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Abstract

The F420 deazaflavin cofactor is an intriguing molecule as it structurally resembles

the canonical flavin cofactor, although behaves as a nicotinamide cofactor due to its

obligate hydride-transfer reactivity and similar low redox potential. Since its discov-

ery, numerous enzymes relying on it have been described. The known

deazaflavoproteins are taxonomically restricted to Archaea and Bacteria. The bio-

chemistry of the deazaflavoenzymes is diverse and they exhibit great structural vari-

ability. In this study a thorough sequence and structural homology evolutionary

analysis was performed in order to generate an overarching classification of the F420-

dependent oxidoreductases. Five different deazaflavoenzyme Classes (I–V) are

described according to their structural folds as follows: Class I encompassing the

TIM-barrel F420-dependent enzymes; Class II including the Rossmann fold F420-

dependent enzymes; Class III comprising the β-roll F420-dependent enzymes; Class IV

which exclusively gathers the SH3 barrel F420-dependent enzymes and Class V

including the three layer ββα sandwich F420-dependent enzymes. This classification

provides a framework for the identification and biochemical characterization of novel

deazaflavoenzymes.
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1 | INTRODUCTION

F420 is a naturally occurring deazaflavin cofactor in which the N5 atom

of the isoalloxazine ring is substituted by a carbon atom and has an

8-hydroxyl moiety instead of the methyl groups at positions 7 and

8, compared to the canonical flavin cofactors FMN and FAD. It was

first isolated almost 50 years ago by Cheeseman et al.1 and its struc-

ture was solved shortly after.2 F420 is an obligate two-electron hydride

carrier with a low standard redox potential (�340 mV), which resem-

bles that of nicotinamide cofactors (�320 mV) rather than that of fla-

vins (�220/�190 mV).3 The first reports on F420-dependent enzymes

were related to methanogenesis in archaeal species.4,5 For a long time

these were considered as unusual redox enzymes. Recent research

has demonstrated that deazaflavoenzymes are actually widespread

across Archaea and Bacteria.3 In Archaea, the species from the

euryarchaeota phyla Methanosarcina spp, Methanothermobacter spp

and Archaeoglobus fulgidus are among the most frequently investi-

gated. In Bacteria, research has been centered on the Actinobacteria

phylum including Mycobacterium, Streptomyces and Nocardia genera.3

The restricted domain distribution of the F420 cofactor and its connec-

tion to anaerobic metabolism, highlight its status as a relic from the

origin-of-life world.3
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Previously, a number of F420-dependent enzymes have been clas-

sified according to their three-dimensional fold into three groups: the

luciferase-like hydride transferases (LLHTs) (also known as luciferase-

like monooxygenases, LLMs), the pyridoxamine-50-phosphate oxidases

(PNPOxs), and the deazafavin-dependent nitroreductases (DDNs).6

Although this classification was based on structural homology, it

should be noted that the PNPOx and DDN representatives display

the same split β-barrel fold. While all known DDNs exclusively rely on

F420, LLHT and PNPOx members show dependence on other flavin

cofactors as well.7,8 Recently, the aflatoxin degrading F420-dependent

reductases from actinomycetales were discovered and characterized.9

These were described as F420-dependent reductases (FDRs A and B)

and are homologous to members of the PNPOx family.10 Later, it was

proposed that FDRs should be instead referred to as flavin/

deazaflavin oxidoreductases (FDORs A and B). The FDOR-A group

exclusively includes F420-dependent enzymes, while FDOR-B encom-

passes deazaflavoenzymes as well as enzymes using FMN, FAD, and

heme cofactors.11 Except for those utilizing F420H2 in the reduction

of metabolites, there are many known enzymes that use the

deazaflavin cofactor for other reactions. Among them are oxidoreduc-

tases that can shuttle a hydride between nicotinamide and F420

(FNOs),12,13 oxidases that use F420 coupled to FMN to reduce dio-

xygen (FprA),14 and dehydrogenases that employ reduced F420 to

reduce the methenyl-H4MPT+ cofactor.15 Additionally, other redox

enzymes in anaerobic metabolism such as [NiFe]-hydrogenases16 and

thioredoxin reductases17 depend on the F420 cofactor and show

unique structural features. Therefore, considering the increasing num-

ber of characterized F420-dependent enzymes displaying not only dif-

ferent biochemistries but also a variety of structural topologies, a

structure-based classification of deazaflavoproteins would be

valuable.

Enzyme classification can be performed either on the basis of

functionality (e.g., the chemical reaction they catalyze18,19) or on the

basis of the evolutionary history,20 among other criteria. One of

the main drawbacks of the first strategy is that it relies on features

lacking a common evolutionary origin. Although these phenetic classi-

fications can be a very useful way of organizing protein information,

problems arise when investigating the underlying determinants of

enzyme functionality. Classifications based on observable traits,

regardless of the phylogeny, also perform poorly in predicting the

activity of newly found enzymes, especially when the number of items

to classify increases constantly over time.18 Molecular evolution anal-

ysis allows for understanding how modern enzymes work.21 The his-

torical and physical causes of a protein function can be traced through

their trajectory until its emergence. In this way, the determinants of

enzyme function will become evident. Therefore, the evolutionary-

based classifications are a robust approach to infer the activity of new

enzymes and to explore its physico-chemical and biological determi-

nants. Several examples are available in the literature with CATH22

and pfam23 as gold standards.

In this work the oxidoreductases that use the deazaflavin cofactor

F420 were comprehensively analyzed from the structural homology

perspective. Five different classes were defined that encompass the

whole enzymatic and structural diversity of F420-dependent

oxidoreductases recognized at the moment. Besides, the phylogenetic

analyses of these classes are reported and the trends in the cofactor

utilization are analyzed.

2 | METHODS

2.1 | Evolutionary clustering of F420-dependent
enzymes

Sequences from F420-dependent enzymes for which structures have

been obtained were collected from PDBsum (PDBsum, RRID:

SCR_006511). Domain architecture was investigated using the hierar-

chical criteria from CATH (CATH: Protein Structure Classification,

RRID:SCR_007583) and/or pfam (Pfam, RRID:SCR_004726). InterPro

and TIGRFAMs databases were also consulted (InterPro, RRID:

SCR_006695; JCVI TIGRFAMS, RRID:SCR_005493) (last accession to

databases: December 2020–January 2021). Structures were clustered

according to their domain topology and architecture as the definitive

criteria for a shared evolutionary origin. Structural alignment of each

group was performed in PROMALS3D (PROMALS3D, RRID:

SCR_018161).

2.2 | F420-dependent oxidoreductases class
profiling

For each structural superfamily identified, sequence datasets were

constructed by homology searches using as queries the sequences of

the enzymes retrieved from structural databases (vide supra). Blastp

(BLASTP, RRID:SCR_001010) was conducted using non-redundant

protein sequences database and specifying the taxonomy (Archaea or

Bacteria). The 250/500 first hits were collected on each search (E-

value ≤1e-9). HMM profiling was conducted in HMMER (Hmmer,

RRID:SCR_005305) using UniprotKB database and the first 250/500

hits were collected. Enzymes sharing the same structural domain but

not using the F420 cofactor were also used as queries in the homology

searches and the retrieved sequences were included in the datasets

to ensure the clustering was not biased by the data collection. For

Class II, pfam available datasets were collected in complete form as

well. Raw datasets contained >1000 seqs for each superfamily.

MAFFT v7 (MAFFT, RRID:SCR_011811) was employed to build multi-

ple sequence alignments (MSAs). Redundancy was removed (cut-

off = 80% identity) with CD-HIT (CD-HIT, RRID:SCR_007105). MSAs

were visually inspected and single sequence insertions/extensions

trimmed. Substitution models and alignment parameters were calcu-

lated in ProtTest 3.4.2 (ProtTest, RRID:SCR_014628). Phylogenies

were constructed by the maximum likelihood inference method

implemented in PhyML 3.1 (PhyML, RRID:SCR_014629) or RaxML

8.2.12 (RAxML, RRID:SCR_006086) with 100/500 bootstraps (BS),

respectively. Transfer bootstrap values (TBE) were obtained in

BOOSTER.24 For Class III, Bayesian inference was also conducted in
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Mr Bayes 3.2.6 (MrBayes, RRID:SCR_012067) running 2000000 gen-

erations until convergence <0.2 was reached. FigTree 1.4.2 (FigTree,

RRID:SCR_008515) was employed to visualize and edit the trees.

HMM logos were created with the WebLogo 3 online server

(WEBLOGO, RRID:SCR_010236) for sequences exclusively using F420

according to the obtained phylogenies. Sites in contact with F420 were

retrieved from the PDB structures employing the SAS server (SAS—

Sequence Annotated by Structure, RRID:SCR_004635).

3 | RESULTS AND DISCUSSION

A molecular evolution analysis was conducted with the aim to inte-

grate present biochemical knowledge on F420-dependent enzymes.

Currently known enzymes that use F420/F420H2 as cofactor in oxida-

tion/reduction processes were included. A shared structural fold was

considered as the first sign of a common evolutionary origin.20

Initially, the strategy consisted of mining the structural databases

to retrieve all enzymes using F420 as a cofactor. The 50 collected

structures (out of 171718 PDB entries scanned), belong to 24 differ-

ent deazaflavin oxidoreductases. By analyzing the domain topology

and architecture, these enzymes were assigned to four different

evolutionary-independent units. In that way, four different unrelated

folds were identified among the gathered structures (Classes I–IV).

For those enzymes for which no structures are available, but con-

firmed to depend on F420,
17 a second sequence dataset was built and

the domain topology predicted with GENE3D/CATH.22 From this

analysis, one extra distinct fold was identified (Class V). Structure-

based alignments were constructed when possible for each of the

identified classes and the evolutionary relationships were inferred.

Next, homology searches and HMM profiling were employed to find

close and distant homologs and sequence-based phylogenies were

constructed (see Section 2). All the evolutionary and structural infor-

mation obtained was integrated with the available biochemical data.

This step-wise analysis allowed us to propose the existence of

five well-defined Classes (I–V) of deazaflavoenzymes (Tables 1 and

S1). Classes are defined by the structural superfamily to which the

sequences belong. For some of the classes, different types of enzymes

are proposed on the basis of their phylogenetic clustering and their

shared catalytic properties. These will be described in detail in the

coming sections.

3.1 | Class I: TIM barrel F420-dependent enzymes

This class is defined by the conserved α/β barrel fold and includes the

so-called LLHTs (also referred as LLMs). Two kinds of well-known

F420-dependent oxidoreductases are found here: the methylene-

H4MPT reductases (MERs)25 and the dehydrogenases, represented by

the F420-dependent glucose-6-phosphate dehydrogenases (FGDs)

(Table 1).30 Depending on the physiological conditions, MERs can

consume or produce F420H2.
36 FGDs essentially generate F420H2,

although the reversibility of their activity has also been

demonstrated.31 Also, other enzymes are found in this group which

are involved in antibiotics biosynthesis37 or in the production of path-

ogenesis related molecules such as outer membrane lipids like the

phthiocerol dimycocerosates.38 Hitherto, biochemical details of these

other members are scarce. Recently, Steiningerova et al.32 demon-

strated that the actinobacterial enzymes LmbY,39 HrmD,40 among

others, are F420H2-dependent reductases displaying the TIM barrel

fold. These enzymes are involved in the last step of 4-alkyl-L-proline

derivatives (APDs) biosynthesis. The APD moiety is common among

structurally and functionally different metabolites.41

Owing to the enzymatic diversity found among this class, a

structure-based phylogeny was constructed to unveil the deep evolu-

tionary relationships among the different members (Figure S1A). Two

F420-dependent enzyme clusters can be discerned, one including the

MERs and FGDs, while the other including the actinobacterial F420

reductases along with bacterial FMN-dependent enzymes such as the

alkanesufonate monooxygenase (SsuD, PDB: 1m41)42 and

the nitrilotriacetate monooxygenase (NTA_MO, PDB: 3sdo). This dis-

tribution was further confirmed by inferring the sequence-based phy-

logeny employing a robust and representative dataset (Figures 1 and

S1B). Among the first cluster of deazaflavoenzymes

(TBE/PP = 0.94/0.99), two well-defined clades of F420-dependent

enzymes are observed. These will be designated here as Type A and

Type B, formerly referred to as reductases and dehydrogenases cla-

des.29,43 Type A includes the MERs, the mycobacterial phthiodiolone

ketoreductase fPKR38 and the reductase LxmJ from the lexapeptide

gene cluster found in Streptomyces rochei37 (TBE/PP = 0.92/0.99).

The Type B cluster is populated by the FGDs, the F420-dependent

sugar-6-phosphate dehydrogenases (FSDs), and the alcohol dehydro-

genases: hydroxymycolic acid dehydrogenase (fHMAD) from

M. tuberculosis44 and secondary-alcohol dehydrogenase Adf (PDB:

1rhc) from Methanoculleus thermophilicus31 (TBE/PP = 0.99/1). The

other cluster of deazaflavoenzymes identified in the structural phylog-

eny, seems to derive from FMN-dependent sequences with good sup-

port (TBE/PP = 0.92/0.74). This clade is designated Type C and

includes the F420-dependent reductases encoded within the

actinobacterial biosynthetic gene clusters of APDs (called Apd6 pro-

teins based on the catalyzed step in the pathway).45 Among the FMN-

dependent homologs the well-known bacterial FMN-dependent lucif-

erases (e.g., LuxB, PDB: 1luc)46 are found.

The unveiled topology allows proposing two independent origins

for the F420-dependent enzymes within this class. While Type A and

B are early diverging from a sister clade of FMN-dependent

sequences, the Type C is branching out from a clade of FMN-

dependent enzymes at a posterior stage. The taxonomic distribution

shows a mixed arrangement of bacterial and archaeal species with

predominance of facultative anaerobes and methanogens for Types A

and B. In the case of the Type C cluster, actinobacterial sequences are

found exclusively, indicating a very restricted taxonomic distribution.

Overall, the topology of the tree suggests that cofactor specificity

(FMN or F420) has played a major role as selective pressure in the evo-

lutionary history of members of this class. Besides, the emergence of

Type C is strongly linked to the Actinobacteria phylum. Finally, it is
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important to note that several Type A and B enzymes have been

reported to display suitable activities for biotechnological applications

as recently reviewed by Shah et al.29 (Table 1). In the case of Type C,

as these are a newly characterized group, their biochemistry and bio-

technological potential awaits exploration.

3.2 | Class II: Rossmann fold F420-dependent
enzymes

Class II members are deazaflavoenzymes that share the classic 3-layer

αβα sandwich topology, commonly known as Rossmann fold.

TABLE 1 The F420 oxidoreductases classification

Class/
Type

Structural
superfamily Domain

Archetypal examples
Biotechnological
applications RefName Function Electron flowa Ref

I A TIM barrel tMer F420-dependent

N5,N10-methylene-

H4MPT reductase

25 • F420H2

cofactor

regeneration

systems

• Asymmetric

catalysis

• Antibiotics &

natural

products

synthesis

• Methane

mitigation

26–29

B Fgd F420-dependent

glucose-6-phosphate

dehydrogenase

30

Adf F420-dependent

secondary alcohol

dehydrogenase

31

C LmbY Apd6 (4-alkyl-proline

derivative) F420-

dependent reductase

32 nd -

II A Rossmann

fold

Fno F420H2:NADP+

oxidoreductase

33 • Methane

mitigation

• Natural

products

biosynthesis

28

B Mtd F420-dependent

methylene-H4MPT

dehydrogenase

15

C Fpra F420H2 oxidase 34

III β-roll Ddn Deazaflavin-dependent

nitroreductase

35 • Asymmetric

catalysis

• Antibiotics &

natural

products

synthesis

• Bioremediation

• Prodrug

activation

26,27,29

Fdr F420H2-dependent

reductase

28

IV SH3 barrel FrhB F420-reducing [NiFe]-

hydrogenase, subunit

beta

16 nd -

V 3-layer ββα

sandwich
b

DFTR F420-dependent

thioredoxin

reductase

17 nd -

Note: Folds are colored according to secondary structure elements representing CATH hierarchical classification. Presented domains: Class I: 3b4yA00,

Class II: 1jaxA00 (FNO), 1qv9A00 (MTD), 2ohhA02 (oxidases), Class III: 3r5rA00, Class IV: 4omfB02, Class V: 1trbA01. Extended information is available in

Table S1.

Abbreviation: nd, not determined.
aThe physiological reaction is indicated, while the reverse reaction is typically also feasible.
bSelected by homology (E = 5.5e–16).
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Members with known biochemical features vary considerably in struc-

ture and function. These are the F420H2-NADP+ oxidoreductases

(FNOs),33 the F420-dependent methylene-H4MPT dehydrogenases

(MTDs),15 and the F420H2 oxidases (FprAs).34 The latter show a

unique multidomain architecture, as they are N-terminally fused to a

�180-amino acid β-lactamase domain (PF00753, CATH 3.60.15.10).

Despite the structural differences the catalytic strategy is similar, as

the hydride transfer proceeds from F420H2 to a second cofactor such

as a nicotinamide (FNOs), tetrahydromethanopterin (MTDs) or a flavin

(FprAs)34 (Table 1).

In spite of some structural variations of the central common fold,

a structure-based phylogeny could be constructed (Figure S2A). MTDs

and oxidases emerge as clear monophyletic groups (BS = 97 and

BS = 100, respectively). FNOs, although sharing ancestry, form a

poorly supported paraphyletic group. Considering the topology of the

structural phylogeny plus the sequence similarity among each group,

we propose the existence of three types of deazaflavoenzymes inside

this class. These are designated Type A, Type B and Type C (Table 1).

Phylogenies were constructed for each of them, revealing some

shared and other unique evolutionary paths (Figure 2).

The Type A members are the known F420H2-NADP+ oxidoreduc-

tases. Phylogenetic analysis shows that all members of this subclass

derive from a single ancestor (TBE = 0.82) and are distributed in two

groups (Figures 2 and S2B). This clear splitting does not respond to

any taxonomic or structural feature and thus should be further inves-

tigated. The FNO-type sequences are 200-220 amino acids in length,

show single domain architecture (PF03807, CATH 3.40.50.720) and

use F420 and NADP+. FNOs are homologous to some NAD(P)H-

F IGURE 1 Class I F420-dependent enzymes phylogeny. Sequence-based phylogeny is presented unrooted. Support values (TBE (from
Maximum likelihood)/PP (from Bayesian inference) corresponding to major divergences are indicated at the nodes. Type A, B and C clades are
shown in boxes. In blue are provided the names, taxonomy (according to UNIPROT) and PDB accession codes (when available) for experimentally
characterized enzymes. Cofactor specificities are indicated with the color of the branches as follows: F420 (green) and FMN (yellow). For the fully
annotated tree go to Figure S1B
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dependent reductases which encode for an extra C-terminal domain

of 40–50 amino acids in length. These reductases are early diverging

in the phylogeny and do not use a deazaflavin cofactor (Figure 2).

Among them, the NAD(P)H-dependent pyrroline-5-carboxylate reduc-

tases, forming a monophyletic group of 5 sequences (TBE = 0.95),47

and the D-apionate oxidoisomerase (apnO, PDB: 5t57)48 are found

(Figure S2B). The topology of the tree strongly suggests that the use

of nicotinamide cofactor is the ancestral feature, whereas the utiliza-

tion of F420 arose later in evolution. Taxonomic distribution of Type A

enzymes seems to be enriched in anaerobic or facultative anaerobic

species either from Bacteria or Archaea.

Type B includes the known F420-dependent methylenetetra-

hydromethanopterin dehydrogenases (Figures 2 and S2D). This type

is composed solely of F420-using enzymes that display an exclusive

structural domain (PF01993, CATH 30.40.50.10830). The taxonomic

distribution is strongly biased toward methanogenic archaea belong-

ing to the euryarchaeota phylum.15,49 These enzymes are also present

in Archaeoglobi species50 which, despite being sulfur-metabolizing

organisms, encode a nearly complete set of genes for

methanogenesis.51 A few eubacterial-derived proteins are also

observed. However, none of these sequences have been experimen-

tally characterized.

Type C, including the F420H2 oxidases (FprA), shows another dif-

ferent history (Figures 2 and S2F). The two-domain architecture

(lactamase B [pfam 00753]- flavodoxin [pfam 00253]) defining this

group is shared by various other redox enzymes such as nitric oxide

reductases52 and flavodiiron proteins.53 The evident difference among

these FMN-dependent enzymes is the electron donor preference,

which can be F420H2 or NADH. For those working as nitric oxide

reductases no other cofactor than FMN is required. Phylogenetic

analysis shows that F420 usage is restricted to one particular clade

(TBE = 1) containing all known FprAs, embedded into a large group of

FMN-dependent enzymes (Figures 2 and S2F). On the other hand,

those enzymes reportedly relying on NADH as electron donor form a

monophyletic group (TBE = 1) which has a sister clade of

uncharacterized homologs inferred to be FMN-dependent enzymes.

In that context, similar as observed for Class I, the usage of FMN

seems to be the ancestral feature, while by two later independent

events F420H2 and NADH specificities arose. Remarkably, the utiliza-

tion of F420 by Type C members seems to be restricted to archaeal

F IGURE 2 Class II F420-dependent enzymes phylogeny. Sequence-based phylogeny is presented unrooted for each type of enzymes included
in the class: Type A, B and C. Previous names coined to each type are also shown for clarity. Support values (TBE) corresponding to major
divergences are indicated at the nodes. In blue are provided the names, taxonomy (according to UNIPROT) and PDB accession codes (when
available) for experimentally characterized enzymes. Cofactor specificities are indicated with the color of the branches as follows: F420 (green),
FMN (yellow) and NAD(P)H (orange). Unknown cofactor specificity is represented with black branches. For the fully annotated trees go to
Figures S2B, S2D and S2F [Color figure can be viewed at wileyonlinelibrary.com]
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species,14,34 while NADH is used by bacteria.53,54 However, this

statement should be considered cautiously as very few members of

the family have been experimentally characterized.

3.3 | Class III: β-roll F420-dependent enzymes

This class encompasses F420-dependent reductases of great biochemi-

cal diversity: among them the well-known DDNs35 and the F420H2-

dependent reductases,10 also referred to as FDOR A and B.11 All

enzymes display an arrangement of antiparallel beta sheets commonly

called split β-barrel fold. The well-known FMN-dependent PNPOxs8

and other FAD and heme-dependent enzymes show sequence similar-

ity to proteins in this group. A thorough sequence and structural anal-

ysis of the mycobacterial deazaflavoenzymes belonging to this class

was already reported by Ahmed et al.11 In this work we explore the

whole taxonomical diversity of the split β-barrel reductases to disclose

general evolutionary trends and thus to provide a robust description

of the class.

Our global analysis of the available protein structures allowed us to

construct a structure-based phylogeny with the purpose of unveiling if

clustering corresponds to cofactor specificity. The topology of the

obtained tree revealed that the structural superfamily has no structurally

imposed cofactor preference, as an interleaved distribution is observed

(Figure S3A). This was further confirmed by a sequence-based phyloge-

netic analysis which resulted in the same clade distribution. By con-

structing a robust dataset -via ensuring diverse taxonomic

representation and lowering redundancy- the scattered cofactor depen-

dence became clear (Figures 3 and S3B). Hence, Class III

deazaflavoenzymes are mixed with enzymes showing different cofactor

preferences. The tree shows some hard polytomies even after inferring

the phylogeny by Maximum Likelihood and Bayesian methods. How-

ever, well-supported clades could be identified and some trends in

cofactor usage became clear. These are discussed below.

All sequences previously characterized as FDOR-As11

(MSMEG_3660, 2027, 3004, 3356 and Rv3547), sharing the use of

F420 molecule as cofactor, form a monophyletic group (TBE/PP =

0.96/0.75). However, the cofactor preference for F420, FMN, FAD

and heme is interspersed in the rest of the tree. It becomes evident

that the FDOR-B members11 do not form a monophyletic group. The

clade comprising the aflatoxin degrading enzyme MSMEG_3380, an

FDOR-B, includes the early diverging FMN-dependent enzymes

F IGURE 3 Class III F420-dependent enzymes phylogeny. Sequence-based phylogeny is presented unrooted. Support values (TBE/PP from
Bayesian inference) corresponding to major divergences are indicated at the nodes. Previously coined name of a FDOR-As is shown for clarity. In
blue are provided the names, taxonomy (according to UNIPROT) and PDB accession codes (when available) for experimentally characterized
enzymes. Cofactor specificities are indicated with the color of the branches as follows: F420 (green), FMN (yellow), FAD (purple) and heme (red).
Unknown cofactor specificity is represented with black branches. For the fully annotated tree go to Figure S3B [Color figure can be viewed at
wileyonlinelibrary.com]
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Npun_R6570 from Nostoc punctiforme and MSMEG_5675 with very

good confidence (TBE = 0.83). Similarly, a distinct clade is observed

containing the FDOR-Bs rv1155, MSMEG_5170, rv2074, rv2991 and

the heme-dependent enzyme MSMEG_6519 (TBE = 0.78). This irreg-

ular distribution becomes even more evident in the clade including

the F420-dependent MSMEG_652611 and the heme storage protein

HutZ (PDB: 3tgv) (TBE = 0.92). Among this clade, an early diverging

group of reductases displaying various cofactor specificities is found.

These are the NimA/NimC protein from Clostridium acetobutylicum,

the FDOR-B MSMEG_5243, the F420-dependent dehydropiperidine

reductase TpnL involved in the thiopeptins biosynthesis,55 the FAD-

dependent reductase component of the aromatic hydroxylases pheA2

and TTHA0961,56,57 and the FMN-dependent small reductase compo-

nent of a styrene monooxygenase TthH11_19250.58 From this analy-

sis, it is evident that cofactor preference is not the trait selected

during the evolution of this class, as cofactor specificity is mixed. This

also echoes in the flexibility of the cofactor binding site, which allows

a certain degree of promiscuity as some reductases seem to be able to

utilize both F420 and FMN.59 This interspersed distribution imposes

implications for gene annotation protocols and applied enzymology,

as cofactor specificity of new enzymes can be hardly predicted from

sequence and/or structure for structurally related enzymes to this

class. Instead, it should be experimentally determined as it has been

previously shown.11 The biotechnological application of members of

this class is a promising ground as it has been reviewed by others3,29

(Table 1). Finally, it should be noted that although most of the

research has been devoted to Mycobacterium species, proteins from

other bacteria as well as Archaea are observed among all clades

(Figure S3B).

3.4 | Class IV: SH3 barrel F420-dependent enzymes

Class IV is formed exclusively by deazaflavoenzymes displaying on

their structure the small β-barrel domain (≈60 amino acids) consisting

on five/six β-strands arranged as two tightly packed anti-parallel β

sheets. This F420-binding domain is found in the F420-reducing [NiFe]-

hydrogenases, a complex of three subunits (FhrABG) involved in the

oxidation/reduction of F420 in the methanogenesis pathway in

Archaea.16,60–62 Specifically, subunit B (FhrB) contains a FAD mole-

cule, a [4Fe-4S] center and the F420 binding site. It displays the dis-

tinctive SH3 barrel domain (PF04422) at the N-terminal region and

the PF04432 at the C-terminus. This subunit is devoted to the reduc-

tion of F420 at the expense of electrons transferred from a flavin/fer-

redoxin system (Table 1). Despite the lack of many 3D structures,

a few homologs have been characterized in detail. When analyzing

their predicted topology they all display the same structural domain.

The F420-reducing [NiFe]-hydrogenases, Fpo-F63 and Fhr-B,61 the

F420-dependent sulfite dehydrogenase (FSR)64 and the Hdr

(heterodisulfide reductase)65 populate this class. All sequences in

this Class belong exclusively to the Archaea domain (Figures 4

and S4A).

F IGURE 4 Class IV F420-dependent enzymes phylogeny. Sequence-based phylogeny is presented unrooted. Support values (TBE)
corresponding to major divergences are indicated at the nodes. In blue are provided the names, taxonomy (according to UNIPROT) and PDB
accession codes (when available) for experimentally characterized enzymes. Cofactor specificity is indicated with the color of the branches as
follows: F420 (green). For the fully annotated tree go to Figure S4 [Color figure can be viewed at wileyonlinelibrary.com]
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3.5 | Class V: 3-layer ββα sandwich F420-
dependent enzymes

Class V has a single biochemically characterized member with no

solved 3D structure, namely the deazaflavin-dependent FAD-

containing thioredoxin reductase (DFTR) from Methanocaldococcus

jannaschii (Mj-TrxR).17 This enzyme has a predicted fold similar to the

NAD(P)H-dependent FAD-containing thioredoxin reductases (NTR)

consisting of a three-layer sandwich. However, the classic nicotin-

amide cofactor is replaced by F420H2 as the electron donor to reduce

the bound FAD (Table 1). Our sequence analysis does not reveal any

unique feature accounting for such a change in the cofactor specificity,

rather than a few changes in the predicted NAD(P)H binding regions.

From the evolutionary history reconstructed by Susanti et al.,17 it

seems clear that DFTR belongs to the disulfide oxidoreductase family

of flavoenzymes. However, as the majority of the close homologs have

not been experimentally characterized, it is hard, if not impossible, to

make assumptions on the electron donor specific distribution across

the superfamily. It has been proposed that DFTRs would only be pre-

sent in the methanococci Archaea class replacing the NTRs.66 If that

were the case, the utilization of F420H2 may be a derived feature of

the protein family. However, a deeper understanding of the coenzyme

dependence of members of this class is strongly contingent on the dis-

covery of new deazaflavoenzymes displaying this fold.

4 | CONCLUSION

A global classification of the oxidoreductases that employ the

deazaflavin F420 cofactor is proposed on the basis of the evolutionary

analysis of available sequences and structures. This classification may

facilitate annotation of deazaflavoenzyme-encoding genes and allow

identifying novel F420-dependent enzymes. Besides, it can help to dis-

close the origin and extent of the functionalities associated with the

F420 cofactor. Furthermore, this study provides clues on how F420-

dependent enzymes are evolutionarily related to other redox enzymes

that rely on cofactors like heme, flavin, and nicotinamide.
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