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The method of topological renormalization in anti–de Sitter (AdS) gravity consists in adding to the
action a topological term which renders it finite, defining at the same time a well-posed variational problem.
Here, we use this prescription to work out the thermodynamics of asymptotically locally anti–de Sitter
(AlAdS) spacetimes, focusing on the physical properties of the Misner strings of both the Taub-NUT-AdS
and Taub-Bolt-AdS solutions. We compute the contribution of the Misner string to the entropy by treating
on the same footing the AdS and AlAdS sectors. As topological renormalization is found to correctly
account for the physical quantities in the parity-preserving sector of the theory, we then investigate the
holographic consequences of adding also the Chern-Pontryagin topological invariant to the bulk action; in
particular, we discuss the emergence of the parity-odd contribution in the boundary stress tensor.
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I. INTRODUCTION

Hawking and Hunter argued in [1] that the existence
of gravitational entropy is associated to a topological
obstruction to foliation of the Euclidean section of the
space, which results in an obstruction for the existence of a
unitary Hamiltonian evolution. They were able to produce
a universal formula meant to express the entropy of the
spacetime in terms of defects that realize the obstructions to
foliation. One example of such a defect is given by the
Misner string [2], and so this seems to imply that the string
does contribute to the entropy of the Taub-NUT spacetime
[3,4]. In fact, the prime examples chosen in [1] to illustrate
the phenomenon were precisely spaces with nonvanishing
NUT charge, for which it was found that the entropy was
not just a quarter the area, as it is for usual black holes [5].

This feature was further studied in [6], where asymptoti-
cally locally anti–de Sitter (AlAdS) spacetimes were
considered. For both Taub-Nut-AdS and Taub-Bolt-AdS
solutions it was found that the additional contribution to
the entropy coming from the Misner strings was essential
to recover the entropy obtained from the usual Euclidean
action calculation. This result for the entropy, on the
other hand, seemed consistent with the AdS=CFT expect-
ations. Indeed, soon later, Emparan, Johnson, and Myers
reexamined the problem in AdS using holographic renorm-
alization techniques [7]. The addition of boundary counter-
terms to the gravitational action renders the Euclidean
action computation of AlAdS spacetimes finite and inde-
pendent of the background subtraction. With this holog-
raphy inspired method, finite quantities for Taub-NUT/
Bolt-AdS spacetimes can be derived.
The question as to whether gravitational entropy can be

ascribed to spacetimes containing defects such as Misner
strings, independently of the existence of event horizons,
was also discussed in [8,9], again using holographic
renormalization techniques. By evaluating the entropy
and Noether charges of Kerr-NUT/Bolt-AdS spacetimes,
it was concluded in [9] that, whenever the NUT charge is
nonzero, the entropy does not equal one quarter of the area
due to the contribution of the Misner string, in agreement
with the observations of [1,6].
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In these twenty years, the geometry and thermodynamics
of Taub-NUT/Bolt spacetimes have been studied by many
authors and in many different contexts [10–26]. Recently,
special attention has been paid to the presence or absence of
the Misner string [15,18–20]. Here, we analyze the problem
by using the method of topological renormalization; mean-
ing, the method that consists of adding to the gravitational
action a bulk piece of the Chern-Weil-Gauss-Bonnet (here-
after, Gauss-Bonnet) topological invariant, with the specific
value of the coupling constant that renders the action
equivalent to the MacDowell-Mansouri one [27,28]. This
procedure yields finite results for the Euclidean action,
the Noether charges, and the thermodynamic quantities,
while at the same time suffices to render the variational
principle well-posed [29,30]; see also [31–34]. The topo-
logical renormalization method has been shown to be
consistent with holographic renormalization [33,35], and
so it will permit us to analyze the problem in a way that is
independent of the background substraction. In fact, we
will show below that, while treating the AdS and AlAdS
sectors in equal footing and in a unified scheme, we
will obtain results for the thermodynamics of Taub-NUT/
Bolt-AdS spacetimes that are in full agreement with the
results found in the literature. In particular, we will analyze
in detail the contribution to the entropy computation that
comes from the Misner string.
The use of topological invariants to support the original

Hawking-Hunter argument makes more explicit the link
between gravitational entropy and topological obstructions.
It is thus natural to explore the effects of introducing other
topological invariants and the consequences in the context
of holography. The other topological invariant consisting
in a dimension-four operator in four dimensions is the
Chern-Pontryagin invariant, which carries opposite (odd)
parity with respect to the Gauss-Bonnet one. The Chern-
Pontryagin term does not affect the renormalization of the
gravitational action, so its coupling constant is a priori
arbitrary. The latter is reminiscent of the θ-angle in gauge
theories and can similarly be fixed by minimizing the value
of the action when evaluated on self-dual solutions. We
show that, adding this invariant to the bulk action, the
boundary holographic stress tensor is augmented by the
Hodge-dual Cotton tensor of the boundary. The full
boundary stress tensor has now both even and odd parity
contributions which realizes the so-called stress tensor/
Cotton tensor duality [36,37]. Combining the Cotton and
stress tensor together has been instrumental in the fluid/
gravity correspondence [38–42]. This comes about thanks to
the observation that the bulk Weyl tensor asymptotes to a
specific combination of the latter [43–45]. Since this
combination is complex in Lorentzian signature, its parity
odd piece, whose physical interpretation being challenging,
has been dubbed “reference tensor”; still, its contribution has
shown to be important in the fluid/gravity fill-in problem
[46], where it controls the Petrov class in the bulk. Here, on

top of boundary considerations, we explore the conse-
quences of adding the bulk ancestor of the Cotton tensor—
the Chern-Pontryagin term–on the entropy. The different
roles of topological invariants is also interesting for other
reason: while the presence of the Gauss-Bonnet term suffices
to regularize the action and produce a finite result for the
charges and the entropy, the addition of the Chern-
Pontryagin invariant changes the value of the latter. In
general, one does not know what is the zero entropy state
in quantum gravity, and the meaningful quantity one deals
with is the entropy relative to some specific background.
The fact that topological terms in the action give a definition
of the Wald entropy that does not need the reference to any
special background, together with the fact that the presence
of different topological invariants change such absolute
value can likely shed some light on the problem of the
correct entropy definition in quantum gravity.
The paper is organized as follows. In Sec. II, we review

the fundamentals of Wald’s formalism, which yields a
procedure to compute the gravitational entropy. Section III
is the bulk of the manuscript: we start showing the
consequences on the Noether charge of adding the
Gauss-Bonnet term to the bulk action, then we introduce
the Taub-NUT/Bolt-AdS solutions and prove that the
renormalized entropy and thermodynamics is recovered
when the Gauss-Bonnet coupling constant is fixed to cancel
divergences. Finally we explore the consequences of the
Chern-Pontryagin term both in the bulk thermodynamics
and the boundary theory. We conclude offering some final
comments and possible outlooks in Sec. IV.

II. NOETHER-WALD FORMALISM

In this section, we review the basics of Noether-Wald’s
formalism [47,48] for the sake of completeness and to state
conventions. Let us start by considering a general gravi-
tational action principle defined on a D-dimensional
manifold M provided with a metric gμν as

I½gμν� ¼
Z
M

dDx
ffiffiffiffiffiffi
−g

p
L½gμν; Rλρ

μν�; ð1Þ

whereRλρ
μν¼gρσRλ

σμν is theRiemann tensor and g¼detgμν.
The metric is considered here as the only dynamical field:
the connection is assumed to be torsion-free and metric
compatible.1

A stationary variation of the action (1) yields
[14,47,48,51]

δI ¼ δ

Z
M

dDx
ffiffiffiffiffiffi
−g

p
L

¼
Z
M

dDx
ffiffiffiffiffiffi
−g

p
δgμνEμν þ

Z
M

dDx
ffiffiffiffiffiffi
−g

p ∇μΘμ; ð2Þ

1For extensions where these assumptions are relaxed see
[49,50].
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where

Eμν ¼ Eμ
λρσRνλρσ −

1

2
gμνL − 2∇λ∇ρEμλρν; ð3Þ

Θμ ¼ 2δΓλ
νρEλ

ρμν − 2δgνσ∇ρEνμρσ

¼ −2∇ρδgνσEρσμν þ 2δgνσ∇ρEρσμν: ð4Þ

Here, Eμν ¼ 0 denotes the field equations and we have
defined the functional derivative of the Lagrangian with
respect to the Riemannian curvature as2

Eλρ
μν ≡ ∂L

∂Rλρ
μν
: ð5Þ

This tensor plays a crucial role in Noether-Wald’s formal-
ism. The second term in Eq. (2) is the boundary term arising
from the variation of the action and it generically depends
on the fields and variations thereof. By means of the
Stokes’ theorem, it can be expressed asZ

M
dDx

ffiffiffiffiffiffi
−g

p ∇μΘμ

¼
Z
∂M

dD−1x
ffiffiffiffiffiffi
jhj

p
nμΘμ

¼ −2
Z
∂M

dD−1x
ffiffiffiffiffiffi
jhj

p
nμ½∇ρδgνσEρσμν − δgνσ∇ρEρσμν�;

ð6Þ
where hμν ¼ gμν − nμnν is the induced metric on the
boundary, h its determinant, and nμ is a spacelike unit
normal such that nμnμ ¼ 1 with nμhμν ¼ 0.
Equation (2) implies that diffeomorphism invariance

leads to

∇μ½Θμðg;LξgÞ − ξμL�≡∇μJμ ¼ −LξgμνEμν; ð7Þ

where Lξ is the Lie derivative along the vector field ξ and

Jμ ¼ −2∇νðEμνρσ∇ρξσ þ 2ξρ∇σEμνρσÞ: ð8Þ

The Noether current Jμ is conserved on-shell as it can be
read off from Eq. (7). The Poincaré lemma, in turn, implies
that locally the Noether current Jμ can be written as

Jμ ¼ ∇νqμν where

qμν ¼ −2ðEμνρσ∇ρξσ þ 2ξρ∇σEμνρσÞ ¼ −qνμ; ð9Þ

is known as the Noether prepotential. Thus, the conserved
Noether charge associated to diffeomorphism invariance
generated by the vector field ξ is

Q½ξ� ¼ 1

2

Z
Σ
ϵμ1…μDq

μ1μ2dxμ3 ∧ … ∧ dxμD

≡
Z
Σ
Qμ1…μD−2

dxμ1 ∧ … ∧ dxμD−2 ¼
Z
Σ
Q; ð10Þ

where Σ is a codimension-2 hypersurface. According to
[47], the entropy is obtained when ξ is an asymptotically
time-like Killing vector and Σ corresponds to the bifurcat-
ing horizon. In presence of additional obstructions to
foliation, e.g., topological defects, other contributions to
the entropy arise [10]. In general, it can be expressed as

S ¼ βτ

Z
Σ
Q; ð11Þ

where βτ is the period of the Euclidean time for the
avoidance of conical singularities.
In the case of black holes in Einstein theory, Eq. (11)

implies that the entropy is one quarter of the horizon’s area.
However, a remarkable counterexample appears in Taub-
NUT/Bolt geometry with spherical base manifold, since
the presence of Misner strings breaks down the standard
entropy/area relation [6–8,10,13]. The modification of
the entropy law stems from the obstruction to foliate the
spacetime with constant-time hypersurfaces, turning the
contribution from the Misner string nontrivial at the poles.
Through the Noether-Wald formalism, this was computed
in Ref. [10] for asymptotically locally flat (AlF) spaces.
In AdS, in contrast, the entropy of the Misner string defined
by Wald’s formulas becomes divergent. In the following,
we show that this problem can be circumvented by
introducing the Gauss-Bonnet invariant into the gravita-
tional action.

III. TOPOLOGICAL RENORMALIZATION

In four dimensions, the Einstein-Hilbert action in pres-
ence of the Gauss-Bonnet term is3

IEGB½gμν� ¼ κ

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2Λþ αGÞ; ð12Þ

where κ ¼ ð16πGÞ−1 is the gravitational constant, α is the
Gauss-Bonnet coupling constant and

G ¼ R2 − 4RμνRμν þ RμνλρRμνλρ ¼ 3!δ½α½μδ
β
νδ

γ
λδ

δ�
ρ�R

μν
αβRλρ

γδ:

ð13Þ

The field equations obtained from the action (12) and
the off-shell functional derivative of the Einstein-Gauss-
Bonnet Lagrangian with respect to the Riemann tensor are

2From hereon, we assume that Eμνλρ¼−Eνμλρ, Eμνλρ¼−Eμνρλ,
Eμνλρ ¼ Eλρμν, and Eμ½νλρ� ¼ 0.

3We call this the Einstein-Gauss-Bonnet action and its inte-
grand the Einstein-Gauss-Bonnet Lagrangian.
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Eμν ¼ Rμν −
1

2
gμνRþ Λgμν ¼ 0; ð14Þ

Eμν
λρ ¼ κðδ½μ½λδν�ρ� þ 12αδ½μ½λδ

ν
ρδ

γ
αδ

δ�
β�R

αβ
γδÞ; ð15Þ

respectively. Equation (14) is solved by Einstein spaces
with Rμν ¼ Λgμν. Thus, on-shell, the Riemann tensor can
be written as

Rμν
λρ ¼ Wμν

λρ −
2

l2
δ½μ½λδ

ν�
ρ�; ð16Þ

where Λ ¼ −3=l2 and the Weyl tensor has been defined as

Wμνλρ ¼ Rμνλρ þ
1

2
ðRμρgνλ − Rνρgμλ þ Rνλgμρ − RμλgνρÞ

þ 1

6
Rðgμλgνρ − gμρgνλÞ: ð17Þ

For Einstein-AdS spaces, Eq. (15) becomes

Eμν
λρ ¼ κ

�
1 −

4α

l2

�
δ½μ½λδ

ν�
ρ� þ 2καWμν

λρ; ð18Þ

and, therefore, the Noether prepotential reads

qμν ¼ −2κ
��

1 −
4α

l2

�
δ½μ½λδ

ν�
ρ� þ 2αWμν

λρ

�
∇λξρ: ð19Þ

It is well known that there exists a proper choice of the
Gauss-Bonnet coupling in four dimensions renormalizing
the Noether charge [29] and Euclidean on-shell action [31]
for AlAdS solutions. Its particular value is obtained by
demanding that the first term on the right-hand side of
Eq. (18) vanishes, which is justified by the fact the Weyl
tensor is the only combination between the curvature and
the metric that has the correct falloff.4

The very same choice allows one to renormalize the
entropy of Misner string in Euclidean Taub-NUT/Bolt-AdS
solutions. This is remarkable as one could have expected
that the coefficient that suffices to renormalize solutions in
the asymptotically AdS sector would differ from the one
that does the job in other AlAdS sectors. More concretely,
since different values of the NUT charge define different
asymptotic sectors, one could have expected that the
coupling of the topological term would in general depend
on that charge, but notably it does not. Here, we will show
that a similar phenomenon occurs in the thermodynamics
calculation, where the integration is not performed at
infinity.

A. Taub-NUT/Bolt-AdS

The field equations (14) are solved by the Euclidean
inhomogeneous stationary metric constructed on complex
line bundles over S2, that is

ds2 ¼ fðrÞðdτ þ 2n cos θdϕÞ2 þ dr2

fðrÞ
þ ðr2 − n2Þðdθ2 þ sin2θdϕ2Þ; ð20Þ

where

fðrÞ ¼ r2 þ n2

r2 − n2
−

2MGr
r2 − n2

þ r4 − 6r2n2 − 3n4

l2ðr2 − n2Þ ; ð21Þ

and Λ ¼ −3=l2. This is the asymptotically AdS version
[6] of the Taub-NUT spacetime [3,4], whose Euclidean
version can be regarded as a gravitational instanton
[54,55]. Here, M is an integration constant associated to
the mass, while n is a constant that can be thought of as
the gravitational magnetic charge N ¼ n=G. Nuts and
bolts, alongside the absence of conical singularities, are
characterized by

For NUT∶ fðnÞ ¼ 0 and f0ðrÞjr¼n ¼
4π

βτ
; ð22Þ

For Bolt∶ fðrbÞ ¼ 0 and f0ðrÞjr¼rb ¼
4π

βτ
; ð23Þ

where rb > n is the bolt radius. These conditions
determine the set of fixed points to be one- and two-
dimensional, respectively. In turn, they fix the integration
constant M as

M ¼ n
G

�
1 −

4n2

l2

�
≡MNUT; ð24Þ

M¼ 1

2Grb

�
r2bþn2þr4b−6r2bn

2−3n4

l2

�
≡MBolt; ð25Þ

respectively. For NUT, the period of the Euclidean time is
βτ ¼ 8πn, and the Weyl tensor is globally self-dual. That
implies that the total mass, in terms of the electric and
magnetic mass of the solution is identically zero [17].
Therefore, for different values of the NUT charge, this
solution represents topologically inequivalent vacuum
states. For bolt, on the other hand, the Weyl tensor is
not globally self-dual and the period of the Euclidean time
is given by

βτ ¼
4πrb

1þ 3
l2 ðr2b − n2Þ : ð26Þ

4The appearance of the Weyl tensor at the boundary is the key
ingredient to make contact with the notion of conformal mass in
AAdS spacetimes [52,53].
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Additionally, the requirement of the Misner string being
unobservable5 [2] imposes a further condition, i.e.,
βτ ¼ 8πn, which relates the bolt radius with the NUT
charge according to

rb ¼
l2

12n

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

48n2

l2

�
1 −

3n2

l2

�s #
: ð27Þ

Reality and positivity of the bolt radius impose a range on
the NUT charge such that the solution exists.
The role of the Gauss-Bonnet term is crucial to renorm-

alize the entropy contribution of the Misner string.
The relevant components of the Noether charge (10) are
computed by inserting the off-shell value of (15) into
Eq. (9); they read

Qθϕ ¼ κðr2 − n2Þf0 sin θ

þ 4κα

ðr2 − n2Þ2 ½ðr
2 − n2Þ2f0 − ðr4 þ 4r2n2 − 5n4Þf0f

þ 4f2rn2� sin θ; ð28Þ

Qrϕ ¼ −
4κn2f cos θ
r2 − n2

þ 8καn2

ðr2 − n2Þ2 ½ðr
2 − n2Þðf00f þ f02Þ

− 2f0fr� cos θ: ð29Þ

Thus, the Noether charge in this case isZ
Σ
Q ¼

Z
r¼rb

Qþ
Z
θ¼0

Qþ
Z
θ¼π

Q

¼
Z

2π

0

dϕ
Z

π

0

dθQθϕjr¼rb −
Z

2π

0

dϕ
Z

∞

rb

drQrϕjθ¼0

þ
Z

2π

0

dϕ
Z

∞

rb

drQrϕjθ¼π; ð30Þ

where the last two terms arise from the contribution of the
Misner string. In absence of the cosmological constant,
these integrals were computed in Ref. [10] giving S ¼ 4πn2

and S ¼ 5πn2 for nuts and bolts, respectively. Their
difference yields to the same result as in Ref. [6] without
infinite background subtraction. In the presence of the
cosmological constant, however, the last two terms are
divergent. One possibility to circumvent this problem is to
add proper counterterms and employ Euclidean methods as
in Ref. [8]. The same procedure leads to the aforemen-
tioned entropies in absence of the cosmological constant.
Here, we notice that an alternative method to renormalize

the contribution of the Misner string in AdS is to fix the
Gauss-Bonnet coupling as

α ¼ l2

4
: ð31Þ

With this choice, the action (12) becomes the one of
MacDowell-Mansouri6 [27,28] and, on-shell, it can be
written as the conformal invariant contribution [17]

IEGB ¼ κl2

4

Z
d4x

ffiffiffiffiffiffi
−g

p
WμνλρWμνλρ: ð32Þ

Additionally, the Noether prepotential for Einstein spaces
becomes

qμν ¼ −κl2Wμν
λρ∇λξρ: ð33Þ

Thus, Eq. (11) yields the renormalized entropy

SBolt¼
32π2κn

rb

�
4r2b−2n2þ 1

l2
ð3r4b−12r2bn

2−3n4þl4Þ
�
;

ð34Þ

which, after replacing (27), can be seen to agree with the
result in the literature [15] up to a (thermodynamic
irrelevant) constant piece ΔS ¼ πl2=G. It is worth noticing
that we could have done the computation in a different
gauge by considering in (20) the Misner change of
coordinate τ → τ � 2nϕ, which suffices to eliminate one
of the Misner strings, namely the one located at
θ ¼ π=2ð1� 1Þ, at the price of introducing closed timelike
curves in the Lorentzian geometry. As expected, the result
of the computation performed in this way agrees with (34),
with one of the last terms in the second line of (30)
contributing zero in that case, but being it compensated by
the other.
The advantage of using Noether-Wald procedure for

the 4D Einstein-Gauss-Bonnet action is that the resulting
formula is fully covariant. Thus, it properly adapts to
include all the boundaries present in the geometry. In
addition, it can systematically be generalized to higher,
even dimensions.
The lowest order in the saddle-point approximation from

the quantum statistical relation lnZ ≈ −I, where Z is the
partition function and I is the on-shell Euclidean action,
provides a correct thermodynamic description of gravita-
tional solutions. Remarkably, the same result for the
entropy can be obtained by choosing the Gauss-Bonnet
coupling in Eq. (31), such that the renormalized Euclidean
action is

5By unobservable we mean that bolt solutions should have the
same temperature as NUT ones. As we will see, they still have
different entropy though.

6In five dimensions the quadratic Gauss-Bonnet term does
change the theory at classical level, and for the same choice of
couplings constants (31) the action of the gravitational theory
coincides with that of five-dimensional Chern-Simons; see [56]
and references therein.
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IBolt¼−
32π2κn

rb

�
2r2b−4n2þ 1

l2
ðr4bþ3n4þl4Þ

�
: ð35Þ

It is straightforward to check that this expression yields to
the same entropy obtained from the Wald’s formalism
[cf. Eq. (34)] through

SBolt ¼ βτ
∂IBolt
∂βτ − IBolt: ð36Þ

Thus, the Gibbs-Duhem relation S ¼ βτH∞ − I allows one
to obtain the energy of the system as

H∞ ¼ 8πκ

rb

�
r2b þ n2 þ 1

l2
ðr4b − 6r2bn

2 − 3n4Þ
�
; ð37Þ

which is exactly the same as M in Eq. (25).
Notice that, when comparing with the results in [15], the

entropy (34) has an additional contribution ΔS ¼ πl2=G.
In the case of topological black holes, this shift in the
entropy is proportional to the Euler characteristic of the
horizon [31]; i.e., it computes a topological number of
the constant-τ slices of the horizon. As ΔS is just an
additive constant, it does not affect relevant thermodynamic
relations such as the first law. On the other hand, the value
of (35) differs from those in [7,15] by a term ΔI ¼ −ΔS so
that (36) holds, showing that ΔS indeed reflects the horizon
topology. For rb ¼ n, the result (34) takes the form

SNUT ¼ 4πn2

G

�
1 −

6n2

l2

�
þ 2πl2

G
; ð38Þ

which also agrees with the entropy of the Taub-NUT-AdS
solution given in [7,8,15] up to a constant, cf. [6].7

B. Adding the Chern-Pontryagin invariant

Having shown above that the addition of the Gauss-
Bonnet invariant suffices to renormalize the gravitational
action and yields the correct result for the charges, it is
natural to ask about the effects of including the only other
dimension-four topological operator in four dimensions,
i.e., the Chern-Pontryagin topological invariant. The latter
reads

P4 ¼ −
1

2
⋆Rμν

ρηRρη
μν ¼ −

1

4
εμναβRαβ

ρηRρη
μν; ð39Þ

where we defined the left Hodge dual of the Riemann
tensor following the convention ⋆Rμνρη ≡ 1

2
εμναβRαβ

ρη ¼
1
2
εμναβRαβ

ρη. Evaluated on the Taub-NUT-AdS geometry
this yields

−
1

8π2

Z
d4x

ffiffiffiffiffiffi
−g

p
P4 ¼

1

32π2

Z
d4x

ffiffiffiffiffiffi
−g

p
εμναβRαβ

ρηRρη
μν

¼ 2 −
16n2

l2

�
1 −

2n2

l2

�
: ð40Þ

This value, which reduces to the well-known result 2 for the
Ricci flat metric in the limit l → ∞, changes its global sign
if one perform the change n → −n in (20) (see Ref. [57]).
We also see from this expression that something special
occurs for n ¼ �l=2, for which (40) vanishes. Notice that
the mass (24) is also zero for such especial values of n. As
discussed in [15], the geometries with n ¼ �l=2 corre-
spond to AdS4 spacetime with a nontrivial slicing, the
trivial S2 × S1 slicing corresponding to n ¼ M ¼ 0. It is
worth noticing that for n ¼ �l=2 the entropy formula (38)
gives a positive result, avoiding the puzzle of negative
entropy observed in [8,15,58]. Notice also that for
n ¼ �l=

ffiffiffi
2

p
the value of the signature (40) reduces to

that of Ricci flat Taub-NUT. It is the dimensionless ratio
n=l what controls the value of the Pontryagin invariant, so
suggesting that the values that this ratio takes might be
important for the quantum theory.
The Chern-Pontryagin term (39) has opposite parity than

the Gauss-Bonnet one, such that its inclusion results in an
action that is not longer parity even. As the P4 can be
written as

P4 ¼ −
1

2
⋆Wμν

ρηWρη
μν; ð41Þ

when adding it to the gravitational Lagrangian one finds the
on-shell renormalized action

IEGBP½gμν� ¼
κl2

4

Z
d4x

ffiffiffiffiffiffi
−g

p
Wμν

ρηWρη
μν

þ ϑ
κl2

4

Z
d4x

ffiffiffiffiffiffi
−g

p ⋆Wμν
ρηWρη

μν; ð42Þ

where ϑ is a constant that is reminiscent of the coupling of
the θ-term in gauge theory. In fact, the action (42) can be
thought of as the MacDowell-Mansouri action augmented
with a CP violating term. In contrast to what happens with
the coupling α of the Gauss-Bonnet invariant, which can be
fixed as in (31) by demanding regularity of the action, the
value of ϑ is not fixed by such a requirement. Therefore, it
is necessary to apply a different criterion. A natural one
would be asking the action to vanish when evaluated on the
self-dual vacuum solution. This results in the value8

ϑ ¼ �1: ð43Þ
7Our notation relates to that of [6] by identifying parameters as

l ¼ 2b, n ¼ b
ffiffiffiffi
E

p
, k ¼ 1, s ¼ rb=ðb

ffiffiffiffi
E

p Þ and rescaling the time
and radial coordinates by 2b and b

ffiffiffiffi
E

p
, respectively.

8The two signs here correspond to the self-dual and the anti-
self-dual solutions.
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Using this, the on-shell action can be written as [17]

IEGBP ¼
κl2

32

Z
M

ffiffiffiffiffiffi
−g

p
δ½α½μδ

β
νδσλδ

τ�
ρ�ðWμν

αβ � ⋆Wμν
αβÞ

× ðWλρ
στ � ⋆Wλρ

στÞ: ð44Þ

Since the Taub-NUT-AdS solution with M fixed by
Eq. (24) is globally (anti-)self dual, the action (44) vanishes
identically when evaluated at this configuration. For bolt,
we take the case n > 0 for the sake of simplicity. Thus, the
renormalized on-shell action in the presence of the Chern-
Pontryagin term with fixed theta parameter is

IBolt ¼ −
16π2κnð2rb þ nÞ

r2b

�
2ðrb − nÞðrb þ 3nÞ

þ 1

l2
½ðrb − nÞ2ðrb þ 3nÞ2 þ l4�

�
; ð45Þ

which, in contrast to (35), for rb ¼ n is a constant
independent on n. This is expected: since the action (44)
vanishes when evaluated at the Taub-NUT-AdS solution,
Eq. (45) can differ from zero only by a n-independent
constant when rb ¼ n.
Additionally, the Noether’s prepotential for Einstein-

AdS spaces becomes

qμν ¼ −κl2ðWμν
λρ � ⋆Wμν

λρÞ∇λξρ: ð46Þ

Therefore, the Noether charge vanishes identically for
(anti-)self-dual solutions as well. This, in turn, implies
that the total mass and entropy are zero for Taub-NUT-AdS.
In other words, the role of the Chern-Pontryagin term with
(43) is to set Taub-NUT-AdS solution as the background
reference.
The entropy for bolt obtained through the Wald’s

formula in Eq. (11) via the Noether’s prepotential (46)
yields

SBolt ¼
16π2κn

r2b

�
2ðrb − nÞð4r2b þ 5rbnþ 3n2Þ

þ 1

l2
½3ðrb þ 3nÞðrb − nÞ2ð2r2b þ nrb þ n2Þ

þ l4ð2rb þ nÞ�
�
; ð47Þ

which, in contrast to (34)–(38), when rb ¼ n is indepen-
dent on n.
It is straightforward to check that the entropy (47) can be

obtained from the thermodynamic relation (36) using the
renormalized action (45). The thermodynamic mass for
bolt, on the other hand, is obtained from standard methods,
yielding

M̂Bolt ¼
∂IBolt
∂βτ ¼ 8πκðrb − nÞ2

rb

�
1þ ðrb − nÞðrb þ 3nÞ

l2

�
¼ MBolt −MNUT; ð48Þ

where MBolt and MNUT are the charges given by (37). The
mass (48) is equivalent to the definition of Ref. [17] in
terms of the Noether charge when ϑ ¼ þ1.

C. Boundary stress tensors

The topological renormalization method is consistent
with holographic renormalization [33], leading to repro-
duce the boundary stress tensor. The inclusion of the
Chern-Pontryagin term in the gravity action on AlAdS
spaces modifies the result one obtains by means of holo-
graphic renormalization for the dual theory stress tensor
Tab. In fact, for ϑ ¼ �1 one obtains9

T�
ab ¼ Tab ∓ l2

8πG
Cab; ð49Þ

where a, b ¼ 0, 1, 2, G is the four-dimensional Newton
constant and we introduced the Cotton tensor

Cab ¼
ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
εa

cd∇c

�
Rð0Þ
db −

1

4
Rð0Þgð0Þdb

�
: ð50Þ

Here gð0Þab is the boundary metric while Rð0Þ
ab and Rð0Þ its

Ricci tensor and scalar curvature, respectively. The tensor
T�
ab is the full stress tensor, which consists of the sum of the

holographic part of standard Balasubramanian-Kraus ten-
sor Tab and the Cotton tensor Cab, with a specific relative
coefficient.10 This is related to fluid interpretation of the
dual stress tensor (named “reference tensor”) as well as to
the so-called stress tensor / Cotton tensor duality,
cf. [33,36,38,39,43–45]. We will not discuss this in extenso
here as it lies beyond the scope of the present paper. Here,
we focused on the AlAdS sector; more precisely, on the
thermodynamics of the Misner strings of both Taub-NUT-
AdS and Taub-Bolt-AdS solutions as it is described by the
topological renormalization method.
The Cotton tensor in (49) is the parity odd part of T�

ab,
while the Balasubramanian-Kraus piece is parity even. This
implies that a parity transformation results in an inter-
change Tþ

ab ↔ T−
ab. We discuss the parity transformation

below, after writing the explicit expressions for the tensors;
see (52)–(53). Let us just mention here that the presence of
the NUT charge n in the boundary metric, being this charge

9The coefficient of the second term in (49) acquires an
imaginary i factor in the Lorentzian case, due to the presence
of the Levi-Civita pseudotensor in the definition of Cab, Eq. (50).
Our conventions on the Wick rotation from Euclidean to
Lorentzian are n → in, τ → iτ and Cab → −iCab.10The coupling of tensor (49) would result in a boundary
model of topologically massive gravity [59].
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parity odd, makes natural to consider in the boundary
theory both components in (49).
Let us now evaluate the full stress-tensor T�

ab on the
Taub-NUT/Bolt-AdS metrics. To do that, it is convenient to
rewrite the metric (20) by performing the Misner change
of coordinate τ → τ − 2nϕ followed by the inversion
ϕ → −ϕ. This yields

ds2 ¼ fðrÞðdτ þ 4nsin2ðθ=2ÞdϕÞ2 þ dr2

fðrÞ
þ ðr2 − n2Þðdθ2 þ sin2θdϕ2Þ: ð51Þ

Evaluating the Balasubramanian-Kraus boundary tensor on
this metric yields11

Tab ¼ −
M

8πl2

0
B@

2 0 −8nsin2 θ
2

0 −l2 0

−8nsin2 θ
2

0 32n2sin4 θ
2
− l2sin2θ

1
CA;

ð52Þ
where a; b ¼ τ; θ;ϕ. The boundary normalized
Hamiltonian Killing vector, interpreted in fluid/gravity as
the fluid velocity, is u ¼ ∂τ; in Euclidean signature this
vector is spacelike. This ensures that in the flat limit this
vector becomes null. On the other hand, the Cotton tensor
evaluated on (51) reads

Cab ¼ −
n
l4

�
1 −

4n2

l2

�

×

0
BB@

2 0 −8nsin2 θ
2

0 −l2 0

−8nsin2 θ
2

0 32n2sin4 θ
2
− l2sin2θ

1
CCA:

ð53Þ
The Cotton energy density is then computed to be
c ¼ l4Cabuaub ¼ −2nð1 − 4n2=l2Þ. We see here also that
something special happens at the special points n ¼ �l=2,
for which the Cotton tensor vanishes as for n ¼ 0.
Expressions (52) and (53) satisfy the simple relation

Tab ¼
Ml4

8πnðl2 − 4n2ÞCab; ð54Þ

which is manifestly compatible with the stress-tensor /
Cotton tensor duality referred to above. The particular
solution (20) that is self-dual corresponds to the Taub-
NUT-AdS spacetime, MG ¼ nð1 − 4n2=l2Þ, and, in the
Euclidean theory, the complete boundary tensor evaluated
on this solution yields

Tþ
abjNUT ¼ 0; ð55Þ

and so vanishing energy (respectively, T−
abjNUT ¼ 0 for the

anti-self-dual solution with NUT charge −n). The vanish-
ing of (55) is consistent with the fact that the mass (48) is
measured with respect to NUT spacetime as a reference
background. The charge computation in terms of the
Brown-York stress tensor would yields zero results if
MG ¼ nð1 − 4n2=l2Þ is satisfied.
Going back to the question of parity (a)symmetry, we

observe that expressions (52) and (53) realize the fact that,
under parity transformation, we get the map T�

ab → T∓
ab. In

particular, T−
ab ¼ 0 for MG ¼ nð4n2=l2 − 1Þ. The behav-

ior of Tab and Cab under parity can be immediately
observed from the fact that, while the component Tτϕ is
linear in n, the component Cτϕ is proportional to a
polynomial of even powers of n. This is related to the
fact that the change ðτ;ϕ; nÞ → ðþτ;−ϕ;−nÞ realizes
the parity transformation; it leaves invariant Tab
while changes the sign of Cab. The same argument holds
for the transformations ðτ;ϕ; nÞ → ð−τ;−ϕ;þnÞ and
ðτ;ϕ; nÞ → ð−τ;þϕ;−nÞ. In the fluid interpretation of
the boundary theory [26,40], the NUT charge is a monop-
olar source of vorticity. This is reminiscent of a magnetic
monopole. Thence, the stress tensor / Cotton tensor duality
is the fluid analog of electric / magnetic duality. Therefore,
once again, the presence of n in the boundary metric makes
natural to consider both pieces in (49).

IV. CONCLUSIONS

Let us summarize our results: in this paper, we have
considered the method of topological renormalization in
AlAdS spaces. The latter consists in adding to the gravi-
tational action a topological term that, while suffices to
render the Euclidean action finite and the variational
principle well posed, provides a natural definition of the
renormalized Noether charges. We used this prescription to
work out the thermodynamics of AlAdS spacetimes,
focusing on the physical properties of the Misner strings
of both the Taub-NUT-AdS and Taub-Bolt-AdS solutions.
This enabled us to correctly compute the contribution of the
Misner string to the gravitational entropy by treating on the
same footing the AdS and AlAdS sectors. We also inves-
tigated the effects of introducing the Chern-Pontryagin
topological invariant in the gravity action, namely a parity
odd dimension-four operator whose role is setting the
Taub-NUT-AdS geometry as the reference background.
We discussed how the presence of topological terms in the
gravitational action contributes to the holographic stress
tensor upon a suitable asymptotic expansion of the fields.
While the relation between topological and holographic
renormalization had previously been studied, our discus-
sion here successes in treating the AdS and AlAdS sectors
in equal footing as well as including the parity odd

11The minus in the Tττ component makes the fluid energy
density positive in Lorentzian signature.
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contributions. These contributions are responsible for
the appearance of the Cotton piece in the boundary total
stress tensor. This augmented stress tensor then identically
vanishes on (anti-)self-dual backgrounds.
The method employed here is generally covariant and

could be adapted to other black hole solutions. In particular,
it would be worth pursuing it for other AlAdS solutions,
like accelerating black holes (AdS C-metric) or even more
general Robinson-Trautmann spacetimes, whose thermo-
dynamics recently received renewed interest [60,61]. We
plan to go back to this problem in future work with the
intention to studying further the role of defects: the
presence of the Misner string can be seen as a boundary
defect. Studying this could allow us to make contact with
the intertwining between renormalized volume and area in
asymptotically hyperbolic spaces [62]. Furthermore, the
defect corresponds to introducing corners in the boundary,
so it would be interesting to connect our work with recent
discussions on corners [63–65]. Here, we focused on the
entropy; however, the Noether-Wald’s formalism is well-
suited to study general asymptotic charges. Asymptotic
charges have recently been studied for Taub-NUT/Bolt
in locally flat spacetime in relation to the magnetic

counterpart of BMS charges, see, e.g., [24,66]. This raises
the interesting question of the Ricci flat limit of our results,
in the spirit of [67,68]. Finally, while the total boundary
stress tensor T�

ab is complex in Lorentzian signature, in
Euclidean signature it is real. Thus, unveiling its micro-
scopic properties in the boundary CFT is challenging but in
principle possible. In particular, we look forward to a more
comprehensive understanding of the microscopic structure
of the boundary dual of Taub-NUT/Bolt-AdS spaces, and
its behavior under parity.
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