a) = Da

a
as in [6, 7].

3.1 Non-isotropic metric and vanishing b-field

In a diagonal metric gij = a2
i (t)δij with different scale factors ai(t) for each spatial direction

xi and b = 0, the matrix S takes the form

S =
(

0 g

g−1 0

)
=
(

0 diag(a2
i )

diag(a−2
i ) 0

)
, (3.2)

and its derivative

DS = 2
(

0 diag(Hia
2
i )

diag(−Hia
−2
i ) 0

)
with (DS)2 = −4

(
diag(H2

i ) 0
0 diag(H2

i )

)
.

(3.3)
Hi ≡ D ln(ai) is the Hubble parameter associated to xi. Choosing the time parameteriza-
tion tS such that n(tS) = 1, we can write Hi = ∂tS ln(ai).

In the simpler ansatz (3.1) with g= diagn(a2(t),a2
0)≡ diag(a2(t), · · · ,a2(t)︸ ︷︷ ︸

n times

, a2
0, · · · ,a2

0︸ ︷︷ ︸
(d−n) times

),

the matrix S simplifies to

S =
(

0 diagn(a2(t), a2
0)

diagn(a−2(t), a−2
0 ) 0

)
. (3.4)

Its time derivative is

DS = 2
(

0 diagn(Ha2(t), 0)
diagn(−Ha−2(t), 0) 0

)
≡ 2HJn , (3.5)

with H ≡ D(ln(a(t))) the only non-trivial Hubble parameter, and

(DS)2 = −4H2
(
diagn(1, 0) 0

0 diagn(1, 0)

)
≡ −4H2In (3.6)

since J 2
n = −In. Thus, we expect that F(DS) can be expressed as a single-variable function

Fn(H) and also that the multi-trace corrections can be absorbed into the single-trace ones.
To prove this, we compute F(DS) considering that In is idempotent (I2

n = In =⇒
Imn = In). Then (DS)2m = (−1)m22mH2m In and tr

[
(DS)2m

]
= (−1)m22mH2m 2n,

so that

F(DS) = 8nc1H
2 − 2n

∞∑
k=2

α′ k−1 (−1)k22kH2k ∑
P∈ Part(k,2)

(2n)|P |−1ck,P

= 2n
∞∑
k=1

α′ k−1 (−1)k−122kH2kc
(n)
k ≡ Fn(H) ,

(3.7)
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where we absorbed the ck,P in an n-dependent single coefficient c(n)
k ≡

∑
P∈Part(k,2)

(2n)|P |−1ck,P

for k ≥ 2 and c(n)
1 ≡ c1. This is related to the way in which the multi-trace corrections are

absorbed as single-trace corrections in [6, 7].4 Indeed, we explicitly expressed F(DS) as
a single-variable function Fn(H) of the only non-trivial Hubble parameter. Evaluating in
n = d, we recover the function F (H) defined in [6, 7] (with coefficients ck = c

(d)
k ).

It will also be useful to compute

F ′(DS) = −2c1DS −
∞∑
k=2

α′ k−1 ∑
P∈ Part(k,2)

ck,P
∑
m0∈P

(2m0) (DS)2m0−1 ∏
m∈P−{m0}

tr((DS)2m)

= DS

−2c11−
∞∑
k=2

α′ k−1 ∑
P∈ Part(k,2)

ck,P
∑
m0∈P

(2m0) (DS)2(m0−1) ∏
m∈P−{m0}

tr((DS)2m)

 .
(3.8)

Using that (DS)2m = (−4)m H2m In and tr
[
(DS)2m] = 2n (−4)m H2m, one can see that

the matrix between brackets in (3.8) is diagonal, with components equal to −2c1 in the
elements that correspond to the zeroes of In. In addition, a straightforward computation
shows that the remaining diagonal components corresponding to the elements 1 of In are

equal to −F
′
n(H)
8nH . Thus we can express

F ′(DS) = − 1
4n F ′n(H)

(
0 diagn

(
a2, 0

)
diagn

(
−a−2, 0

)
0

)
= − 1

4n F ′n(H) Jn . (3.9)

The equations of motion can now be calculated, considering that

tr
[
DS F ′(DS)

]
= −2H

4n F ′n(H) tr(J 2
n ) = H

2n F ′n(H) tr(In) = HF ′n(H) (3.10)

and

Q = −2e−ΦSF ′(DS) = 1
2n e−ΦF ′n(H)

(
diagn(−1, 0) 0

0 diagn(1, 0)

)
. (3.11)

Hence Q = constant ∈ so(d, d) ⇐⇒ q ≡ e−ΦF ′n(H) = constant. Therefore, in the
ansatz (3.4) the equations of motion (2.24) take the form

En = (DΦ)2 − Fn(H) +HF ′n(H) = 0 (3.12a)
EΦ + En = 2D2Φ +HF ′n(H) = 0 (3.12b)

q ≡ e−Φ F ′n(H) = constant ⇐⇒ D(e−Φ F ′n(H)) = 0 (3.12c)

These are precisely the α′-corrected Friedmann equations found in [6, 7] for the isotropic
ansatz gij = a2(t)δij , the only difference being that the function Fn(H) replaces F (H).

4More generally, the multi-trace corrections can be absorbed as single-traces if
∏
m∈P

tr
[
(DS)2m] =

dP tr
[
(DS)2k] for every P ∈ Part(k, 2), with dP a constant that might depend on P . This is always the

case if (DS)2 is proportional to an idempotent matrix (with eigenvalues 0 and 1), whose trace must be a
constant non-negative integer.
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Then the perturbative solutions found for n = d in [6, 7] also solve the equations for n 6= d,
simply replacing d → n everywhere (including the c(n)

k coefficients, i.e. ck = c
(d)
k → c

(n)
k ).

In particular, it is easy to see that there are no perturbative dS solutions.
To discuss the non-perturbative solutions, it is convenient to deal with the cases q 6= 0

and q = 0 separately. Since q =constant, these two cases obviously do not overlap, and
cover all the possibilities.

The solutions for the case q 6= 0 when n 6= d are those found for n = d in section 5.1
of [6, 7], simply replacing F (H) by Fn(H), or equivalently replacing d→ n everywhere. In
particular, there is an uninteresting Minkowski solution with H = 0 = constant, but no dS
cosmologies in the string frame.

Instead, the more interesting case q = 0 that we will explore in the forthcoming
sections, turns out to contain many dS solutions.

3.2 dS solutions in the string frame

If q = 0, the equation e−ΦF ′n(H) = q necessarily implies that

F ′n(H) = 0 for all times =⇒ H = H0 = constant (3.13)

i.e. H(t) is a constant H0 that is a zero of F ′n(H). If H(t) were not a constant, then the
equation F ′n(H(t)) = 0 would be valid in an open neighborhood of a certain H(t0) = H0.
In this case, F ′n(H) must be the zero function F ′n(H) = 0 for all H, which is absurd since
we are considering that the asymptotic expansion of F ′n is non-trivial.

The fact that F ′n(H) = 0 implies that the conservation of q = e−ΦF ′n(H) = 0 is trivial
for any function Φ(t). Then no more information can be obtained from the equation ES = 0
and we turn to the other equations of motion, namely

0 = EΦ + En = 2D2Φ +HF ′n(H) = 2D2Φ =⇒ D2Φ = 0 ⇐⇒ DΦ = −c = constant ∈ R ,
(3.14)

where we used F ′n(H) = 0 and defined the real constant c (with sign(c) = − sign(DΦ) = ±),
and

0 = En = (DΦ)2 − Fn(H) +HF ′n(H) = c2 − Fn(H) =⇒ Fn(H) = c2 = constant ≥ 0 .
(3.15)

We conclude that the solutions with q = 0 are those with H = H0 = constant such that

F ′n(H0) = 0 , Fn(H0) = c2 ≥ 0 , DΦ = −c , (3.16)

for some constant c that may take any real value.
Since H = H0 = constant, these are all dS solutions in the string frame. They are non-

perturbative because there are non-trivial α′-corrections that must mix with each other in
order to ensure that F ′n(H0) = 0 and Fn(H0) = c2 ≥ 0. They are described by the dimen-
sionful constants (H0, c) that may be measured (non-perturbatively) in units of 1/

√
α′.

Notice that the time-reversal of one of these solutions (H0, c) is a new dS solution
with (−H0,−c), that trivially verifies (3.16) since Fn(−H0) = Fn(H0) and F ′n(−H0) =
−F ′n(H0). Moreover, inverting the scale factor a(t) ↔ a(t)−1 of a dS solution (H0, c),
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which is a symmetry included in O(d, d), another dS solution described by (−H0, c) is
obtained. Hence, from one of these dS solutions, one can always construct another one
that is expanding in the string frame, by choosing H0 > 0, and that also verifies c > 0 for
example (considering H0, c 6= 0).

To the best of our knowledge, these q = 0 solutions with c 6= 0 have not been considered
previously in the literature. A detailed analysis of this case is presented in the next sections,
where we will find an interesting zoo of stable and unstable dS geometries that can be dS
also in the Einstein frame.

3.3 dS solutions in the Einstein frame

In the case q = 0, non-perturbative dS solutions with H =constant 6= 0 and DΦ = 0 were
obtained in [6, 7] for the isotropic ansatz (i.e. n = d). These are dS metrics in the string
frame, which can be trivially generalized to the case n < d simply replacing F (H) by
Fn(H). However, they lead to a time dependent Hubble parameter in the Einstein frame
and hence do not correspond to the dS geometries that describe the observable universe.

To see this, recall the standard Weyl rescaling of the metric that relates the string and
Einstein frames

Gµν = e−4φ/(d−1)gµν . (3.17)

For metrics of the form (2.3), we have −n2
E ≡ G00 = −e−4φ/(d−1)n2. Thus an Einstein

frame time covariant derivative can be defined as DE ≡
1

nE(t)
∂

∂t
, with the same properties

as D, since nE(t) is trivially a density under time reparameterizations. Both time covariant
derivatives are related as DE = e2φ/(d−1)D. We can always choose a time parameterization
tE such that nE(tE) = 1 ⇐⇒ DE = ∂

∂tE
, thus n(tE) = e2φ(tE)/(d−1) ⇐⇒ D =

e−2φ(tE)/(d−1) ∂

∂tE
.

Restricting to diagonal metrics g = diag(a2
i (t)), the scale factors are related as

aE,i(t) = e−2φ/(d−1)ai(t) . (3.18)

Then the Hubble parameter associated to the xi direction in the Einstein frame is

HE,i ≡ DE(ln(aE,i(t))) = e2φ/(d−1)
(
Hi −

2 Dφ
d− 1

)
. (3.19)

In particular, for a constant dilaton φ = φ0 =constant, the Weyl rescaling (3.17) just
amounts to multiplying the metric by a global constant. Thus, a dS metric in the string
frame with Hubble parameters Hi = Hi,0 =constant is also a dS metric in the Einstein
frame with Hubble parameters HE,i = HE,i,0 = e2φ0/(d−1)Hi,0 =constant.

Therefore, the dilaton φ cannot be constant in a solution with H0 = constant 6= 0 and
DΦ = 0 in the string frame, since Dφ = DΦ+nH0 6= 0. Hence this solution leads to a time
dependent Hubble parameter in the Einstein frame, and there is no proper dS geometry in
this case.
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Instead, the solutions (H0, c) with DΦ = −c = constant described by (3.16) admit dS
cosmologies with constant dilaton when c 6= 0. Indeed, imposing the condition

2Dφ = DΦ +D(ln(
√

det gij)) = DΦ +
d∑
i=1

Hi = 0 (3.20)

in the ansatz g = diagn(a2(t), a2
0) and b = 0, amounts to

0 = 2Dφ = DΦ + nH0 + (d− n) · 0 = −c+ nH0 ⇐⇒ c = nH0 . (3.21)

Thus, the non-perturbative dS solution (H0, c) = (H0, nH0) in the string frame has constant
dilaton φ = φ0. In the Einstein frame, this corresponds to a dS geometry with constant
HE = HE,0 = e2φ0/(d−1)H0 in n spatial dimensions and null Hubble parameter in the
remaining d − n spatial dimensions. If this was a solution of string theory, the string
coupling could be taken gs = eφ0 =constant� 1 for all times, consistently with string
perturbation theory at genus zero.

This result seems to contradict the no-go theorem of [6, 7], which states that there
are no dS solutions in the Einstein frame with constant dilaton φ. However, the new
solutions (3.21) have Φ 6= constant (i.e. c 6= 0), which violates the hypothesis of the
theorem, namely that the only dS solutions in the string frame are those with Φ =constant
(i.e. c = 0). Then we see that the case q = 0 is a source of dS solutions in both frames (i.e.
φ = constant ⇐⇒ c = nH0, in particular c = nH0 6= 0).

Notice that for every dS solution (H0, c) with constant dilaton (i.e. c = nH0), there is
its time-reversed dS solution (−H0,−c) with constant dilaton since −c = n(−H0). Thus,
there are two types of dS solutions with constant dilaton: the expanding cosmologies
(H0, c = nH0) with H0 > 0 and the contracting ones (−H0,−c = n(−H0)) with −H0 < 0.

On the other hand, a dS solution in the string frame described by (H0, c) with non-
constant dilaton must have either c > nH0 ⇐⇒ Dφ = constant < 0 or c < nH0 ⇐⇒
Dφ = constant > 0. In the former (latter) case, the string coupling would be small only for
late (early) times. The Einstein frame Hubble parameter of these solutions is of the form

HE = e2φ(t)/(d−1)

d− 1 [c+ (d− n− 1)H0] , (3.22)

with φ(t) = φ0 + (nH0 − c)
∫ t

t0
dt n(t). Then HE is a non-zero constant if and only if

φ =constant ⇐⇒ c = nH0. If c 6= nH0, an expanding (contracting) solution in the
Einstein frame (which is not dS) is obtained only if c+ (d−n−1)H0 is positive (negative),
see figure 1b.

Alternatively, one could search for dS geometries in the Einstein frame with non-
constant dilaton (i.e. that do not verify (3.16) and are not dS in the string frame). In
general, they have to satisfy quite non-trivial conditions. In the case of isotropic metric
gij = a2(t)δij and b = 0, the function F (H) = Fn=d(H) that describes the α′-corrections
has to verify the non-linear second order ODE

− (d+ 1)
2 HF ′(H) + F (H) + dH2 = ±

√
−HF ′(H) + F (H)

(
(d− 1) F

′(H)
F ′′(H) + (d+ 1)H

)
(3.23)
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with ± = − sign(DΦ) [9]. This must be regarded as an ODE because H = H(t) 6=
constant can take any value in an open neighborhood of a certain H(t0), provided the
dilaton φ is not constant. A possible solution is F (H) = −H2 + BH for all B ∈ R if
± = sign(H), but this does not correspond to string theory. Even in the case B = 0 (which
ensures F (H) = F (−H)), the O(H2) term does not agree with F (H) = −dH2 + · · · in the
asymptotic expansion (3.7). Besides this one, there should be another kind of solution with
another integration constant (rather than just B), which should be an acceptable function
F (H) according to [9] in order to be a possible non-perturbative dS solution of tree level
string theory. For instance, the non-constant string coupling must verify gs = eφ � 1 at
all times.

Notice that dS geometries in the Einstein frame with constant dilaton correspond to
H = H0 = constant 6= 0 in the string frame, in particular in the case n = d. Thus, the only
possible solutions for isotropic metric are those with q = 0, i.e. F ′(H0) = 0, F (H0) = c2

and DΦ = −c. Replacing this in the ODE (3.23), with ± = − sign(DΦ) = sign(c), leads to

c2+dH2
0 = sign(c)|c|(d+1)H0 = (d+1)cH0 ⇐⇒ 0 = c2−(d+1)H0c+dH2

0 = (c−dH0)(c−H0) .

Then, there are two possible solutions. Either c = H0, which implies

(d− 1)H0 − 2Dφ = (d− 1)H0 − (−c+ dH0) = c−H0 = 0 =⇒ HE = 0 ,

i.e. a Minkowski metric in the Einstein frame; or c = dH0, which is the dS solution with
constant dilaton (3.21) (in the case n = d). But now we found it by a different pathway,
i.e. solving an algebraic equation instead of a differential one. Indeed, for both constant
H = H0 and φ, the ODE becomes algebraic.

3.4 Stability and types of dS solutions

Following [23], to study the stability of the dS solutions found above, it is convenient to
define y ≡ DΦ and recall that the equations of motion (3.12c) and (3.12b) are first order
differential equations for y and H, while (3.12a) is a constraint between them. There-
fore, a variation of the dynamical variables δy = δ(DΦ) and δH must preserve the con-
straint (3.12a),

0 = δEn = 2y δy +HF ′′n (H) δH . (3.24)

Thus, the variation of the first derivatives Dy and DH under δy and δH are determined
by the equations (3.12b) and (3.12c) as

δ(Dy) = −1
2 (F ′n(H) +HF ′′n (H)) δH ,

F ′′n (H)δ(DH) = F ′n(H) δy + yF ′′n (H) δH − F ′′′n (H)DH δH .
(3.25)

Evaluating for the solutions (3.16) described by (H0, c) in the string frame and imposing
DH = D(H0) = 0, F ′n(H0) = 0 and y = DΦ = −c, we can rewrite the variations as

δ(Dy) = −c δy and δ(DH) = −c δH , (3.26)

where we also applied the constraint (3.24), and assumed F ′′n (H0) 6= 0.
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(a) dS solutions (H0, c) in the string frame (b) dS solutions (H0, c) as seen in the Einstein frame

Figure 1. (a) expansion H0 > 0/contraction H0 < 0 and stability. The red line is the region φ =
constant ⇐⇒ c = nH0. (b) expansion HE(t) > 0/contraction HE(t) < 0. Late and early refer to
the times for which gs = eφ(t) � 1. The blue line is the region HE = 0 ⇐⇒ c = −(d− n− 1)H0
and the red line is the region φ = constant with gs = eφ0 � 1.

Therefore, we see that a dS solution in the string frame described by (H0, c) is stable
if c > 0, and unstable if c < 0, for both the dynamics of y and H. Notice that if H0, c 6= 0
and if δy can take non-zero values, the constraint (3.24) necessarily implies F ′′n (H0) 6= 0.
In the case c = 0 (in which F ′′n (H0) = 0 if δH can take non-zero values, because of (3.24)),
further analysis is required to establish the stability or not of the solution.

Then, there are four types of dS solutions in the string frame with H0, c 6= 0 (see
figure 1a): an expanding stable dS solution (H0, c) with H0 > 0, c > 0; its time-reversed
solution (−H0,−c) which is contracting and unstable; the solution (−H0, c) that is obtained
from a scale factor inversion which is contracting and stable; and the solution (H0,−c)
that is obtained from a scale factor inversion and a time-reversion which is expanding and
unstable. Hence, an expanding stable dS solution in the string frame can always be chosen.

In particular, a dS solution (H0, c = nH0) with constant dilaton is stable if c =
nH0 > 0, i.e. if it is an expanding solution. Indeed, the condition c = nH0 implies
sign(H0) = sign(c). Thus, every non-perturbative expanding dS solution with constant
dilaton is stable.

We summarize the properties of the dS solutions (H0, c) in the string and Einstein
frames (expansion/contraction, stability, and times for which gs = eφ(t) � 1) in figure 1.
Note that for n < d, every stable expanding dS solution in the string frame (green quadrant
of figure 1a), corresponds to a stable expanding geometry HE(t) > 0 in the Einstein frame
(cyan and light green regions in figure 1b), while for n = d this only happens if c > H0.
Recall the precise relation between the Hubble parameters given in (3.22).

– 16 –



J
H
E
P
0
3
(
2
0
2
1
)
0
0
7

4 Generalized ansatz of commuting matrices

Having solved the equations of motion in a simplified setting that involves a diagonal metric
and vanishing b-field, we now extend the analysis for more general fields. We first discuss
a generalized ansatz in which the matrices g,D(g),Db are taken to commute among each
other, and show that with this assumption, the O(d, d) symmetry allows to take a diagonal
metric and block diagonal matrices b,Db, without loss of generality. We then show that in
this case the equations of motion can be diagonalized, which greatly simplifies the search
of solutions.

In order to examine the α′-complete cosmology in a more general setting, since the
functions F(DS) and F ′(DS) only involve traces of even powers of DS, it is convenient
to first compute the matrix (DS)2. This is a straightforward calculation, and after some
tedious manipulations, the result can always be written as

(DS)2 =
(
A bg−1Ag −Ab+ (g − bg−1b)Cg
C g−1Ag − g−1bCg − Cb

)
, (4.1)

where A ≡ D(g)D(g−1) + (D(b)g−1)2 + bC and C ≡ D(g−1)D(b)g−1 − g−1D(b)D(g−1)
contain all the time derivatives.

This expression seems quite complicated. However, if the matrices g,D(g),Db are
taken to commute among each other, then g−1,D(g−1) also belong to such set of commuting
matrices, and C = 0 while A = −g−2(Dg)2+g−2(Db)2 is a symmetric negative semi-definite
matrix. In this case, (4.1) simplifies to

(DS)2 =
(
A [b, A]
0 A

)
. (4.2)

The assumption that the matrices commute is a somewhat general ansatz. Never-
theless, exploiting the O(d, d) global invariance (in particular the invariance under global
rotations of the spatial coordinates, and constant shifts in the b-field [11, 12], which pre-
serve the assumption of the general ansatz), we will see that in this case the metric g can
be always made diagonal, and Db can be taken to a block diagonal form, without loss of
generality.

Indeed, since g and Dg are real symmetric matrices and commute, there is an orthogo-
nal matrix R = R(t), that may depend on time, such that g = RgDR

−1 and Dg = RDgR
−1,

with diagonal matrices gD and Dg for all times. Taking the time derivative of the first
equality,

Dg = D(RgDR−1) = R
(
DgD + [R−1DR, gD]

)
R−1 , (4.3)

where we used D(R−1R) = 0, and using the second one, we get

DgD + [R−1DR, gD] = Dg .

Since DgD and Dg are diagonal matrices, [R−1DR, gD] is also diagonal. E.g., for matrix
elements (gD)ij = a2

i (t)δij , the commutator is [R−1DR, gD]ij = (R−1DR)ij(a2
j − a2

i ). In
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particular, the diagonal elements [R−1DR, gD]ii are zero, and since [R−1DR, gD] is diagonal,
we get

[R−1DR, gD] = 0 ⇐⇒ DgD = Dg = diag(2a2
iHi) . (4.4)

Moreover, if ai 6= aj , then [R−1DR, gD] = 0 =⇒ (R−1DR)ij = 0.
Let us take, for instance, the diagonal metric

gD = diag(a2
1(t)1s1 , a

2
2(t)1s2 , · · · , a2

rb
(t)1srb ) , (4.5)

where each one of the rb blocks a2
r(t) 1sr is proportional to the sr × sr identity matrix 1sr

and ar(t) 6= ar′(t) if r 6= r′. In other words, all the directions with the same scale factor for
all times are grouped in the same block. From (R−1DR)ij = 0 if ai 6= aj , it follows that

−R−1DR = D(R−1)R ≡ E(t) = diag(E(1)(t), E(2)(t), · · · , E(rb)(t)) , (4.6)

i.e., E(t) is a block diagonal matrix, with blocks E(r)(t) that correspond to the identity
blocks g(r) = (a(r))2 1sr of (4.5). We will refer to these blocks as blocks of equal scale
factor a(r).

The initial condition for R(t) can always be taken to the form R(t0) = R−1(t0) = Id
with a global O(d, d) transformation, corresponding to a rotation with a constant or-
thogonal matrix R0 = R(t0)−1, that transforms the fields as g → R0gR

−1
0 (i.e. R(t) →

R0R(t)), b → R0bR
−1
0 , so that R(t0) = Id. Hence, the differential equation (4.6) is the

Schrodinger equation for the time evolution operator (with U(t) = R−1(t) and the Hamil-
tonian (i~)−1H(t) = n(t)E(t)), with the initial condition R−1(t0) =Id. Then, it can be
formally solved with a Dyson series:

R−1(t) = T
{

exp
[∫ t

t0
dt n(t) E(t)

]}
, (4.7)

where T is the time-ordering operator. Consequently, the orthogonal matrix R−1(t) (as
well as R(t)) must also be a block diagonal matrix with the same blocks as E(t) and gD.

Therefore, considering that each block of gD is proportional to the identity and that
R(t), R−1(t) are block diagonal, the metric g = gD can be taken to be (4.5), which we will
do from now on.

Regarding the b-field, since Db commutes with g = gD, it must be a block diagonal
matrix with blocks that correspond to the identity blocks (4.5) of g (i.e. blocks of equal
scale factor):

Db = diag(Db(1),Db(2), · · · ,Db(rb)) , (4.8)

with each block Db(r) real and antisymmetric. With a global O(d, d) transformation,
corresponding to a constant shift in the b-field, we can always take b(t0) = 0, without

loss of generality, and b(t) =
∫ t

t0
dt′ n(t′) Db(t′) must also be a block diagonal matrix

with blocks of equal scale factor a(r). Therefore, b(t) commutes with g, g−1,Dg, and also
[b, A] = g−2[b, (Db)2].

Summarizing, the generalized ansatz of commuting matrices allows to take, without
loss of generality, a diagonal metric g and a block diagonal Db (with blocks of equal a(r))
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with b(t0) = 0, which implies that b(t) commutes with g, g−1,Dg. This includes several
interesting cases, such as a generic diagonal metric gij = a2

i (t) δij and b = 0; an isotropic
metric gij = a2(t) δij and generic b 6= 0; a metric with two (or more) dynamical scale
factors, e.g. g = diagn(a2

1(t), a2
2(t)) and a block diagonal Db 6= 0 with the same two (or

more) blocks as g; etc.

4.1 Equations of motion

The equations of motion that follow from the ansatz of commuting matrices are worked
out in the appendix A. They take the form

En = (DΦ)2−Fa(A)+2tr(AF ′a(A)) = 0 , (4.9a)
EΦ+En = 2D2Φ+2tr(AF ′a(A)) = 0 , (4.9b)

Q2≡ e−Φ g−1D(g)F ′a(A)−bQ1 = constant ⇐⇒ D
(
e−Φ g−1D(g)F ′a(A)

)
−Db Q1 = 0 ,

(4.9c)

Q1≡ e−Φ g−2(Db)F ′a(A) = constant ⇐⇒ D
(
e−Φ g−2(Db)F ′a(A)

)
= 0 , (4.9d)

where F(DS) ≡ Fa(A) since it only depends on tr(DS2m) = 2 tr(Am), and Q2 and Q1
are constant symmetric and antisymmetric integration matrices. The last two equations
are the equations of motion for S variations, equivalent to the conservation of the Noether
charge

Q ≡ −2
(
−Q2 −g2(t0)Q1
Q1 Q2

)
. (4.10)

As shown in A.1, the equations (4.9) may be diagonalized in terms of a complex unitary
matrix U(t), and they become

En = (DΦ)2 −Fa(−4D2) + 2 tr((−4D2) F ′a(−4D2)) = 0 , (4.11a)
EΦ + En = 2D2Φ + 2 tr((−4D2) F ′a(−4D2)) = 0 , (4.11b)

D1 = e−Φ g−2(Db)F ′a(−4D2) = constant , (4.11c)

0 = Db D1 +D
(
e−Φ g−1D(g)F ′a(−4D2)

)
, (4.11d)

0 = [U−1DU,D1] = D(g) [U−1DU,F ′a(−4D2)] , (4.11e)

whereDb, D1 andD2 are the real diagonal matrices (the latter with non-negative elements):

Db(t) = U(t)(iDb(t))U−1(t) , Q1 = U(t)(iD1)U−1(t) , (4.12)
A = U(t)(−g−2(Dg)2 − g−2D2

b )U−1(t) ≡ U(t)(−4D2)U−1(t) . (4.13)

Note that the equations (4.11a)–(4.11d), which determine Φ, the metric and Db, can
be solved without any regard of the unitary matrix U(t). Then, it is convenient to separate
them from (4.11e), which determines U(t), and hence the basis in which Db is written. In
particular, we can take U(t) = U0 = constant as a valid solution of such equation.

Using O(d, d) invariance, we can replace Db(t)→ Rb,0Db(t)R−1
b,0 , or equivalently U(t)→

Rb,0U(t), where Rb,0 can be any block diagonal constant orthogonal matrix, with blocks of
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equal scale factor (in order to preserve the form of g,Dg, g−1). Taking U(t) = U0 =constant,
Rb,0 can be chosen such that each block Db(r) of Db is a block diagonal matrix

Db(r)(t) = diag
(
β

(r)
1 iσ2, β

(r)
3 iσ2, · · · , β(r)

2cr−1 iσ2,0
)
, (4.14)

with cr 2× 2 blocks proportional to the Pauli matrix σ2, or a zero (sr − 2cr)× (sr − 2cr)
block. The eigenvalues of −iDb are of the form ±β(r)

1 ,±β(r)
3 , (· · · ),±β(r)

2cr−1, 0, and hence
the r-th block of the diagonal matrix Db = U−1

0 (−i)DbU0 is equal to:

D
(r)
b (t) = diag

(
β

(r)
1 ,−β(r)

1 , β
(r)
3 ,−β(r)

3 , · · · , β(r)
2cr−1,−β

(r)
2cr−1, 0, · · · , 0

)
. (4.15)

We define β(r)
α ≡ (D(r)

b )αα with 1 ≤ α ≤ sr. Note that if β(r)
α 6= 0 there is another β(r)

α′ =
−β(r)

α . Moreover, with this choice, (Db)2 = U0(iDb)2U−1
0 = −D2

b is diagonal, and hence
A = U0(−4D2)U−1

0 = −4D2 is also diagonal with elements −4(H(r))2 − (a(r))−4 (β(r)
α )2.

Since b(t0) = 0, the field b(t) =
∫ t

t0
dt′ n(t′) Db(t′) takes the form of a block diagonal

matrix, with r-th block

b(r)(t) = diag
(
B

(r)
1 iσ2, B

(r)
3 iσ2, · · · , B(r)

2cr−1 iσ2,0
)
, (4.16)

where B(r)
α (t) ≡

∫ t

t0
dt′ n(t′) β(r)

α (t′) are generic eigenvalues of −ib(t). Notice that b(t)

commutes with Db(t), and then [b, A] = 0.
On the other hand, if the solution U(t) to (4.11e) is taken to be time-dependent, Db

cannot take the simple form (4.14), but Db can still take the form (4.15). Moreover, in
principle b(t) cannot be as simple as (4.16) and does not commute with Db. However, the
information on U(t) is not relevant for the first four equations in (4.11), and hence it is
not significant for the dynamics of Φ, the scale factors (i.e. the metric) and the eigenvalues
of −iDb.

Considering the metric in the r-th block g(r) = (a(r))2 1sr , the α component of the
equations (4.11c) and (4.11d) may be written as:

−Q(r)
α /8 = e−Φ (a(r))−4 β(r)

α (F ′b(−4D2))(r)
αα = constant , (4.17a)

0 = −β(r)
α Q(r)

α /8 +D
(
e−Φ 2H(r)(F ′a(−4D2))(r)

αα

)
, (4.17b)

where we defined a generic eigenvalue of 8 iQ1 as Q(r)
α ≡ −8(D(r)

1 )αα for 1 ≤ α ≤ sr. Note
that (4.17b) is equivalent to

−Q′α (r)/8 = −B(r)
α Q(r)

α /8 + e−Φ 2H(r)(F ′a(−4D2))(r)
αα = constant , (4.18)

where −Q′α (r)/8 and B(r)
α are generic eigenvalues of Q2 and b respectively, if U(t) = U0.

This is because Q2 commutes with Db, since b commutes with Db provided U(t) = U0, and
then it can be diagonalized in the same basis as Db. Instead, if U(t) is a time-dependent
matrix, −Q′α (r)/8 and B

(r)
α cannot be interpreted as generic eigenvalues of Q2 and b(t),

respectively. They can only be interpreted respectively as an integration constant related
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to Q2,5 and as a primitive of the eigenvalue β(r)
α (t) of −iDb. Moreover, we cannot conclude

that b and Q2 commute with Db.
Furthermore, defining

h(r)
α = (D(r))αα = ±

√
(H(r))2 + 1

4(a(r))−4(β(α)
α )2 (4.19)

for 1 ≤ α ≤ sr and 1 ≤ r ≤ rb, and leaving the sign unspecified for the moment, we get
F(DS) = Fa(A) = Fa(−4D2)

= 8c1

d∑
i=1

h2
i +

∞∑
k=2

(−α′) k−1 22k ∑
P∈ Part(k,2)

2|P |ck,P
∏
m∈P

d∑
i=1

h2m
i

≡ Fh(h1, h2, · · · , hd)

(4.20)

as a multi-variable function of the eigenvalues of A (h(r)
α are relabeled hi for 1 ≤ i ≤ d since

rb∑
r=1

sr∑
α=1

=
d∑
i=1

= d).

In addition, F ′a(−4D2) is a real diagonal matrix with elements

(F ′a(−4D2))ii =

= −1
8hi

16c1hi +
∞∑
k=2

(−α′)k−122k ∑
P∈ Part(k,2)

2|P |ck,P
∑
m0∈P

2m0h
2m0−1
i

∏
m∈P−{m0}

d∑
i′=1

h2m
i′


= − 1

8hi
∂Fh(h1, h2, · · · , hd)

∂hi
. (4.21)

Notice that if hi = 0, or equivalently if Hi and βi are both zero, this expression is equal to
−2c1. Then

tr(DS F ′(DS)) = 2 tr(AF ′a(A)) = 2 tr((−4D2) F ′a(−4D2)) =
d∑
i=1

hi
∂Fh
∂hi

, (4.22)

and the diagonalized equations of motion can be rewritten in terms of the multi-variable
function Fh(h1, · · · , hd) and its first order partial derivatives as

Q(r)
α = e−Φ (a(r))−4 β(r)

α

1
h

(r)
α

∂Fh

∂h
(r)
α

= constant , (4.23a)

0 = Q(r)
α β(r)

α +D
(
e−Φ 2H(r) 1

h
(r)
α

∂Fh

∂h
(r)
α

)
, (4.23b)

En = (DΦ)2 − Fh(h1, · · · , hd) +
rb∑
r=1

sr∑
α=1

h(r)
α

∂Fh

∂h
(r)
α

= 0 , (4.23c)

EΦ + En = 2D2Φ +
rb∑
r=1

sr∑
α=1

h(r)
α

∂Fh

∂h
(r)
α

= 0 , (4.23d)

5Defining QU2 (t) ≡ U−1(t)Q2U(t) and bU (t) ≡ U−1(t)b(t)U(t), (4.9c) implies

−8(QU2 )(r)
αα = Q′α

(r) −Q(r)
α i((bU )(r)

αα − iBα (r)) , −8(QU2 )(r)
α′α = −Q(r)

α i(bU )(r)
α′α for α′ 6= α ,

even for a time dependent U(t). Since Q2, b(t), U(t) are block diagonal matrices, the non-diagonal blocks
(with r 6= r′) of Q2,QU2 (t), b(t), bU (t) are zero. Note that Q(r)

α = 0 ∀ (r, α) =⇒ Q1 = 0. If also
Q′α

(r) = 0 ∀ (r, α), then QU2 = 0 =⇒ Q2 = 0, and finally Q = 0. Conversely, if Q = 0 then Q1 = Q2 = 0
and QU2 = 0, therefore Q(r)

α = Q′α
(r) = 0 for all (r, α).
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Note that the second equation is equivalent to

Q′α
(r) = Q(r)

α B(r)
α + e−Φ 2H(r) 1

h
(r)
α

∂Fh

∂h
(r)
α

= constant , (4.24)

in terms of the primitive B(r)
α of β(r)

α .

4.2 Conservation of the Noether charge and b-field dynamics

To analyze the conditions for the conservation of the Noether charge Q, recall that they
are equivalent to the conservation of all the scalar Noether charges Q(r)

α and Q′(r)α , together
with the condition (4.11e) for U(t) (which we may ignore from now on, since it does not
influence the other equations). We will consider only one diagonal component i (or r, α) and
deal separately with the cases i) Q(r)

α = Q
′(r)
α = 0; ii) Q(r)

α = 0, Q′(r)α 6= 0 and iii) Q(r)
α 6= 0.

i) Q(r)
α = 0 and Q′α (r) = 0. In this case, the equations (4.23a) and (4.24) imply

0 = ±
[
(H(r))2 + 1

4(a(r))−4(β(r)
α )2

] 1
h

(r)
α

∂Fh

∂h
(r)
α

= h(r)
α

∂Fh

∂h
(r)
α

, (4.25)

and then either ∂Fh

∂h
(r)
α

= 0 or h(r)
α = 0 ⇐⇒ H(r) = β

(r)
α = 0. Moreover, the solution

h
(r)
α = 0 is contained in the equation

∂Fh

∂h
(r)
α

= 0 , (4.26)

and then this equation is equivalent to (4.23a) and (4.24). We can choose ± = sign(h(r)
α ) =

sign(H(r)), or if H(r) = 0 we can choose ± = sign(h(r)
α ) = sign(β(r)

α ), without loss of
generality.

ii) Q(r)
α = 0 and Q′α (r) 6= 0.

Q′α
(r) 6= 0 =⇒ 1

h
(r)
α

∂Fh

∂h
(r)
α

6= 0 and then Q(r)
α = 0 =⇒ β(r)

α = 0 , (4.27)

which trivially verifies (4.23a). On the other hand, since β(r)
α = 0 =⇒ h

(r)
α = H(r)

(choosing ± = sign(h(r)
α ) = sign(H(r))), (4.24) implies h(r)

α = H(r) 6= 0 and takes the form

1
2Q
′
α

(r) ≡ q(r)
α = e−Φ ∂Fh

∂h
(r)
α

= constant 6= 0 . (4.28)

iii) Q(r)
α 6= 0. In this case 1

h
(r)
α

∂Fh

∂h
(r)
α

6= 0 and β(r)
α 6= 0 for all times. Hence, (4.23a) can

be rewritten as:

e−Φ 1
h

(r)
α

∂Fh

∂h
(r)
α

= Q(r)
α

(a(r))4

β
(r)
α

(4.29)
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Replacing this in (4.24), this equation is equivalent to:

B(r)
α + 1

2
D((a(r))4)
D(B(r)

α )
= Q′α

(r)

Q
(r)
α

≡ q′α (r) = constant

⇐⇒ D
(
(a(r))4 + (B(r)

α )2 − 2q′α (r)B(r)
α

)
= D

(
(a(r))4 +

(
B(r)
α − q′α (r)

)2
)

= 0 ,
(4.30)

which can be expressed in terms of a non-negative integration constant R2
r as:

(a(r))4 +
(
B(r)
α − q′α (r)

)2
= R2

r = constant ≥ 0 , (4.31)

or equivalently as: (a(r))2 = Rr cos(θ(r)
α (t)) =⇒ 2H(r)(a(r))2 = −Rr sin(θ(r)

α (t)) Dθ(r)
α (t)

B(r)
α − q′α (r) = Rr sin(θ(r)

α (t)) =⇒ β(r)
α = Rr cos(θ(r)

α (t)) Dθ(r)
α (t)

(4.32)

with θ(r)
α (t) ∈ (−π/2, π/2) so that (a(r))2 ≥ 0. The fact that β(r)

α 6= 0 implies that Rr 6= 0,
a(r)(t) 6= 0 and Dθ(r)

α (t) 6= 0.
Notice that (a(r)(t))2 ≤ Rr <∞ is bounded, and then this cannot correspond to a dS

cosmology in the string frame in the sr spatial directions of the r-th block. This is a rather
curious feature of the dynamics of the system when the b-field is turned on in this case:
the scale factor a(r) corresponding to a non-trivial eigenvalue β(r)

α (t) of Db is bounded.
Furthermore, using (4.32) and choosing ± = sign(h(r)

α ) = − sign(Dθ(r)
α ), we see that:

H(r) = −1
2 tan(θ(r)

α (t))D(θ(r)
α (t)) and h(r)

α = − Dθ(r)
α

2 cos(θ(r)
α )

,

hence ± = sign(h(r)
α ) = − sign(β(r)

α ) and

h
(r)
α (a(r))4

β
(r)
α

= h(r)
α (a(r))2 (a(r))2

β
(r)
α

= −Dθ
(r)
α

2 Rr
1
Dθ(r)

α

= −Rr2 . (4.33)

Thus, turning back to (4.23a), we get:

e−Φ ∂Fh

∂h
(r)
α

= −Rr Q
(r)
α

2 ≡ q(r)
α = constant 6= 0 . (4.34)

Summarizing, in the generalized ansatz, the (diagonalized) equations of motion are:

En = (DΦ)2−Fh(h1, · · · ,hd)+
rb∑
r=1

sr∑
α=1

h(r)
α

∂Fh

∂h
(r)
α

= 0 , (4.35a)

EΦ+En = 2D2Φ+
rb∑
r=1

sr∑
α=1

h(r)
α

∂Fh

∂h
(r)
α

= 0 , (4.35b)

e−Φ ∂Fh

∂h
(r)
α

= q(r)
α = constant (4.35c)

q(r)
α 6= 0 =⇒



case ii): Q
(r)
α = 0 and Q′α (r) 6= 0 =⇒ β

(r)
α = 0

case iii): Q
(r)
α 6= 0 =⇒


h

(r)
α =− Dθ(r)

α

2 cos(θ(r)
α )

(a(r))2 =Rr cos(θ(r)
α (t))

B
(r)
α −q′α (r) =Rr sin(θ(r)

α (t))

(4.35d)
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where (4.35c) and (4.35d) for every pair of indexes (r, α) are equivalent to the (diagonalized)
equation of motion for S variations.

The equation (4.35c) for all (r, α), together with (4.35a) and (4.35b), determine the
dynamics of the parameters h(r)

α (t) and the generalized dilaton Φ.
In addition, the equation (4.35d) establishes β(r)

α = 0 and H(r) = h
(r)
α in the case ii);

while in the case iii), it determines θ(r)
α (t) with a first order differential equation in terms

of h(r)
α (t), which in turn fixes (a(r))2, B

(r)
α − q′α (r) and hence H(r)(t) and β(r)

α (t).
In the case q(r)

α = 0, or equivalently Q(r)
α = Q′

(r)
α = 0, i.e. case i), the component (r, α)

of the diagonalized equation of motion for S is equivalent only to the equation ∂Fh

∂h
(r)
α

= 0.

If the equations of motion are considered perturbatively up to O(α′ 0), then Fh(~h) =

8c1

d∑
i=1

h2
i+O(α′), and hence (4.35c) implies (e−Φh

(r)
α )0 = (q(r)

α )0
16c1

=constant. To construct a

perturbative dS solution in at least one component (i.e. H(r) = H
(r)
0 6= 0 for at least one r),

one needs Q(r)
α = 0 for every 1 ≤ α ≤ sr (to avoid a bounded scale factor), and (Q′α (r))0 =

2(q(r)
α )0 6= 0 (to avoid a Minkowski solution with (H(r)

0 )0 = 0). We are left with case ii),
in which β

(r)
α = 0, h(r)

α = H(r) 6= 0. The equation e−Φ0(t)(H(r))0 = (q(r)
α )0 =constant

only allows a non-zero constant (H(r))0 if Φ0(t) is constant, but equation (4.23d) implies

0 = |2(D2Φ)0| =
∣∣∣∣∣
rb∑
r=1

sr∑
α=1

(
h(r)
α

∂Fh

∂h
(r)
α

)
0

∣∣∣∣∣ = 16|c1|
rb∑
r=1

sr∑
α=1

(h(r)
α )2

0 =⇒ (h(r)
α )0 = 0 =⇒

(H(r))0 = 0, then there is no solution of the two-derivative equations with non-zero constant
Hubble parameter. Therefore, we see that in the generalized ansatz, the theory does not
allow perturbative dS solutions up to O(α′ 0), not even in one spatial component. Although
we only proved this up to leading order, it makes sense that there are no perturbative dS
solutions to all orders since Hi =constant should have units of 1/

√
α′, and hence it would

not be perturbative. This is why we now turn to search for non-perturbative solutions.
In a similar fashion as in the isotropic ansatz considered in the preceding section,

the sector with vanishing Noether charge contains many interesting non-perturbative dS
solutions, both with vanishing or non-vanishing b-field. Indeed, we show in appendix B
that if every hi is constant, which is a key for the construction of dS solutions, then Q = 0.

5 Generalized non-perturbative dS vacua

To search for dS solutions in the case Q = 0, we recall the equations of motion (2.24),
copied here for convenience

En = (DΦ)2 −F(DS) + tr
[
DS F ′(DS)

]
= 0 , (5.1a)

EΦ + En = 2D2Φ + tr
[
DS F ′(DS)

]
= 0 , (5.1b)

ES = −1
2e

ΦS DQ = 0 ⇐⇒ DQ = 0 ⇐⇒ Q = constant ∈ so(d, d) . (5.1c)

The condition Q = −2 e−Φ S F ′(DS) = 0 necessarily implies that F ′(DS) = 0 for all
times when e−Φ 6= 0 and S is invertible. Then (5.1b) implies D2Φ = 0 ⇐⇒ DΦ = −c =
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constant ∈ R and (5.1a) requires F(DS) = c2. Summarizing, the generic solutions with
null Noether charge must satisfy:

F ′(DS) = 0 , F(DS) = c2 ≥ 0 , DΦ = −c , (5.2)

a natural generalization of the conditions (3.16).
Considering that F(DS) =G(DS2) only depends on (DS)2 and F ′(DS) = 2 DS G′(DS2),

in principle from (5.2) we can only conclude that G′(DS2) belongs to the matrix subspace
that is annihilated when multiplied by DS. The solutions verifying (5.2) can be constructed
imposing (DS)2 = constant such that DS G′(DS2) = 0 and G(DS2) = c2≥ 0.

Imposing DS2 =constant without an ansatz that simplifies the expression (4.1) seems
quite not trivial, since it is necessary to ensure that both the blocks of the first column A, C
and the blocks of the second column (written in terms of A, C) are all constant. However, in
the generalized ansatz of commuting matrices, this expression takes the simpler form (4.2),
and DS2 =constant is equivalent to A =constant, which implies that hi =constant.

As we explained in the previous section, under the ansatz of commuting matrices
the condition Q = 0 is equivalent to Q1 = Q2 = 0 or to zero scalar Noether charges
Q

(r)
α = Q′α

(r) = 0 for all (r, α). Therefore, as we showed in the case i) of section 4.2, the
equations (4.23a) and (4.24) in this case are equivalent to ∂Fh

∂h
(r)
α

= 0 for each (r, α).

The remaining equations of motion En = EΦ + En = 0 imply DΦ = −c =constant
∈ R and Fh(h1, · · · , hd) = c2 (see (4.23c) and (4.23d)). Therefore, the condition (5.2) for
a solution with Q = 0 turns out to be equivalent to

∂Fh

∂h
(r)
α

= 0 ⇐⇒ ∇Fh = ~0 , Fh(h1, · · · , hd) = c2 ≥ 0 , DΦ = −c , (5.3)

for which we require that the parameters h(r)
α are constant in order to ensure ∇Fh =

~0. Again, these solutions seem to be the natural generalization of the conditions (3.16),
now written in terms of the multi-variable function Fh(h1, · · · , hd). These solutions have
h

(r)
α =constant, which is not equivalent to H(r) = constant, except for example if Db = 0

where h(r)
α = H(r).

Hence, imposing H(r0) = constant for a certain block r0, i.e. a dS solution in the
string frame for such block, requires that β(r0)

α (t) = constantα · (a(r0)(t))2, or equivalently
Db(r0)(t) = (a(r0)(t))2Y (r0) for the case U(t) = U0, with Y (r0) a real antisymmetric constant
matrix of size sr0 × sr0 . However, for this Q = 0 solution, the condition (h(r)

α )2 = constant
must be verified for every value of r, not only for r0. In principle, some Hubble parameters
might be non-constant provided a non-trivial b-field compensates the time dependence of
H(r)(t) and the dimension sr of the block is even, since D(r)

b cannot have a zero element. Of
course, if we are not interested in this case, we can simply take H(r) = constant for every r.

5.1 dS solutions in the Einstein frame and examples

As discussed in section 3.3, dS solutions in the Einstein frame can be obtained from the
dS solutions in the string frame if the dilaton φ = 1

2 [Φ + ln(
√

det gij)] is constant. For a
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diagonal metric gij = a2
i (t) δij , (5.2) requires

D
(
ln
(√

det gij
))

=
d∑
i=1

Hi = c = constant ∈ R . (5.4)

In a solution with non-zero constant Hubble parameters only in n < d spatial dimen-

sions, i.e. Hi = H0,i = constant 6= 0 for i = 1, · · · , n, this becomes
d∑

i=n+1
Hi = c −

n∑
i=1

H0,i =constant. Note that the remaining Hubble parameters which are not a non-zero

constant may have a temporal dependence provided they add up to a constant, i.e. the
temporal dependence must cancel in the sum. This cannot occur if the metric is isotropic
in the extra d−n spatial dimensions, in which case the geometry of those extra dimensions
corresponds to a static cosmology, and the condition (5.2) for a constant dilaton takes the

form c =
n∑
i=1

H0,i.

If the constants hi = h
(r)
α = h0,i that solve the equation (5.3) for a certain value of c

are known, some interesting particular dS solutions can be constructed, as we now discuss.

5.1.1 Isotropic dS geometry and b 6= 0

Consider an isotropic dS geometry in n spatial dimensions and a static solution in the
remaining d − n spatial dimensions, i.e. the metric is g = diagn(a2(t), a2

0), with a(t) such
that H = D(ln a(t)) = H0 = constant and a0 = constant. Then, there are two blocks:

1. The r = 1 block of size n × n with g(1) = a2(t) 1n, H(1) = H0 =constant 6= 0 and
Db(1) = a2(t)Y (1) with Y (1) =constant.

2. The r = 2 block of size (d−n)×(d−n) with g(2) = a2
0 1d−n =constant, H(2) = H2 = 0

and Db(2) = a2
0Y

(2) =constant.

Assuming U(t) = U0 for simplicity, the temporal dependence of Db(r)(t) = (a(r)(t))2Y (r)

is necessary to have h(r)
α =constant. These constants must verify (5.3) to be a Q = 0

solution.
If the condition for a constant dilaton c = nH0 is fulfilled, the solution is dSn × T d−n

in both frames. The difference with the previous solution of (3.16) is that now it allows a
non-trivial b-field. In particular, if n = d this is a dS solution, isotropic in all the d spatial
dimensions with H = H0 = constant, and a non-trivial b-field such that Db = a2(t)Y (1) for
which the condition that Db is block diagonal is always verified, since there is only one block.

5.1.2 Anisotropic dS geometry and b = 0

If b = 0, then hi = Hi. A solution with Q = 0 is simply obtained when the hi = h0,i
are the constants that solve the equation (5.3). This corresponds to an anisotropic dS
solution in all the n spatial dimensions and a static geometry in the remaining d−n spatial

dimensions. Moreover, if c =
n∑
i=1

Hi,0, this anisotropic dS geometry has a constant dilaton,

and it is dS in both frames.
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5.2 Stability of dS solutions

Generalizing the analysis of stability performed in 3.4, we define y ≡ DΦ and recall that the
equations of motion (4.35c) and (4.11b) are first order differential equations for y and for
all the parameters hi respectively, while (4.11a) is a constraint between them. Therefore,
a variation of the dynamical variables δy = δ(DΦ) and δhi must preserve the constraint:

0 = 2y δy −
d∑
i=1

∂Fh
∂hi

δhi +
d∑
i=1

(
δhi

∂Fh
∂hi

+ hi

d∑
i′=1

∂2Fh
∂hi′∂hi

δhi′

)

= −2c δy +
d∑
i=1

d∑
i′=1

hi
∂2Fh
∂hi′∂hi

δhi′ ,

(5.5)

where everything is evaluated in the Q = 0 solution, except the variations; for example:
y = −c and hi = hi,0.

Performing a variation in EΦ + En = 0, we get

D(δy) = −1
2

d∑
i=1

d∑
i′=1

hi
∂2Fh
∂hi′∂hi

δhi′ = −c δy , (5.6)

evaluating in the Q = 0 solution and taking ∂Fh

∂h
(r)
α

= 0. Hence, the dynamics of y = DΦ is

stable in the Q = 0 solution if c > 0, and is unstable if c < 0.
Turning now to the equations (4.35c) that determine the dynamics of hi, namely:

0 = D
(
e−Φ∂Fh

∂hi

)
⇐⇒ 0 = −(DΦ)∂Fh

∂hi
+D

(
∂Fh
∂hi

)
= −(DΦ)∂Fh

∂hi
+

d∑
i′=1

∂2Fh
∂hi′∂hi

Dhi′

(5.7)
and performing the variations δy and δhi, we have:

0 = −δy ∂Fh
∂hi
− y δ

(
∂Fh
∂hi

)
+D

(
δ

(
∂Fh
∂hi

))
⇐⇒ D

(
δ

(
∂Fh
∂hi

))
= −c δ

(
∂Fh
∂hi

)
(5.8)

where ∂Fh
∂hi

= 0 was evaluated in the Q = 0 solution.

Hence, the dynamics of every partial derivative ∂Fh
∂hi

is stable in the Q = 0 solution if
c > 0, and is unstable if c < 0.

Moreover, (5.8) can be written as:
d∑

i′=1

(
∂2Fh
∂hi′∂hi

D(δhi′) +D
(

∂2Fh
∂hi′∂hi

)
δhi′

)
= −c

d∑
i′=1

∂2Fh
∂hi′∂hi

δhi′

⇐⇒
d∑

i′=1

∂2Fh
∂hi′∂hi

(
D(δhi′) + c δhi′

)
= 0 ⇐⇒ D(δhi′) = −c δhi′ ,

(5.9)

where in the second line we used that D
(

∂2Fh
∂hi′∂hi

)
= 0, since hi =constant, and assumed

that the Hessian matrix of Fh is invertible. Then, the dynamics of each parameter hi is
stable in the Q = 0 solution if c > 0, and is unstable if c < 0.
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Therefore, a (possibly dS) Q = 0 solution described by (h0,1, · · · , h0,d, c) is stable if
c > 0 and unstable if c < 0, for the dynamics of both Φ and hi. In the case c = 0, further
analysis is required. In particular, a Q = 0 solution with constant dilaton is stable if

c =
d∑
i=1

Hi = constant > 0.

Notice that the time-reversal symmetry always allows to obtain a stable dS solution
from a solution with c 6= 0, since it transforms (h0,1, · · · , h0,d, c) to (−h0,1, · · · ,−h0,d,−c).
Moreover, if ~h0 = (h0,1, · · · , h0,d) solves (5.3), then any other of the possible 2d− 1 vectors
(±h0,1, · · · ,±h0,d) obtained from changing some signs of the components also solves it.
Hence, one can always choose a dS solution (h0,1, · · · , h0,d, c) that is stable and expanding
in some directions and contracting in the others, provided these directions are not static.

6 Caveats on non-perturbative dS solutions

In this section we summarize the procedure to obtain non-perturbative dS solutions, and
in particular those with constant dilaton. We also discuss the obstructions to determine
whether there are dS solutions or not, if only the asymptotic expansion of the function
Fn(H) is available. For the sake of clarity, we present the arguments in the simpler case
of an isotropic dS geometry with b = 0 analyzed in section 3, and the extension to the
generalized case is presented in appendix C.

If the function Fn(H) is defined for non-infinitesimal values of
√
α′H and all the co-

efficients c(n)
k are known, then it contains non-perturbative information of the theory. As

discussed in the previous sections, in this case the theory admits non-perturbative dS so-
lutions if F ′n(H) = 0, Fn(H) = c2 ≥ 0 and DΦ = −c. To explicitly find these solutions,
and especially to determine if they admit a constant dilaton, one should implement the
following steps:

1. Calculate the rootsH0 6= 0 of F ′n. Since Fn(H0) =Fn(−H0) =⇒ F ′n(H0) =−F ′n(−H0),
given a root H0 there will be another one −H0, and then one can choose only the
positive roots H0> 0, corresponding to expanding cosmologies in the string frame.

2. Keep only the roots H0 such that Fn(H0) = c2 ≥ 0 gives a non-negative number.

3. For each of these H0 values there is a non-perturbative dS solution in the string
frame like (3.16) if DΦ = ∓

√
Fn(H0) = ∓|c| = −c, for any choice of sign(c). Then,

assuming c 6= 0, there are two dS solutions: a stable one for c > 0 and an unstable
one for c < 0. The stable solution is an expanding dS metric in the string frame,
corresponding to the green quadrant (H0 > 0, c > 0) in figure 1a. Then it is also an
expanding solution in the Einstein frame with HE(t) > 0 if n < d or if c > H0 (cyan
and light green regions in figure 1b).

4. In particular, if c = nH0 ⇐⇒ Dφ = 0, there is a non-perturbative dS solution with
constant dilaton φ, which can be taken to be stable and expanding in both frames.
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To illustrate the procedure, take as an example (not connected with string theory):
Fn(H) = F0 cos(

√
α′H) with F0 = F̃0/α

′ > 0 a dimensionful constant. The previous steps
become:

1. F ′n(H0) = −F0
√
α′ sin(

√
α′ H0) = 0 =⇒

√
α′ H0 = m1π ⇐⇒ H0 = H0,m1 = m1π√

α′
with m1 > 0 positive integer since we only keep the solutions with H0 > 0.

2. Keep the roots H0 = H0,m1 such that

Fn(H0) = F0 cos(m1π) = F0 (−1)m1 = c2 ≥ 0 ⇐⇒ (−1)m1 = +1 ,

i.e. keep only the roots with m1 = 2m even and positive.

3. For each of these H0 = H0,2m values, there are two dS solutions with DΦ = −c:
a stable one with c = +

√
F0 and an unstable one with c = −

√
F0. Choosing the

former, for each m ∈ N there is a stable and expanding solution in the string frame
described by

(
H0,2m = 2mπ√

α′
, c = +

√
F0

)
. If n < d or if c > H0, it is also expanding

in the Einstein frame.

4. In particular, if F0 = n2H2
0,2mφ for a certain mφ ∈ N, there is a non-perturbative dS

solution
(
H0,2mφ = 2mφπ√

α′
, c = +

√
F0 = nH0,2mφ

)
with constant dilaton φ, which

can be taken to be stable and expanding in both frames.

Instead, if the only available information is the asymptotic expansion of Fn(H), it is
not possible to determine whether there are non-perturbative dS solutions or not. To see
this, suppose that only the values of all the coefficients c(n)

k are known in the perturbative
expansion and F̃n(x̃) ≡ α′Fn(H) is a dimensionless function of the dimensionless variable
x̃ ≡

√
α′H. In this case, one cannot distinguish between F̃n(x̃) and other functions with

the same asymptotic expansion around x̃ ∼ 0, say F̃n(x̃) + h̃(x̃) with h̃(x̃ ∼ 0) ∼ 0. In
other words, non-perturbative information of the theory is necessary to distinguish between
perturbatively equivalent functions that belong to the same equivalence class

[F̃n] = {F̃n(x̃) + h̃(x̃) : h̃(x̃ ∼ 0) ∼ 0} . (6.1)

A function h̃(x̃) with trivial asymptotic expansion h̃(x̃) ∼ 0 is said to be subdominant [24,
25]: it decays faster than any polynomial x̃n when x̃ ∼ 0. Since F̃n(x̃) is even (i.e. it only
depends on x̃2 ∝ α′ tr(DS2), hence it preserves the duality and time-reversal symmetries),
the subdominant functions must also be even: h̃(x̃) = h̃(−x̃).

For instance, a function with asymptotic expansion of the form (3.7) (i.e. belonging to
[F̃n]) that admits a dS solution (H0, c) = (H0, nH0) =

(
x̃0√
α′
,
nx̃0√
α′

)
with constant dilaton

for any x̃0, can always be constructed by adding to F̃n(x̃) a subdominant function h̃(x̃)
such as

h̃(x̃) = χ0
(
e−

χ1
2x̃2 − e−

χ1
x̃2
)
− χ2 e

− 1
2x̃2 , (6.2)
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with χ0, χ2 ∈ R, χ1 > 0. In fact, given a certain F̃n ∈ [F̃n] and x̃0 > 0, the χi can be
chosen so that F̃ ′n(x̃0) + h̃′(x̃0) = 0 and F̃n(x̃0) + h̃(x̃0) = n2x̃2

0. E.g. take χ1 as

e
− χ1

2x̃2
0 = 1

2 ⇐⇒ χ1 = χ1(x̃0) = 2x̃2
0 ln(2) > 0 , (6.3)

χ2 as

h̃′(x̃0) = −F̃ ′n(x̃0) ⇐⇒ χ2 = χ2(x̃0) = x̃3
0 e

1
2x̃2

0 F̃ ′n(x̃0) , (6.4)

and finally χ0 as

h̃(x̃0) = n2x̃2
0 − F̃n(x̃0) ⇐⇒ χ0 = χ0(x̃0) = 4

(
n2x̃2

0 − F̃n(x̃0) + x̃3
0 F̃
′
n(x̃0)

)
, (6.5)

where we used the particular expressions χ1,2(x̃0) and isolated χ0, expressing it in terms
of x̃0. Therefore, the theory described non-perturbatively by F̃n(x̃) + h̃(x̃) admits a dS
solution (H0, c) =

(
x̃0√
α′
,
nx̃0√
α′

)
with constant dilaton, that is stable and expanding in both

frames.
Consequently, the knowledge of the asymptotic expansion of the theory (i.e. the co-

efficients) is not enough to determine if it admits dS solutions of the form (3.16) or not.
Non-perturbative information is necessary, which seems to make sense since the accessible
dS solutions are non-perturbative.

In particular, if the Lagrangian is an analytic function, the asymptotic expansion
must have a radius of convergence greater than zero. When choosing one function of
the equivalence class [F̃h] equal to the convergent series in a neighborhood of zero, one
is implicitly imposing non-perturbative information, since now perturbatively equivalent
functions can be distinguished. Hence a subdominant function cannot be freely added
because it will break the analytic character of the Lagrangian. In principle, there seems to
be no reason to assume that the Lagrangian is analytic, especially in classical string theory,
which is constructed perturbatively.

7 Conclusions

In this paper we have examined the field equations of the α′-complete cosmology introduced
in [6, 7]. Assuming a rather general ansatz for the fields, we determined the conditions to
obtain non-perturbative dS solutions in the string frame, and also in the Einstein frame
provided the dilaton is constant. These solutions arise in the sector of vanishing Noether
charge (Q = 0). We found isotropic and anisotropic dS vacua in n ≤ d spatial dimensions,
with non-vanishing and vanishing b-field, respectively, and determined their stability. In
particular, the stable and unstable dS solutions with constant dilaton are new in the context
of α′-complete cosmology, and might provide interesting implications and interpretations.
Metrics with bounded scale factors can also be obtained when the b-field is turned on in
the Q 6= 0 sector.

The procedure to obtain non-perturbative dS solutions, and in particular those with
constant dilaton that are proper dS geometries in the Einstein frame, was summarized in
section 6, where we further discussed their non-perturbative character. We argued that even
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if the complete asymptotic expansion of the theory is known, non-perturbative information
is necessary to determine if the theory admits non-perturbative dS solutions. Otherwise,
a subdominant function giving rise to such solutions can always be constructed.

We conclude with some open problems and interesting directions to continue this
research.

While we have shown that the space of duality invariant cosmologies contains theories
with non-perturbative dS vacua as well as other interesting solutions, arguably an impor-
tant issue is to determine whether the string landscape features this type of vacua. In this
sense, the amazing achievements of the double-copy constructions of all massless tree-level
amplitudes of bosonic and heterotic strings are encouraging, as they not only seem capable
of determining the full classical perturbative expansion, but also suggest a connection to
non-perturbative aspects of string theory [26–28] (see also [29–32]). Likewise, alternative
constructions based on duality symmetry, such as double field theory [33–35] (see the re-
views [36–38]), have made substantial progress in the understanding of the structure of
the higher-derivative terms [39–44]. Establishing the precise connection between the string
α′-expansion and the functions Fn(H) in (3.7) or Fh(h1, · · · , hd) in (4.20) is a relevant
problem to address in order to fill this gap.

Another important question in this direction is to establish if the no-go theorem of [2]
applies correctly in the α′-complete cosmology context. Under certain assumptions, the
theorem rules out worldsheet constructions of dSn space-times with n ≥ 4 in heterotic and
type II strings (without RR fluxes), and it captures all perturbative and non-perturbative
α′-corrections. If it applies, it would then follow that classical string theory is not one of
the points in the theory space of duality covariant theories that admit non-perturbative dS
solutions,6 i.e. the function Fn(H) (or Fh(h1, · · · , hd)) that describes the string low-energy
effective Lagrangian would not admit a solution of the form (3.16) (or (5.3)). It would be
interesting to understand if the subtle continuation from Euclidean to Lorentzian signature
provides a way to evade the no-go theorem.

The construction of explicit phenomenological models is another subject that deserves
further examination. The higher-derivative corrections have been identified as impor-
tant elements in the generation of accelerated expansion. Merged with additional effects,
such as a scalar field in the Geometric Inflation scenario [45, 46] or spacetime filling KK
monopoles [47], the higher-curvature terms play a central role. From this perspective, the
possible consequences that may result from the solutions of the α′-complete cosmology for
model building, are worth exploring.

For instance, it would be interesting to find bouncing cosmologies [48], or new
anisotropic cosmologies that resolve the Big-Bang singularity, which may include the b-
field, thus extending [49, 50] to more realistic scenarios. Another natural follow-up to our
work would be to work out the generalized ansatz including matter, along the steps pro-
posed in [8]. This would allow to examine interactions between matter and the b-field, also
including more general diagonal metrics.

A possible mechanism for decompactification of n = 3 spatial dimensions was consid-
ered in [10], in the spirit of the String Gas Cosmology [13–15]. This was realized assuming

6We thank S. Sethi and O. Hohm for a discussion on this point.
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one dynamical and one static scale factor together with the annihilation of winding modes
in n spatial dimensions (represented by matter that verifies a certain equation of state)
and their presence in the remaining d−n spatial dimensions. It was shown that this model
solves the size and horizon problems of Standard Big Bang cosmology if the initial value
of the dilaton is sufficiently small, and also that it is compatible with the Transplanckian
Censorship Conjecture [51], which exhibits its phenomenological relevance. A more de-
tailed understanding of the transitions among the different stages of the universe modelled
in [10] (in particular of the decompactification process itself) could be gained employing
the geometries with two dynamical scale factors obtained in the previous sections. The in-
teraction with the b-field might also play an interesting role. For example, it might supply
a tool to confine the expansion of the internal dimensions, since the scale factor could be
bounded when the b-field is turned on.

Proposing more general ansatze is another line of future research that might give rise
to qualitatively new phenomena with potential cosmological applications. The addition of
gauge fields could also be a source of further surprises.

Finally, the analysis of section 3 can be easily extended to the isotropic Anti-dS solu-
tions obtained in [52], in which the fields only depend on one spatial coordinate x instead
of the time coordinate. More precisely, new stable and unstable non-perturbative Anti-dS
solutions can be obtained with ∂xΦ = −c̄ 6= 0, F̄ (H̄0) = c̄2, F̄ ′(H̄0) = 0 (see [52] for
definitions), and those that verify c̄ = dH̄0 have constant dilaton, thus being AdS in both
the string and Einstein frames. These solutions might also provide useful applications.
Moreover, the ansatz of section 3 with static directions, or the general ansatz of section 4,
could be worked out in this case, including anisotropic metrics or non-vanishing b-field,
and further lead to new non-perturbative AdS solutions.
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A Equations of motion in the generalized ansatz

In this appendix we work out the details of the procedure to obtain the equations of motion
in the generalized ansatz of matrices g,Dg,Db that commute among each other. In this
case, g−1,D(g−1) also commute with them, and the matrix (DS)2 takes the form

(DS)2 =
(
A [b, A]
0 A

)
, (A.1)

with A ≡ −g−2(Dg)2 + g−2(Db)2. It is not hard to show by induction on m ∈ N that:

(DS)2m =
(
Am [b, Am]
0 Am

)
. (A.2)
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In particular, tr[(DS)2m] = 2 tr(Am), and hence

F(DS) = −2c1tr(A)−
∞∑
k=2

α′ k−1 ∑
P∈ Part(k,2)

2|P |ck,P
∏
m∈P

tr(Am) ≡ Fa(A) . (A.3)

In addition, from (2.19) we can write

F ′(DS) = DS ·
(
F ′a(A) [b,F ′a(A)]

0 F ′a(A)

)
, (A.4)

and then, it is easy to see that tr(DS F ′(DS)) = 2 tr(AF ′a(A)). Thus, the simplest equa-
tions of motion (2.24a) and (2.24b) turn out to be:

En = (DΦ)2 −Fa(A) + 2 tr(AF ′a(A)) = 0 , (A.5a)
EΦ + En = 2D2Φ + 2 tr(AF ′b(A)) = 0 . (A.5b)

In order to compute the equation of motion for S variations, or equivalently the con-
servation of Q, we take the product

S DS =
(
gD(g−1) + bg−1(Db)g−1 −Db− bD(g−1)g − gD(g−1)b− bg−1(Db)g−1b

g−1(Db)g−1 g−1D(g)− g−1(Db)g−1b

)
(A.6)

This expression is absolutely general. Now, imposing the generalized ansatz and tak-
ing g to be diagonal and b(t0) = 0 without loss of generality, so that b commutes with
g, g−1,D(g−1),Dg (it may not commute with Db), this expression reduces to

S DS =
(
−g−1Dg + g−2b(Db) −Db+ 2(g−1Dg)b− g−2b(Db)b

g−2(Db) g−1D(g)− g−2(Db)b

)
(A.7)

Therefore, in this generalized ansatz the conservation of the Noether charge takes the
form:

− Q2 = e−ΦSF ′(DS) ≡
(
Q3 −Q2 Q4
Q1 Q3 +Q2

)
, (A.8)

or equivalently, computing each block of SF ′(DS) using (A.4) and (A.7):

Q3 −Q2 = e−Φ (−g−1Dg + b g−2(Db))F ′a(A) , (A.9a)

Q4 = e−Φ
(
(−Db+ bg−1Dg)F ′a(A)− (−g−1Dg + bg−2(Db))F ′a(A)b

)
, (A.9b)

Q1 = e−Φ g−2(Db)F ′a(A) , (A.9c)

Q3 +Q2 = e−Φ
(
g−1D(g)F ′a(A)− g−2(Db)F ′a(A)b

)
. (A.9d)

The condition Q ∈ so(d, d) means that Q1,Q3,Q4 must be antisymmetric and Q2
symmetric.

The first and second equations can be used to rewrite the previous system of equations
as

Q1 = e−Φ g−2(Db)F ′a(A) , Q2 = e−Φ g−1D(g)F ′a(A)− 1
2{b,Q1} , (A.10a)

2Q3 = [b,Q1] , Q4 =−g2 Q1+b
(
Q2+ 1

2{b,Q1}
)
−(Q3−Q2)b (A.10b)
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The first equation implies that Q1 commutes with g, g−1,Dg,Db for all times. Then, the
third equation is trivially verified for Q3 = 0, since b(t0) = 0, and thus

D ([b(t),Q1]) = [Db(t),Q1] = 0 =⇒ 2Q3 = [b(t),Q1] = [b(t0),Q1] = 0 .

Hence, the equations are also equivalent to:

Q1 = e−Φ g−2(Db)F ′a(A) , Q2 = e−Φ g−1D(g)F ′a(A)−bQ1 , Q4 = −g2 Q1+{b,Q2}+b2Q1

In particular, we may evaluate the third equation in t0 considering b(t0) = 0 and obtain

Q4 = −g2(t0) Q1 . (A.11)

Notice that the third equation is equivalent to

0 = DQ4 = −2gDg Q1 + {Db,Q2}+ {Db, bQ1} = −2gDg Q1 + 2gDg Q1

where we used the fact that Db commutes with g−1,Dg,A. Therefore, it is automatically
verified from the first two, with an integration constant Q4. Hence, the equation of motion
for S variations reduces to

Q1 = e−Φ g−2(Db)F ′a(A) (A.12a)
Q2 = e−Φ g−1D(g)F ′a(A)− bQ1 = e−Φ (g−1D(g)− g−2bDb)F ′a(A) (A.12b)

Q1 and Q2 are block diagonal with the same blocks as Db, since A,Db, b, g−2,Dg are block
diagonal matrices, and hence they commute with g, g−1,Dg. They can also be expressed
without the integration constants Q1,Q2, as:

0 = D
(
e−Φ g−2(Db)F ′a(A)

)
(A.13a)

0 = D
(
e−Φ g−1D(g)F ′a(A)

)
− e−Φ g−2(Db)2F ′a(A)︸ ︷︷ ︸

= Db Q1

(A.13b)

In summary, the equations of motion are:

Q1 = e−Φ g−2(Db)F ′a(A) = constant ⇐⇒ 0 =D
(
e−Φ g−2(Db)F ′a(A)

)
(A.14a)

Q2 = e−Φ g−1D(g)F ′a(A)−bQ1 = constant ⇐⇒ 0 =D
(
e−Φ g−1D(g)F ′a(A)

)
−Db Q1

(A.14b)

En = (DΦ)2−Fa(A)+2tr(AF ′a(A)) = 0 (A.14c)
EΦ+En = 2D2Φ+2tr(AF ′a(A)) = 0 (A.14d)

A.1 Diagonalized equations of motion

Since Db and Q1 are real antisymmetric matrices (hence anti-hermitian) that commute,
they can be simultaneously diagonalized with a complex unitary matrix U(t):

Db(t) = U(t)(iDb(t))U−1(t) , Q1 = U(t)(iD1)U−1(t) , (A.15)
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with Db and D1 real diagonal matrices. Likewise, since Db and Q1 are block diagonal, the
unitary matrices U(t), U−1(t) are block diagonal with blocks of equal scale factor, hence
they commute with g, g−1,Dg. In principle, they depend on time.

Moreover, this implies that A is expressed in this basis as:

A = U(t)(−g−2(Dg)2 − g−2D2
b )U−1(t) ≡ U(t)(−4D2)U−1(t) (A.16)

where we defined the diagonal matrix D2 with non-negative real elements, recalling that
g, g−1,Dg are diagonal matrices. Notice that F ′a(A) = U(t) F ′a(−4D2) U−1(t).

The equations (A.14a) and (A.14b) then take the form:

−iQ1 = U(t)D1U
−1(t) = U(t) e−Φ g−2(Db)F ′a(−4D2) U−1(t) = constant (A.17a)

0 = D
(
U(t) e−Φ g−1D(g)F ′a(−4D2) U−1(t)

)
+ U(t) Db D1 U

−1(t) (A.17b)

From (A.17a) we see that:

D1 = e−Φ g−2(Db)F ′a(−4D2) = constant (A.18)

since the elements of D1 are the eigenvalues of −iQ1, which are constant if Q1 is constant.
We still need to impose that −iQ1 = U(t)D1U

−1(t) is constant:

0 = −iDQ1 = U(t)(
=0︷ ︸︸ ︷
DD1 +[U−1DU,D1])U−1(t) ⇐⇒ [U−1DU,D1] = 0 (A.19)

This is a condition for U(t), and then (A.17a) is equivalent to both (A.18) and (A.19).
Equation (A.17b) may be written equivalently as

0 = Db D1 + U−1(t) D
(
U(t) e−Φ g−1D(g)F ′a(−4D2) U−1(t)

)
U(t)

= Db D1 +D
(
e−Φ g−1D(g)F ′a(−4D2)

)
+ [U−1DU, e−Φ g−1D(g)F ′a(−4D2)]

(A.20)

Notice that the first two terms of the last line are diagonal matrices, while the last term
is not. Moreover, the latter is of the form [U−1DU,DG] where DG is a generic diagonal
matrix, hence it has matrix elements of the form [U−1DU,DG]ij = (U−1DU)ij(DG

j −DG
i ),

with null diagonal elements. Therefore, we may project the diagonal and non-diagonal
elements of (A.17b) as

0 = Db D1 +D
(
e−Φ g−1D(g)F ′a(−4D2)

)
0 = D(g) [U−1DU,F ′a(−4D2)]

(A.21)

where we used that U(t), U−1(t) are block diagonal matrices and e−Φg−1 is invertible.
Finally, the equations of motion take the form

D1 = e−Φ g−2(Db)F ′a(−4D2) = constant (A.22a)

0 = Db D1 +D
(
e−Φ g−1D(g)F ′a(−4D2)

)
(A.22b)

En = (DΦ)2 −Fa(−4D2) + 2 tr((−4D2) F ′a(−4D2)) = 0 (A.22c)
EΦ + En = 2D2Φ + 2 tr((−4D2) F ′a(−4D2)) = 0 (A.22d)

0 = [U−1DU,D1] = D(g) [U−1DU,F ′a(−4D2)] (A.22e)
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B Constant hi and Q = 0

In this appendix we show that hi = constant implies Q = 0. This is the reason why a
vanishing Noether charge is quite a rich sector to find non-perturbative dS solutions.

The equations that determine the dynamics of hi(t) = h
(r)
α (t) are:

e−Φ∂Fh
∂hi

= qi = constant ⇐⇒ ∇Fh = eΦ ~q (B.1)

for each 1 ≤ i ≤ d. Defining q ≡ ‖~q‖ and the dimensionless vector ~w ≡ ~q

q
of norm ‖~w‖ = 1,

only in the case

q 6= 0 ⇐⇒ ~q 6= ~0 ⇐⇒ ∃ r, α such that Q(r)
α 6= 0 or Q′ (r)α 6= 0 ⇐⇒ Q 6= 0 , (B.2)

one can perform a change of variables of the form

~h = (h1, h2, · · · , hd)→ ~X = (X1, X2, · · · , Xd) = W~h (B.3)

where W is a constant real orthogonal matrix (hence ~h = W−1 ~X = W t ~X) such that its
first row is equal to the unitary and dimensionless vector ~w (i.e. wi = W1i = (W t)i1), and
obviously the rest of the rows are orthogonal to ~w. Then the partial derivatives become:

∂Fh
∂X1

=
d∑
i=1

∂hi
∂X1

∂Fh
∂hi

= q eΦ
d∑
i=1

(W t)i1wi = q eΦ
d∑
i=1

wiwi = q eΦ ‖~w‖2 = q eΦ 6= 0

∂Fh
∂Xχ

=
d∑
i=1

∂hi
∂Xχ

∂Fh
∂hi

= q eΦ
d∑
i=1

(W t)iχwi = q eΦ
d∑
i=1

(W )χiwi = 0 for 2≤χ≤ d.
(B.4)

Since some of the hi may have equal modulus (e.g. if β(r)
α 6= 0, there is another β(r)

α′ =
−β(r)

α , hence |h(r)
α′ | = |h

(r)
α |; or if β(r)

α = 0 for various values of α and the same r), and some
hi may be equal to 0, various linear combinations of the hi may be trivial (e.g. h(r)

α′ ±h
(r)
α = 0

and certain Xχ = 0, then trivially ∂Fh
∂Xχ

= 0, or ∂Fh
∂Xχ

= 0 for Xχ = hi = 0). However, if

there are at most m values of hi with distinct non-zero modulus, there will be in principle
m non-trivial linear combinations Xi and d − m trivial linear combinations Xχ = 0, for

which ∂Fh
∂Xχ

= 0.

If every hi = h
(r′)
α′ = constant, or equivalently every Xi = constant, then from (4.23c),

DΦ = −c =constant ∈ R follows, which in turn implies from (4.23d) that

0 =
d∑
i=1

hi
∂Fh
∂hi

=
d∑
i=1

d∑
j=1

d∑
k=1

(W t)ijXj
∂Xk

∂hi

∂Fh
∂Xk

=
d∑
i=1

d∑
j=1

d∑
k=1

(W t)ijXjWki
∂Fh
∂Xk

=
d∑
j=1

d∑
k=1

Xj
∂Fh
∂Xk

(WW t)kj =
d∑
j=1

Xj
∂Fh
∂Xj

= X1
∂Fh
∂X1

,

(B.5)

where we used (WW t)kj = δkj because W is orthogonal, and ∂Fh
∂Xχ

= 0 for χ ≥ 2.
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Since the solution X1 = 0 is contained in ∂Fh
∂X1

= 0, this equation is equivalent to:

∂Fh
∂X1

= 0 ⇐⇒ q = 0 ⇐⇒ Q = 0 . (B.6)

Hence, we see that imposing hi =constant for all 1 ≤ i ≤ d, necessarily implies that Q = 0.
Conversely, the simplest way of constructing Q = 0 solutions, which verify ∇Fh = ~0,

is to impose that every hi is constant. Otherwise, if there were some time-dependent hi(t),
the equation ∇Fh = ~0 would hold in a certain open neighborhood of hi(t0), and then
the function Fh would not depend on hi (which may be a non-trivial condition for the
asymptotic expansion (4.20) of Fh).

C Caveats on generalized non-perturbative dS solutions

In this appendix we extend the discussion on non-perturbative dS solutions presented in
section 6 to the case of the generalized ansatz of commuting matrices.

The procedure to find non-perturbative dS solutions immediately extends to the gener-
alized ansatz, considering that in this case one has to calculate the roots ~h0 = (h0,1, · · ·, h0,d)
6= ~0 of ∇Fh in the step 1. Given a root ~h0, one can always construct 2d − 1 different new
roots ~h′0 = (±h0,1, · · · ,±h0,d) since they also verify ∂Fh

∂hi
= 0 for all i. Hence, to have an

expanding cosmology (in the string frame) in certain spatial directions, one should choose
only the roots with positive Hubble parameter in such spatial directions. Moreover, an
expanding or contracting cosmology in the remaining spatial directions can be chosen if
they are not static. The subsequent steps are trivially generalized.

The construction of a subdominant function can also be done in the generalized ansatz.
We first define the dimensionless function F̃h(~̃x) ≡ α′Fh(~h) of the dimensionless variables
x̃i ≡

√
α′ hi. In order to ensure that the multi-variable subdominant function h̃(~̃x) is time-

reversal and duality invariant (considering that the symmetries hold non-perturbatively),

we take it to depend only on the combinations Sk ≡
d∑
i=1

x̃2k
i ∝ α′ k tr(DS2k). More precisely:

h̃(~̃x) = h̃S(S1, S2, · · · ) = χ0

(
e
− χ1

2S1 − e−
χ1
S1

)
+ h̃S,1(S1, S2, · · · ) . (C.1)

Consider χ1 = 2 ln(2) S1 > 0, hence the first derivatives of the term proportional to χ0 are
zero. Thus we can always choose χ0 ∈ R such that h̃(~̃x0) = c̃2−F̃h(~̃x0) for some c̃, which we
may take such that the dilaton is constant. This χ0-term does not influence the condition
of the first derivatives, consequently we only need to work it out with h̃S,1(S1, S2, · · · ).

Consider there are at most 1 ≤ m ≤ d elements x̃0,I in the chosen vector ~̃x0 with
distinct non-zero modulus (i.e. |x̃0,I | 6= 0 and I 6= I ′ =⇒ |x̃0,I | 6= |x̃0,I′ | for I, I ′ tak-
ing m possible values). In addition, the remaining d −m elements x̃0,i must either verify
|x̃0,i| = |x̃0,I | for some I, or x̃0,i = 0. Then, for any duality and time-reversal invariant

function F̃h + h̃, we only need the m partial derivatives ∂(F̃h + h̃)
∂x̃I

(~̃x0) to compute its
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gradient, because the remaining d −m partial derivatives with respect to x̃i either verify
∂(F̃h + h̃)

∂x̃i
(~̃x0) = ±∂(F̃h + h̃)

∂x̃I
(~̃x0) for an index I (with ± = sign(x̃0,i) sign(x̃0,I)), or triv-

ially verify ∂(F̃h + h̃)
∂x̃i

(~̃x0) = 0 if x̃0,i = 0. In particular, to impose ∂(F̃h + h̃)
∂x̃i

(~̃x0) = 0 for

every index 1 ≤ i ≤ d (i.e. ∇(F̃h + h̃) = ~0) is equivalent to impose ∂(F̃h + h̃)
∂x̃I

(~̃x0) = 0 only
for the m indexes I. For simplicity, we order the indexes in such a way that 1 ≤ I ≤ m

and the remaining m+ 1 ≤ i ≤ d.

We may choose h̃S,1(S1, S2, · · · ) =
m∑
J=1

χJ e
−1/SJ . Therefore we would like to choose

χJ ∈ R such that ∂h̃

∂x̃I
(~̃x0) =

m∑
J=1

χJ
2J x̃2J−1

I

S2
J

e−1/SJ

∣∣∣∣∣
~̃x0

= −∂F̃h
∂x̃I

(~̃x0) for each 1 ≤ I ≤ m.

We may write this as a matrix equation of the form ¯̄M · ~χ = ∇mF̃h(~̃x0), where ∇m
only includes the first m partial derivatives, and ¯̄M is a m × m matrix with elements

MIJ = −
2J x̃2J−1

0,I
S2
J

e−1/SJ

∣∣∣∣∣
~̃x0

. Using that x̃0,I 6= 0 and hence SJ |~̃x0
6= 0, it is easy to check

that the determinant of ¯̄M is non-zero if and only if the determinant of the Vandermonde
matrix V (x̃2

0,1, x̃
2
0,2, · · · , x̃2

0,m) (with elements VIJ = x̃
2(J−1)
0,I ) is non-zero. Since the latter

is equal to
∏

1≤J<K≤m
(x̃2

0,K − x̃2
0,J), and J 6= K =⇒ x̃2

0,K 6= x̃2
0,J , the determinant of V

is non-zero, and hence the determinant of ¯̄M is also non-zero (i.e. it is invertible). This
implies that the linear system can always be solved and the coefficients ~χ = ¯̄M−1·∇mF̃h(~̃x0)
be obtained.

Therefore, a duality and time-reversal invariant subdominant function h̃(~̃x) can always
be constructed, such that the first m partial derivatives of F̃h + h̃ are zero, and hence all
the d partial derivatives of F̃h + h̃ are also zero, always evaluated in ~̃x0. In addition, as
we previously explained, one can also impose F̃h(~̃x0) + h̃(~̃x0) = c̃2 for some c̃ (which may
be taken such that the dilaton is constant), by choosing χ0 ∈ R accordingly, extending the
results of section 6.
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