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Developing quantum technologies requires the control and understanding of the non-equilibrium
dynamics of quantum information in many-body systems. Local information propagates in the sys-
tem by creating complex correlations known as information scrambling, as this process prevents
extracting the information from local measurements. In this work, we develop a model adapted
from solid-state NMR methods, to quantify the information scrambling. The scrambling is mea-
sured via time reversal Loschmidt Echoes (LE) and Multiple Quantum Coherences experiments
that intrinsically contain imperfections. Considering these imperfections, we derive expressions for
Out-of-Time-Order Correlations (OTOC) to quantify the observable information scrambling based
on measuring the number of active spins where the information was spread. Based on the OTOC
expressions, decoherence effects arise naturally by the effects of the non-reverted terms in the LE
experiment inducing localization of the measurable degree of information scrambling. These effects
define a localization cluster size for the observable number of active spins that determines a dynam-
ical equilibrium. We contrast the model’s predictions with quantum simulations performed with
solid-state NMR experiments, that measure the information scrambling with time-reversal echoes
with controlled imperfections. An excellent quantitative agreement is found with the dynamics of
quantum information scrambling and its localization effects determined from the experimental data.
The presented model and derived OTOCs set tools for quantifying the quantum information dynam-
ics of large quantum systems (more than 104 spins) consistent with experimental implementations
that intrinsically contain imperfections.

I. INTRODUCTION

In a quantum many-body system, local information
can propagate into many degrees of freedom, creating
complex correlations as entanglement that prevents ex-
tracting the information from local measurements. This
propagation process of information is know as scram-
bling [1, 2], and characterizing and understanding its
dynamics is an outstanding problem that connects dif-
ferent fields of physics such as quantum statistical me-
chanics, cosmology and quantum information processing
[3–6]. The complexity of information scrambling limits
our ability to study many-body quantum systems and
employ them in technological developments [7, 8]. As
many-body systems generate high-order quantum corre-
lations that spread over the system’s degrees of freedom
[4, 9–13], a high degree of scrambling is produced that
make these large quantum states more sensitive to per-
turbations [9, 14–18].

An accepted measure of scrambling is the tripartite
information, which is near maximally negative for quan-
tum channels that scramble the information [19]. This
measure proves that information scrambling is mani-
fested through the decay of Out-of-Time Order Corre-
lators (OTOC). OTOCs are special correlators

FAB(t) =
1

|A| · |B|
〈A†(t)B†A(t)B〉 (1)
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that quantifies the degree of non-commutativity between
two local, initially commutating operators A and B,
where A(t) = e−iHtAeiHt and H is the Hamiltonian of
the interacting system [5, 20, 21]. The decay of the corre-
lator FAB captures the essence of the quantum butterfly
effect: a time-evolved local operator fails to commute
with almost all the other local operators [22]. The dy-
namics of FAB is a probe for quantum chaos [23–26].

The OTOC functions are more accessible experimen-
tally than the tripartite information, therefore these cor-
relators are employed for observing information scram-
bling in a wide variety of quantum systems using time re-
versal of quantum evolutions with Loschmidt Echo (LE)
experiments [9, 15, 17, 18, 20, 21, 27–32]. A LE experi-
ment is performed by first evolving forward in time with
a Hamiltonian H and then evolving backward in time
with the Hamiltonian −H. An ubiquitous problem of LE
experiments is that the forward and backward Hamilto-
nian are not identical, therefore leading to the existence
of non-reverted interactions, such as imperfections or en-
vironmental interactions, that introduce non-unitary de-
cays [33–38]. These decoherence effects add up an ad-
ditional decay to the OTOC functions that should not
be confused with the information scrambling generated
by the system interactions H. Therefore, it is necessary
to model the information scrambling in open quantum
systems to correctly interpret scrambling measurements
obtained from LE experiments [12, 15, 18, 39–43].

An experimental framework for observing the informa-
tion scrambling dynamics in large interacting quantum
systems is the Multiple Quantum Coherences (MQC)
technique [9, 15, 17, 18, 20, 27–29], originally devel-
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oped in solid-state Nuclear Magnetic Resonance (NMR)
[44, 45]. Under specific dynamical models, the MQC ex-
periments provide the number of correlated spins K [46–
48], which is an alternative way of interpreting the in-
formation scrambling within the spin system [17, 18, 27].
Since solving exactly the dynamics of general and large
spin-systems is not possible with present technologies, a
variety of models were developed to describe the dynam-
ics of K during the quantum evolution with MQC exper-
iments [44, 45, 49–55]. Levy and Gleason [50] propose a
method to simplify the complex dynamics of a multi-spin
system, by describing the quantum state as a mixture of
average operators of L correlated spins. An initial ex-
citation on local spin magnetization operators flows be-
tween these average operators with rates determined by
the Liouville-von Neunmann equation. Then the number
of correlated spins is determined by a weighted average
of the average operators of L spins that contributes to
the system state. This model successfully explains the
growth of the cluster size of correlated spins in different
crystalline samples [50, 56–58].

In this work, we revisit the Levy and Gleason model
and adapt it to quantify the information scrambling of a
local excitation using LE and MQC experiments. We de-
rive expressions for OTOC functions for determining the
information scrambling considering imperfect LE exper-
iments. A more general OTOC than the one described
in Eq. (1) is obtained, that allows modeling decoherence
effects induced by the non-reverted terms that affects the
outcome of information scrambling measurements. The
decoherence effects arise naturally as a leakage of the uni-
tary dynamics of the ideal echo experiment with a rate
that depends on the number of correlated spins L on a
system state, Γ(L). We show that the scrambling degree
can be interpreted as the average number of active spins
K –equivalent to a mean Hamming distance– where the
information was spread by the evolution that survived
the perturbation effects. Using these general OTOC ex-
pressions, we introduce the effects of non-reversed inter-
actions into MQC experiments. This allows to model the
dynamics of the effective cluster size of correlated spins
K that provides a measurable degree of scrambling of
information into system under decoherence effects.

We contrast the model’s predictions with quantum
simulations that measure the information scrambling
with imperfect time-reversal echoes performed with solid-
state NMR experiments. The presented experiments are
based on previous methods and results, where a spin
system is quenched by a control Hamiltonian that in-
duces the scrambling of a magnetization that play the
role of a localized initial information [9, 15, 18, 59]. By
adding tunable perturbations to the control Hamilto-
nian that produces the scrambling of information, we
observe localization effects on the scrambling dynamics
determined by the effective number of correlated spins
[15, 59]. It was experimentally demonstrated that this
localization effects are described by a dynamical equilib-
rium [15, 59, 60]. It was also observed that there ex-

ists a critical perturbation strength that, once surpassed,
corresponds to a localized dynamics, however, below the
critical threshold the scrambling dynamics is delocalized
[9]. This localized-delocalized transition as a function of
the perturbation strength in the information scrambling
dynamics evidence a sudden change on the scaling law of
the decoherence effects induced by the perturbation [18].
The model developed in this article provides predictions
that are consistent with the experimental observations
and the findings in previous works that evidence a scal-
ing transition on the scrambling dynamics behavior. In
particular, our model predicts a localization cluster size
of the scrambling dynamics as a dynamical equilibrium
state. The model also manifests a transition from a lo-
calized to a delocalized dynamics as a function of the
perturbation strength in finite systems. By extracting
the decoherence leakage rates induced by the perturba-
tions from the experiments, and introducing them into
our model, we accurately predict the growth of the clus-
ter size of correlated spins of the experimental data. The
results show excellent quantitative agreement for the esti-
mation of the localization sizes. Therefore the presented
model combined with the derivation of OTOCs can be
useful tools to predict the information scrambling dy-
namics of large quantum systems, and address the effect
of imperfections on the control Hamiltonian that drives
the quantum evolutions.

Our article is organized as follows, in Sec. II, we intro-
duce the considered spin system, the OTOCs used and
how they can be determined with LE and MQC experi-
ments. We also provide a measure for information scram-
bling based on a cluster size of active –correlated– spins.
We introduce the effects of imperfect echo experiments
to quantify the scrambling dynamics. In Sec. III, we
first introduce the original Levy and Gleason model, and
then we adapt it to describe quantum information scram-
bling dynamics. Based on the derived OTOCs, we intro-
duce the decoherence effects induced by imperfection on
the time-reversal procedure. In Sec. IV, we analyze our
model to show how scrambling is modified in the presence
of decoherence effects. In Sec. V, we contrast our model
with experimental results, and show the consistency on
the predictions of the observable information scrambling
bounds measured with NMR quantum simulations. Fi-
nally, in Sec. VI we give the conclusions.

II. QUANTUM INFORMATION SCRAMBLING
IN SPIN SYSTEMS

A. The system out of equilibrium

We consider a system of N interacting spins I = 1/2 in
presence of a strong magnetic field along the z direction.
We assume the Larmor frequency ωz � dij , with dij
the dipole-dipole interaction strength between the i and
j spins. In a frame of reference rotating at the Larmor
frequency, the Hamiltonian of the system is given by the
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truncated dipolar interaction

H = Hdd
=
∑
i<j

dij
[
2IizI

j
z − (IixI

j
x + IiyI

j
y)
]
, (2)

where we have neglected the non-secular terms of the
dipolar Hamiltonian [61]. Therefore the Hamiltonian
Hdd conserves the total magnetization of the system as
[Hdd, Iz] = 0, with Iz =

∑
j I

j
z the total spin operator

on the z direction. The operators Iiv are the angular
momentum of the i-th spin in the v direction. We as-
sume the initial state of the system at a thermal equilib-
rium with the Zeeman interaction. Its density matrix is
ρ(0) = e−ωz~Izβ/Tr

(
e−ωz~Izβ

)
, where we have neglected

the dipolar interaction due to ωz � dij . In the high-
temperature limit β−1 = kBT � ~ωz, the thermal state
is approximated to [61]

ρ(0) ∼ (I− βωz~Iz)/Tr (I) . (3)

The identity operator I does not evolve over time and
does not contribute to the expectation value of an ob-
servable magnetization, since Tr(Iv · I) = 0 for any di-
rection v. This initial state thus represents an ensemble
of local operators Ijz , that plays the role of an initial lo-
cal information that will be scrambled into the system
degrees of freedom. To induce the spreading of the quan-
tum information from the initial state operator ρ(0), we
drive the system away from equilibrium by quenching the
Hamiltonian [9, 15, 18]. In NMR, this is typically done
by applying rotations to the spins with electromagnetic
field pulses that engineer an average Hamiltonian that
does not commute with the initial state [62]. In par-
ticular, we consider the effective interaction given by a
double-quantum Hamiltonian

H0 =
1

2

∑
i,j

dij(I
i
+I

j
+ + Ii−I

j
−), (4)

that allows to probe the growth of the number of cor-
related spins as a function of time [9, 15, 44] as a mea-
sure of the degree of scrambling of information into the
system [17, 18, 20, 27–29, 63]. Here, Ii± are the lad-
der operators of the i-th spin. In the Zeeman basis,
the quantum states |~m〉 = |m1, ...,mN 〉 are character-
ized by the magnetization numbers mi = ± 1

2 associated
with the local spin operators Iiz. The double-quantum
Hamiltonian flips simultaneously two spins with the same
orientation mi, therefore inducing transitions from a
state |~m〉 to a state |~n〉 that change the coherence order
M = h (~m,~n) =

∑
imi−ni by ∆M = ±2. Here h (~m,~n)

is the Hamming distance between the states |~m〉 and |~n〉.
Since the initial state ρ(0) is diagonal, it only has non-
vanishing elements for M = 0 and the double-quantum
Hamiltonian only creates even coherence orders.

We consider as our observable the magnetization op-
erator Iz. The observable signal is then Tr [Izρ(t)] ∝
Tr [IzIz(t)], which is proportional to the time evolution
of the Iz operator as the identity term of the initial state
gives null trace. Therefore, we consider the evolution of
the Iz operator in the following. At the evolution time
t, the scrambled state I0

z (t) = U0(t)IzU
†
0 (t) can be ex-

panded in coherence orders as

I0
z (t) =

∑
M

∑
h(~m,~n)=M

I0
z,~m~n(t)|~m〉〈~n

=
∑
M

I0
z,M (t), (5)

where the operator I0
z,M =

∑
h(~m,~n)=M I0

z,~m~n(t)|~m〉〈~n|
contains all the elements of the density operator involving
coherences of order M . The superindex 0 indicates evo-
lution under the double-quantum Hamiltonian H0, i.e.
U0(t) = e−iH0t. The amplitude of each coherence order
is f0

M = Tr
(
I2
z

)−1
Tr
[
I0
z,M (t)I0†

z,M (t)
]
, that defines the

Multiple Quantum Coherence (MQC) spectrum [44].

B. Measuring information scrambling with
Multiple Quantum Coherences

The many-body Hamiltonian H0 scrambles the initial
local state into the degrees of freedom of the system.
The information spreading dynamics is contained in the
evolved state I0

z (t) = U0(t)IzU
†
0 (t). Usually, the degree

of information scrambling is quantified between distant
local operators A and B in Eq. (1) [19]. In our case,
we consider the observation of scrambling based on mon-
itoring the spreading of an ensemble of local operators
Iz by its own time evolution I0

z (t) via the commutator
[I0
z (t), Iz], as it is accessible by time-reversal echoes com-

mon in NMR experiments [18, 27–29, 63]. Based on Eq.
(1), the OTO commutator

1

Tr (I2
z )

〈[
I0
z (t), Iz

] [
I0
z (t), Iz

]†〉
=

=
2

Tr (I2
z )

{〈
IzI

0
z (t)I0†

z (t)I†z
〉
− Re

[〈
I0†
z (t)I†zI

0
z (t)Iz

〉]}
=

2

Tr (I2
z )

〈
IzI

0
z (t)I0†

z (t)I†z
〉
− 2Re (FIz,Iz ) (6)

is related to the OTOC function FIz,Iz =

Tr
(
I2
z

)−1 〈
I0†
z (t)I†zI

0
z (t)Iz

〉
, where 〈O〉 = Tr (ρβO)

is the expectation value of an operator O considering
the system on the density matrix state ρβ . If the system
state is in the infinite temperature limit ρβ = I, then
〈O〉β=0 = Tr (O). Therefore

lim
β→0

[
2

Tr (I2
z )

〈
IzI

0
z (t)I0†

z (t)I†z
〉
− 2Re (FIz,Iz )

]
=

=
1

Tr (I2
z )

Tr
{[
I0
z (t), Iz

] [
I0
z (t), Iz

]†} (7)
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(b)
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time
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-40 0 40
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Figure 1. Protocol for measuring Multiple Quantum Coher-
ence and monitoring the quantum information scrambling.
(a) The MQC protocol consists of a sequence of quantum
evolutions. First, a forward in time evolution driven by the
double quantum Hamiltonian HF = H0 that pumps coher-
ences of different orders M . The rotation φz = eiIzφ en-
codes the coherence order with an order-dependent phase
φM . Then a backward in time evolution driven by the
Hamiltonian HB = −H0 reverses the time evolution to al-
low the detection of the MQC spectrum f0

M from the sig-
nal f0(t, φ) = Tr

(
I2z
)−1∑

M eiφMf0
M . The signal results

from measuring the magnetization Iz, starting from the ini-
tial state ρ(0) = (I − βωz~Iz)/Tr (I). (b) Modified MQC
protocol to assess the sensitivity of a quantum dynamics
to perturbations in the Hamiltonian. The forward Hamil-
tonian HF = (1 − p)H0 + pΣ differs from the backward
Hamiltonian HB = −H0. The resulting MQC spectrum
fM (t, p) = Tr

(
I2z
)−1

Tr
[
I0z,M (t)I†z,M (t)

]
quantifies the inner-

product of the coherence orders between the ideal I0z (t) and
the perturbed evolution Iz(t). (c) Typical form of the MQC
spectrum. Its second moment is determined from the squared
width of the MQC distribution, and provides a measure for
the average number of active spins K(t) where the informa-
tion was scrambled shared by the perturbed and unperturbed
dynamics.

quantifies the scrambling of local information on Iz due
to the evolution driven by H0 in the system at infinite
temperature [18, 29, 63].

Determining the Multiple Quantum Coherence (MQC)
spectrum allows to measure OTOC functions [20]. A
scheme of an experimental implementation of a concate-
nation of quantum evolutions used to extract the MQC
spectrum is shown in Fig. 1(a) [44]. First, the system
is at its initial state, then it is quenched by suddenly
turning on the double-quantum Hamiltonian H0. The
system evolves forward in time into the scrambled state
I0
z (t) = U0(t)IzU

†
0 (t). A rotation along the z-direction

φz = e−iφIz is applied to the state I0
z (t) to label each co-

herence term I0
z,M (t) of Eq. (5), as they acquire a phase

Mφ. The I0
z (t) operator becomes

I0
z (φ, t) = φzI

0
z (t)φ−1

z

=
∑
M

eiMφI0
z,M (t). (8)

Finally, the dynamics driven by the double-quantum
Hamiltonian H0 is reversed in time by changing the sign

of H0 by a pulse sequence design [44]. This backward
evolution in time is driven by the evolution operator
U−1

0 (t) = U†0 (t). This leads to a many-body Loschmidt
Echo [33, 34, 37] on the resulting magnetization along Iz,
where we obtain for the normalized signal at the end of
the evolution

f0(φ, t) =
1

Tr (I2
z )

Tr
[
Iz · U†0 (t)φzU0(t)IzU

†
0 (t)φ†zU0(t)

]
=

1

Tr (I2
z )

Tr
[
I0
z (t) I0†

z (φ, t)
]

=
1

Tr (I2
z )

∑
MM ′

eiMφTr
[
I0
z,M (t)I0†

z,M ′(t)
]
δMM ′ .

(9)

We have used the cyclic property of the trace, and the
normalization factor Tr

(
I2
z

)−1 to ensure the normaliza-
tion of the signal f0(φ, t = 0) = 1. This time reversal
of the quantum dynamics combined with the rotation φz
allows quantifying the contribution of the different co-
herence orders f0,M = Tr

(
I2
z

)−1
Tr
[
I0
z,M (t)I0†

z,M (t)
]
to

the global spin state, and therefore the scrambling of in-
formation into multi-spin states by performing a Fourier
transform on φ [18, 44].

As the relevant observable term in the initial state
ρ(0) = (I− βωz~Iz)/Tr (I) is proportional to the observ-
able magnetization Iz, the Loschmidt Echo f0(φ, t) can
be considered as a fidelity function quantified by the in-
ner product Tr

[
I0
z (t) I0†

z (φ, t)
]
between the rotated state

I0
z (φ, t) and the original one I0

z (t). Moreover, f0(φ, t)
also defines an OTOC function Fφz,Iz according to Eq.
(7)

f0(t, φ) =
1

Tr (I2
z )

Tr
[
I0
z (t)φzI

0
z (t)φ†z

]
= Fφz,Iz

= 1− 1

2Tr (I2
z )

〈∣∣[I0
z (t), φz

]∣∣2〉
β=0

, (10)

where again Tr(O) = 〈O〉β=0 is the expectation value
of O with the system state at infinite temperature
ρβ = I [18, 29, 63, 64] and we have used that〈
φzI

0
z (t)I0†

z (t)φ†z
〉
β=0

= Tr
(
I2
z

)
. Using a Taylor expan-

sion as a function of φ in Eq. (10), the second moment of
the MQC spectrum K0 is determined by [18, 28, 63, 65]

K0 =
∑
M

M2f0,M (t)

=
1

Tr(I2
z )

Tr
([
Iz, I

0
z (t)

] [
Iz, I

0
z (t)

]†)
, (11)

which is related to an OTOC function following Eq. (7).
The second moment K0 quantifies therefore the informa-
tion scrambling into the system driven by the double-
quantum Hamiltonian H0 starting from the localized in-
formation at Iz.
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C. Cluster size of correlated spins created by the
information scrambling

In the NMR community, the second moment K0 is
typically used for spin counting of the number of cor-
related spins by the dynamics induced by a many-body
Hamiltonian [44, 46, 48]. The second moment quanti-
fies the cluster size of spins where an initial local state
was spread into the system [9, 15]. To relate the second
moment of the MQC spectrum K0 to a number of corre-
lated spins by the information scrambling, it is necessary
to know the propagation model of excitations within the
system. Baum et. al. proposed a simple model by as-
suming that all coherence orders are equally excited for
a given system size [44, 45]. The corresponding MQC
spectrum has a Gaussian distribution, whose second mo-
ment determines the system size K0 which corresponds
to the instantaneous number of correlated spins. While
this simple assumption works reasonable well in several
solid-state systems [46, 50, 66], the MQC distribution
is not always Gaussian [47], and other models are re-
quired to give a quantitative number of correlated spins
[27, 47, 65]. There is no general method to define the
number of correlated spins independently of the system
dynamics.

We here derive a formal definition for the cluster size
of correlated spins from the second moment K0 created
by the information scrambling, that does not require as-
sumptions regarding the dynamics of the system. This
definition for the cluster size is used then in Sec. III to
describe the information scrambling by OTOC functions
determined from an imperfect echo experiment.

We consider the basis
{
P~u =

(√
2
)N⊗N

i=1 I
(1)
ui

}
of the

composite Hilbert space for N 1/2-spins, where the index
i labels the spins, ui ∈ {0, x, y, z} and {I(1)

ui } is the set of
spin operators of a single 1/2-spin, including the identity
operator I(1)

0 ≡ I. As these single spin operators satisfy
the orthogonal relation Tr

(
I

(1)
ui, · I

(1)
vj

)
= 1

2δui,vj , the op-
erators set {P~u} is an orthonormal basis of the complete
Hilbert space. The evolved quantum state I0

z (t) can then
be expanded on this basis as

I0
z (t) =

∑
~u

C0
~u(t)P~u, (12)

where C0
~α(t) are time-dependent complex coefficients.

Using this expansion, the cluster size of correlated spins
results

K0(t) =
∑
~u,~v

C0
~u(t)C0∗

~v (t)L(~u,~v), (13)

where ∗ is the complex conjugate. The function L(~u,~v)
has a functional dependence on ~u and ~v defined by (see
Appendix A for a demonstration)

L(~u,~v) =



L(~u) ~u = ~v

2 hz0(~u,~v) = 0, hxy(~u,~v) = 2

and~v = Π(~u)

−2 hz0(~u,~v) = 0, hxy(~u,~v) = 2,

and~v 6= Π(~u)

0 Other cases

. (14)

The diagonal terms when ~u = ~v in this expression gives
the number L(~u) of elements in ~u that are equal to x or
y. For the non-diagonal terms ~u 6= ~v , the conditions on
the right hand side have to be satisfied simultaneously.
The function hz0(~u,~v) is the Hamming distance between
~u and ~v only considering the elements that are equal to 0
and z. In other words, the condition hz0(~u,~v) = 0 implies
that ui = vi for every ui = 0, z. Similarly, hxy(~u,~v) is
the Hamming distance between ~u and ~v only considering
the elements that are equal to x and y. The condition
~v = Π(~u) indicates that the vector ~v is a permutation of
vector ~u. The cross terms ~u 6= ~v in Eq. (13) have complex
numbers with phases that interfere destructively when
they are summed, and therefore their contribution goes
to zero as the cluster size K0(t) increases [67]. Therefore
the cross terms contribution is negligible for large K0(t),
obtaining the cluster size of correlated spins

K0(t) ∼
∑
~u

∣∣C0
~u(t)

∣∣2 L(~u). (15)

Here the magnitude L(~u) quantifies the number of active
spins associated to a coherence transfer process 〈~n|P~u|~m〉
[68, 69]. The transition element 〈~n|P~u|~m〉 6= 0 if and only
if there are L(~u) spins that flip their state during the
transition |~m〉 → |~n〉 or, equivalently L = h(~m,~n) with h
the Hamming distance. This implies that K0 is the av-
erage number of active spins in the state I0

z (t) weighted
by the coefficients C0

~u(t) that depends on the quantum
dynamics, thus providing an interpretation for the infor-
mation scrambling in spin systems. The cluster size K0

provides the average number of spins correlated by quan-
tum superpositions generated by the information scram-
bling dynamics. This expression for K0 is similar to the
“average correlation length” introduced by Wei et. al. in
Ref. [27], but K0 is determined by the average number
of spins that does not contain identity operators on the
system state. A formal connection between OTOC func-
tions and “average correlation length” is also provided in
Ref. [27], but only for a particular non-interacting sys-
tem defined by a spin-chain network topology. In our
case, L(~u) quantifies the number of non-identity opera-
tors and non-Iz operators in P~u. Based on Eqs. (13) and
(15), we provide an average Hamming distance as a way
of quantifying a correlation length which is directly con-
nected with the quantum information spreading derived
from the OTOC function in Eq. (11). Moreover, our ex-
pression to determine K0 and the corresponding OTOC
is independent of the spin-network topology, and it does
not require assumptions on the MQC dynamics.
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D. Imperfect echo effects on estimating the
information scrambling dynamics

An implementation of an echo experiment for mea-
suring the information scrambling from the MQC spec-
trum, always contains imperfections that lead to a time
reversion not fully performed. Different sources of im-
perfections might occur induced by i) non-idealities of
the control operations and ii) the existence of external
degrees of freedom considered as an environment [38].
Both imperfection terms in the Hamiltonian cannot be
typically reversed. As a paradigmatic model of these
imperfections, we consider a perturbation term pΣ in
the forward Hamiltonian as generally considered within
the Loschmidt Echo formalism [35–37] [see Fig. 1(b)].
The perturbation strength p is a dimensionless parame-
ter and Σ is a perturbation Hamiltonian. This pertur-
bation spoils the time reversion process and thus induces
decoherence effects [9, 15, 18, 38]. As shown in Fig. 1(b),
the forward evolution is driven by the evolution opera-
tor UP (t) = e−iH(p)t, where the forward Hamiltonian is
HF = H(p) = (1 − p)H0 + pΣ. After the forward evolu-
tion, again the global rotation φz = e−iφIz encodes the
coherence orders as φzIz(t)φ†z =

∑
M e−iMφIz,M (t), and

then the system is evolved backward in time with an ideal
evolution operator U−1

0 = eitH0 . The resulting state is
then projected on Iz, which is the observable magnetiza-
tion, leading to the signal

f(φ, t, p) =

1

Tr (I2
z )

Tr
[
Iz · U0(t)φzUp(t)IzU

†
p(t)φ†zU

−1
0 (t)

]
=

1

Tr (I2
z )

∑
M

e−iMφTr
[
I0
z,M (t)I†z,M (t)

]
. (16)

The MQC spectrum is now defined by the inner-
product between the coherence orders of the for-
ward and backward density matrix terms fM (t, p) =

Tr
(
I2
z

)−1
Tr
[
I0
z,M (t)I†z,M (t)

]
. The non-ideal time rever-

sion evolution therefore compares the two different in-
formation scrambling dynamics by comparing the terms
I0
z,M (t) and Iz,M (t) based on their overlap fM . As de-
rived in Eq. (10), the Loschmidt Echo of Eq. (16) can
be recast as

f(φ, t) =
1

Tr (I2
z )

Tr
[
I0
z (t)I†z(t)

]
−

− 1

2Tr (I2
z )

Tr
([
φz, I

0
z (t)

]
[φz, Iz(t)]

†
)

= f(φ = 0, t)−

− 1

2Tr (I2
z )

Tr
([
φz, I

0
z (t)

]
[φz, Iz(t)]

†
)
. (17)

Here, the Loschmidt Echo is related to a more general
OTO commutator Tr

(
I2
z

)−1
Tr
([
φz, I

0
z (t)

]
[φz, Iz(t)]

†
)

than the one described in Eq. (1). This OTOC quantifies

the overlap of the commutators
[
φz, I

0
z (t)

]
and [φz, Iz(t)]

via the inner-product [18]. The second moment of the
MQC spectrum fM (t, p) is now

∑
M

M2fM (t) =
1

Tr(I2
z )

Tr
([
Iz, I

0
z (t)

]
[Iz, Iz(t)]

†
)
. (18)

In this imperfect echo experiment, the cluster size is then

K(t) =
∑

M M2fM (t)

f(φ=0,t,p) , (19)

where the second moment of the MQC spectrum
must be normalized to the fidelity f(φ = 0, t, p) =

Tr
(
I2
z

)−1
Tr
[
I0
z (t)I†z(t)

]
. This normalization is required

to extract the MQC distribution width, as the fidelity
decays as a function of time, and therefore the overall
amplitude of the MQC distribution. The second moment
K(t) is an effective cluster size that represents the com-
mon number of correlated spins between the ideal and
the perturbed information scrambling dynamics, quanti-
fied by the commutators

[
Iz, I

0
z (t)

]
and [Iz, Iz(t)] respec-

tively.
By expanding Iz(t) with the multi-spin operators {P~u},

Iz(t) = Up(t)IzU
†
p(t) =

∑
~u

Cp~u(t)P~u, (20)

the perturbed version of Eq. (13) results

K(t) =
1

f(φ = 0, t, p)

∑
~u,~v

C0
~u(t)Cp∗~v (t)L(~u,~v), (21)

where L(~u,~v) is defined as in Eq. (14). Again, the cross-
terms in Eq. (21) are negligible when K(t) is large [67],
and we obtain

K(t) ' 1

f(φ = 0, t, p)

∑
~u

C0
~u(t)Cp∗~u (t)L(~u)

=
1∑

~u C
0
~u(t)Cp∗~u (t)

∑
~u

C0
~u(t)Cp∗~u (t)L(~u). (22)

This expression demonstrates that K(t) is an average
Hamming distance based on the active spins, weighted
by the product between the forward and backward coef-
ficients C0

~u(t)Cp∗~u that determine the respective dynamics
evolutions. Therefore the expression we derived here for
K(t) gives the average number of active spins shared by
the forward and backward dynamics. As experimental
implementations of time reversions have always a non-
reverted interaction, our expression for K(t) provides a
definition of what is actually measured as information
scrambling with echo experiments.
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III. MODEL FOR THE DYNAMICS OF
QUANTUM INFORMATION SCRAMBLING

UNDER DECOHERENCE

A. Revisiting the Levy-Gleason model: Quantum
information scrambling dynamics

We develop a phenomenological model to describe the
time evolution of the information scrambling observed via
the second moment of the MQC distribution K(t). We
consider that decoherence effects or perturbations to the
ideal Hamiltonian affect the time reversion of the proto-
col described in Sec. II B. Levy and Gleason developed
a model to describe the MQC dynamics in solid state
systems [50]. We here adapt this model for determining
the information scrambling dynamics in a spin system by
using the expressions of Eqs. (15) and (22).

The complexity of many-spin system dynamics is an
outstanding problem in physics that only allows to obtain
exact solutions for Iz(t) for very special cases [70–74].
In general, approximations or phenomenological models
need to be implemented [44, 45, 49–52, 67, 75, 76]. The
Levy-Gleason model describes the growth of the cluster
size of correlated spinsK0(t) as a function of time, driven
by the double-quantum Hamiltonian H0 in an N spin
system. The model introduces an average operator Pk
that contains all the operators P~u with the same number
of non-identity operators k. This average operator is used
to simplify Eq. (12) to

I0
z (t) =

∑
~u

C0
~u(t)P~u ≈

∑
k

C0
k(t)Pk, (23)

where the coefficient C0
k(t) describes an averaged evolu-

tion of the operators with the same number k. Applying
the Liouville-von Neumann equation to Eq. (23), the dy-
namic of C0

k(t) is determined by the set of N coupled
linear differential equations

d

dt
C0
k = − i

4
Wk−1C

0
k−1 −

i

4
WkC

0
k+1, (24)

where Wk−1 and Wk are transition probabilities.
Based on the result of Eq. (15), which shows that

the active spins are the relevant ones for quantifying the
information scrambling dynamics, we adapt the Levy-
Gleason model by recasting Eq. (23) to the form

I0
z (t) =

∑
~u

C0
~u(t)P~u ≈

∑
L

C0
L(t)PL, (25)

where now L is the number of active spins, defined by
the number of non-identity and non-Iz operators in P~u
as described in Sec. II C. Similarly to Eq. (24), the
dynamics of the coefficients C0

L(t) is now determined by
the set of equations

d

dt
C0
L = − i

4
WL−1C

0
L−1 −

i

4
WLC

0
L+1, (26)

where WL and WL−1 are the transition probabilities of
increasing or reducing the number of active spins L(~u) by
one spin respectively. Levy and Gleason assume that the
operator Pk represents a contiguous group of k spins in
real space, and that the only relevant interactions are be-
tween near neighbors. Therefore, they conclude that the
transition probability Wk is determined by an effective
dipolar coupling strength d multiplied by the number of
spins at the cluster edge kδ, where the exponent δ can
be estimated from the the spatial dimension D of the
system as δ ∼ 1 − 1/D. The effective coupling d is of
the same order of magnitude than the width of the spins’
resonance line and can be determined from a fit to the
experimental data [50]. Based on these assumptions, we
extend this result to the transition probability

WL = dLδ, (27)

as a function of the number of active spins L.
In the original Levy and Gleason model, the link be-

tween the coefficients C0
k(t) and the second moment of

the MQC spectrum is assumed by imposing K0(t) =∑
k k|C0

k(t)|2. The consistency of this assumption relies
on the fact that the model reproduces well several exper-
imental results in solid-state systems where power-law
growth of the cluster size evolution is seen [50]. The pre-
dicted growth rates and power law exponents were also
consistent with the spin-spin coupling network topolo-
gies. Its time evolution can then be obtained by solving
a set of N differential equations rather than 2N as in the
exact Liouville-von Neumann equation for an N spin sys-
tem. Our results of Sec. II C that derive the Eq. (15),
show that the second moment K0(t) and hence the in-
formation scrambling of Eq. (11), are determined by the
average number of active spins weighted by the dynamics
coefficients |CL(t)|2

K0(t) =
∑
L

L|C0
L(t)|2. (28)

Therefore, the connection between the cluster size of cor-
related spins and the second moment of the MQC spec-
trum arise naturally based on the average number of ac-
tive spins involved in the information scrambling corre-
lations.

B. Model for the decoherent dynamics of quantum
information scrambling

The product of the two complex coefficients Cp~u and
C0
~u of the forward and backward dynamics respectively

in Eq. (22), produces a reduction of the effective cluster
size K(t) compared to the one determined by the ideal
echo experiment case K0(t). For weak perturbations, we
consider that the coefficients C0

~u and Cp~u mainly differ by
a phase, where Cp~u ∼ |C0

~u| eiφ~u . Therefore the cluster size
of Eq. (22) is
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Figure 2. Schematic representation of the model for the de-
coherent dynamics of quantum information scrambling. It
models the evolution of the effective cluster size K(t) in the
presence of decoherence effects induced by a perturbation on
the echo experiment described in Fig. 1. The rate WL is
the transition probability between PL−1 and PL, and it is
determined by the strength of the dipolar interaction d, the
size of the cluster of active spins L and the lattice dimension
D. The spin clusters are affected by a decoherence process,
characterized by the decoherence rate ΓL.

K(t) ∼ 1

f(φ = 0, t, p)

∑
~u

∣∣C0
~u(t)

∣∣2 cos(φ~u)L(~u). (29)

We here only consider the real part cos(φ~u) of the phase
term, since K(t) is real and the imaginary terms cancel
out. We then recast Eq. (29) in terms of the number of
active spins L

K(t) ∼ 1

f(φ = 0, t, p)

∑
L

L
∑
~uL

∣∣C0
~uL

(t)
∣∣2 cos(φ~uL

). (30)

The coefficients C0
L(t) ≡

∑
~uL

∣∣C0
~uL

(t)
∣∣2 of the average

operator PL, in Eq. (25), need now to be modified
as the phase cos(φ~uL

) introduces an attenuation fac-
tor that depends on L. The effective cluster size K is
now described by the attenuated coefficients CL(t) =∑
~uL

∣∣C0
~uL

(t)
∣∣2 cos(φ~uL

), with |CL(t)| <
∣∣C0
L(t)

∣∣. The
perturbation term in the echo experiment, is therefore
modeled as a source of decoherence in an open quantum
system. We model this attenuation by adding to Eq. (26)
a leakage term with a rate ΓL that destroys the quantum
superpositions given by the operator product PL,

d

dt
CL = − i

4
WL−1CL−1 −

i

4
WLCL+1 − ΓLCL. (31)

The rate ΓL is the average decoherence rate for the prod-
uct of L active spin operators. An schematic representa-
tion of the model is shown in Fig. 2.

The matrix representation of Eq. (31) is

d

dt
~C = −Υ · ~C,


d
dtC1
d
dtC2

...
d
dtCN

 = −i


−iΓ1

1
4W1 0 · · · 0

1
4W1 −iΓ2

1
4W2 · · · 0

...
...

...
. . .

...
0 0 · · · 1

4WN−1 −iΓN



C1

C2

...
CN

 ,
(32)

and the effective cluster size K in terms of CL, results

K(t) =

[∑
L

|CL(t)|2
]−1∑

L

L|CL(t)|2. (33)

If the rate ΓL has no dependence on L, then all the coeffi-
cients CL are affected by a global attenuation factor. The
effective cluster size K(t) evolves then equally to the case
without perturbation, consistently with the predictions
derived in Ref. [63]. However, typically the decoherence
effects induced by perturbations increase with the num-
ber of active spins that are correlated, and therefore ΓL
generally depends on L [14, 18, 59, 77–80].

IV. EFFECTIVE CLUSTER SIZE EVOLUTION:
DECOHERENT DYNAMICS OF QUANTUM

INFORMATION SCRAMBLING

To analyze the effective cluster size evolution predicted
by our model, we consider the diagonal base for Υ to solve
Eq. (32)

d

dt
C̃i = −λiC̃i, (34)

where C̃i is the i-th component of the populations vector
~C in the eigenbasis of Υ, and λi is the the i-th eigenvalue.
The solution is then

C̃i(t) = C̃i(0)e−λit, (35)

where C̃i(0) gives the initial condition C(0) expressed
in the Υ-eigenbasis. We consider that the decoherence
rate increases as a power law with the cluster size of
active spins ΓL = Γ1L

α, where α is the scaling exponent,
as reported in quantum simulations in solid-state spin
systems [14, 18] and this dependence is also expected for
spin-boson models [77–79].

We determine the evolution of the cluster size of cor-
related spins for the case without perturbation. Figure
3(a) shows the cluster size evolutionK0(t) for Γ1 = 0 and
different system sizes N . The cluster size grows with a
power law as K0(t) = K1t

a, until it reaches a maximum
value due to finite-size effects determined by the system
size N . The power-law exponent a and the constant K1

are determined by D and d respectively, from Eq. (27).
After K0(t) reaches its maximum value, it begins to os-
cillate indefinitely, again due to finite-size effects. There-
fore, this solution is only useful before finite-size effects
dominate the dynamical behavior.
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Figure 3. Effective cluster size of correlated spins K(t) that defines the information scrambling predicted by our model. (a)
Cluster size dynamics K0(t) in the ideal case, i.e. without considering decoherence effects (Γ1 = 0). Three different system
sizes N are shown in the legend. The cluster size grows as K0(t) ∝ ta until finite size effects distort the evolution. All solutions
are equivalent before the finite size effects appear independently of the value of N . (b) Effective cluster size evolution K(t),
now including the decoherence effects. When Γ1 � Γcrit, the growth of K(t) is delocalized until finite-size effects appear as
in the case of Γ1 = 0. Near the critical decoherence strength Γcrit, K(t) tends to localize although it exhibits low-frequency
oscillations. For Γ1 > Γcrit, K(t) localizes indefinitely. (c) Finite-size effects on the observation of the localization dynamics. If
Γ1 6= 0, K(t) will localize only if N is large enough. If not, finite-size effects avoid the observation of the localization effects.

We then introduce the decoherence effects. For Γ1 > 0,
an initial power-law growth for the effective cluster size
K(t) is observed similarly to the case of Γ1 = 0 [Fig.
3(b)]. However the exponent a decreases slightly with
increasing Γ1. Again, at long times when finite-size ef-
fects are reached, oscillations are seen on the dynamics of
K(t). These oscillations decrease in frequency and ampli-
tude as Γ1 increases. When the decoherence strength Γ1

increases above a critical value Γcrit, the effective cluster
size K(t) reaches a plateau which is maintained indefi-
nitely in time. This plateau defines a localization size
for the observed information scrambling determined by
the effective cluster size. The predicted localization size
is consistent with the experimental observations of Refs.
[9, 15, 18]. If the system-size of the model N → ∞, we
observe that Γcrit → 0. This implies that considering
power laws scalings for the leakage rates ΓL = Γ1L

α, our
model predicts that the effective cluster size dynamics lo-
calizes, provided that the system size N is large enough
if Γ1 6= 0. We have also observed that localization ef-
fects are manifested even for slow-growing scalings as for
ΓL ∝ log(L) or ΓL ∝ Lα with α < 1. Notice that, if the
decoherence rate is independent of L, localization effects
are not observed.

Figure 3(c) shows the dynamics of K(t) for different
values of N for a given Γ1, manifesting that localization
effect are observed once N is large enough. All the curves
behave equally before finite size effects are significant.
Therefore if N is large enough to manifest localization
for a fixed rate Γ1 > Γcrit, the predicted curve for K(t)
is independent of N .

The effective cluster size K(t) of Eq. (33) can be writ-
ten in terms of the eigenbasis of Υ as

K(t) =

∑
L L|

∑
i cLiC̃i(t)|2∑

L |
∑
i cLiC̃i(t)|2

, (36)

where the populations CL(t) are in term of a linear

combination of the evolution of C̃i(t), i.e. CL(t) =∑
i cLiC̃i(t) with cLi the eigenvector coefficients. Using

the solution for C̃i(t) determined from Eq. (35), we get

K(t) =

∑
L L

∣∣∣∑ cLiC̃i(0)e−tλi

∣∣∣2∑
L |
∑
i cLiC̃i(0)e−tλi |2

. (37)

The transition from a delocalized to a localized scram-
bling dynamics is evidenced in the behavior of the eigen-
values of Υ as a function of Γ1 [Fig. 4(a) and (b)].
The eigenvalues {λi} are purely imaginary for Γ1 = 0,
which implies the conservation of

∑
L |CL|

2. However,
if Γ1 6= 0, the eigenvalues {λi} are in general complex
numbers λi = γi + iωi, with real γi and imaginary ωi
components. We consider the set {λi} sorted by its real
value, so as γi ≤ γi+1. If Γ1 < Γcrit, then λ1 = λ∗2, which
implies that two different frequencies ω1 and ω2 = −ω1

has the same decay constant γ1 = γ2. Hence, in the long
time limit, terms with decay constants γi > γ1 become
negligible and we obtain

K(t→∞) =

∑
L L

∣∣∣e−tλ1
∑
i cLiC̃i(0)e−t(λi−λ1)

∣∣∣2∑
L |e−tλ1

∑
i cLiC̃i(0)e−t(λi−λ1)|2

∼

∑
L L

∣∣∣(cL1C̃1(0) + cL2C̃2(0)e−2itω1

)∣∣∣2∑
L

∣∣∣(cL1C̃1(0) + cL2C̃2(0)e−2itω1

)∣∣∣2 . (38)

This solution provides the oscillations observed for K(t)
due to the finite-size effects in Fig. 3.

If Γ1 > Γcrit, then λ1 becomes a non-degenerate real
eigenvalue (ω1 = 0 and γ2 > γ1), implying that the effec-
tive cluster size K(t) attain a localization value at long
times
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Figure 4. Eigenvalues of the transition rate operator Υ de-
rived from our model. (a) Imaginary and (b) real parts of the
eigenvalues λi as a function of the decoherence strength Γ1.
We use a low number of N = 10 to show clearer the functional
behavior of the eigenfrequencies, but the qualitative behavior
is analogous for larger N . For Γ1 = 0, all the frequencies
are pure imaginary numbers, therefore the global amplitude∑
L |CL|

2 of the system is strictly conserved. For Γ1 6= 0,
the solutions C̃(t) become damped oscillations as λi are com-
plex numbers. There is a critical decoherence strength Γcrit

from which the smallest eigenvalue λ1 become a real number.
Localization effects can be deduced from the eigenspectrum:
the existence of a non-oscillating, long-living solution C̃1(t)
for Γ1 > Γcrit implies that observed scrambling dynamics by
K(t) will eventually localize for long times.

lim
t→∞

K(t) = Kloc =

∑
L L |cL1|2∑
L |cL1|2

. (39)

This demonstrate the existence of a localized regime
for the observable information scrambling determined by
K(t) when Γ1 > Γcrit. Moreover, K(t) converges al-
ways to the same stationary value, providing that the
initial condition ~C(0) has a non-zero contribution of the
C̃1 eigenvector. This is because the coefficients cL1 are
independent of the initial condition ~C(0) in Eq. (39).
Therefore, independently of the initial cluster size of cor-
related spins, the effective cluster size in the long time
limit will converge to the same localization size consis-
tently with experimental observations [15, 59, 60].

The delocalization-localization transition on the dy-
namical behavior of the information scrambling mani-
fested by the evolution of K(t), resembles the quantum
dynamical phase transitions induced by decoherence ef-
fects [81, 82] that are connected with exceptional points
ubiquitous of non-hermitian Hamiltonian [83–86].

V. MODEL VS. EXPERIMENTS: EVALUATION
OF THE DECOHERENT DYNAMICS OF

INFORMATION SCRAMBLING

A. Information scrambling determined with NMR
quantum simulations

We evaluate here the presented model as a framework
to describe quantum information scrambling dynamics
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Figure 5. Quantum information scrambling determined from
MQC experiments with imperfect time reversals. (a) Effec-
tive cluster size K(t) evolution determined from quantum
simulations with solid-state NMR experiments on powdered
adamantane for several perturbations strengths p (symbols)
with the perturbation Hamiltonian Σ = Hdd. The cor-
responding predictions of our model are shown in dashed
lines. (b) Experimentally determined effective cluster size
K(t) evolution starting from different initial conditions Ki

for p = 0.108 (symbols). The effective cluster size K(t) con-
verges to a dynamical equilibrium determined by the localiza-
tion size Kloc independently of the initial cluster size Ki. The
presented model correctly predicts the effective cluster size
evolution towards the dynamical equilibrium (dashed lines).

with imperfect echo experiments. We consider the MQC
protocol based on imperfect time reversion echoes as de-
scribed in Fig. 1(b), following the technique introduced
in Refs. [15, 59]. In this experimental protocol, a con-
trolled perturbation is introduced to the forward Hamil-
tonian HF = (1 − p)H0 + pΣ, where the non-reverted
term Σ is weighted by the dimensionless parameter p us-
ing average Hamiltonian techniques that can control the
perturbation strength p. This allows performing quan-
tum simulations to evaluate the effect of non-reverted
interactions that are inherent to any echo experiment.

We perform the experimental quantum simulations on
a Bruker Avance III HD 9.4 T WB NMR spectrometer
with a 1H resonance frequency of ωz = 400.15 MHz. We
consider the nuclear spins 1H of a powdered adamantane
sample as the system, which constitutes a dipolar inter-
acting many-body system of equivalent 1/2 spins. The
imperfect echo protocol of Fig. 1(b) is implemented using
the perturbation Hamiltonian Σ = Hdd as the raw dipo-
lar interaction of the system. The perturbation Hamil-
tonian is introduced using the NMR sequence described
in Refs. [15, 59]. This protocol provides a magnetization
echo at the end of the sequence that is proportional to
the fidelity function f(φ, t, p) of Eq. (16), from which
we experimentally monitor the dynamics of the effective
cluster size K(t, p) based on Eq. (19) (see Fig. 5). We
also calculate the instantaneous decay rate χ′(t) = dχ(t)

dt
with χ = log(f) of the echo fidelity f(φ, t, p), which is
shown in Fig. 6(a). It is seen from the experiments
that the decoherence rate scales with a power law func-
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Figure 6. Decoherence scaling as a function of the pertur-
bation strength. (a) Experimentally determined decoher-
ence rates (scatter) and fitting curves (solid lines) χ′(K) =
χ′(1)Kα for different perturbation strengths p. This power
law behavior determines the decay rates Γ(L) of the presented
model. The scaling exponent α and the scaling factor χ′(1)
are shown in panels (b) and (c). Black squares are the fitting
parameters of curves χ′(K), and the red circles are the param-
eters determined by assuming the single-parameter Ansatz of
Eq. (40).

tion χ′(K) = χ′(1)Kα. This scaling behavior indicates
the sensibility of the controlled quantum dynamics to the
perturbation as a function of the instantaneous effective
cluster size K [18].

For an unperturbed echo experiment (p = 0), the
cluster size K0(t) grows indefinitely following a power
law K0(t) ∝ t4.3 up to the experimentally accessible
timescales (black squares in Fig. 5). If the perturbation
to the control Hamiltonian p 6= 0, the effective cluster
size K(t) growth is reduced. The decay rate χ′(K) and
its power law exponent α increase with the perturbation
strength p (Fig. 6). As seen in Fig. 5(a), K(t) reaches
a localization value Kloc that remains constant in time
for large perturbations p > 0.02 [9, 15]. This localiza-
tion size reduces by increasing the perturbation strength
p consistently with the predictions of Sec. IV.

The experimental results evidence that Kloc is deter-
mined by a dynamical equilibrium of K(t) that converges
to the same stationary value, independently of the initial
cluster size [15, 59, 60]. Figure 5(b) shows a series of
experiments following the protocol implemented in Refs.
[15, 59, 60]. Here, an initial cluster size of correlated
spins Ki is prepared by an unperturbed evolution with
the propagator U0 = e−itiniH0 , where tini is the initial-
ization time required for preparing the initial cluster size.
Then, the cluster sizeKi is used as the initial information
state for the perturbed evolution Up = e−it[(1−p)H0+pΣ].
As shown in Refs. [15, 59, 60], the cluster size converges
to a localization size Kloc(p) independently of the initial
value of Ki.

B. Quantitative evaluation of the decoherent
model for the information scrambling dynamics

We perform here a quantitative comparison between
the predictions of our model and the experimental results
of the information scrambling dynamics in imperfect echo
experiments. We determine the parameters d and δ of
Eq. (27) to reproduce the cluster size dynamics at p = 0
shown in Fig. 5(a). We observe from the experimen-
tal data that the cluster size is K0(t) ≈ (7.41 1

ms t)
4.2.

We found that the power law exponent a = 4.2 is ob-
tained if δ = 0.78. This value is slightly larger that
the one expected 1 − 1/D = 0.66 for a 3-dimensional
system as in our case, according to the original Levy-
Gleason model. This result is consistent with a cluster
size that keeps growing for a long time, at a rate that
is faster than in normal diffusion [60]. This might be
related with a “super-diffusion” mechanism due to the
complex long-range nature of the dipolar interaction in
our system [87, 88]. Setting d = 13kHz defined by the
width of the resonance line of adamantane, we obtain an
excellent agreement with the experimental evolution of
K0(t) as shown by black dashed lines in Fig. 5(a).

To predict the evolution of the effective cluster size
K(t) for every perturbation strength p, we need to define
the decay rates Γ(L) in Eq. (31) for the average L-spin
operators PL. The experimentally observed decay rates
χ′(K) = χ′(1)Kα [Fig. 6 (a)] of the fidelity f have a
power law dependence on the instantaneous cluster size
K(t) with a power law exponent α and proportionally
constant χ′(1) that depend on the perturbation strength
[Black squares in Fig. 6 (b) and (c) respectively]. We
assume that this decoherence rates determine the decay
rates of the model as Γ(L) = χ′(L) for each perturba-
tion strength. The exponent α presents a transition as a
function of p, between a low-scaling regimen with α ∼ 0.5
for weak perturbations and a high-scaling regimen with
α ∼ 1 for large perturbations [18].

We calculate then K(t), using a system size N =
2×104 large enough to avoid finite size effects on the ex-
perimentally accessible temporal scales of Fig. 5(a). We
compare the experimental results for K(t) in Fig. 5(a)
with their predictions for several perturbations strengths.
The calculated K(t) correctly predicts its time evolution
and the achieved localization size Kloc for large p, al-
though Kloc is slightly overestimated in all cases. The
model predicts with high accuracy the cluster size growth
for the long-time behavior of the weakest perturbation
strengths.

Our model also quantitatively predicts well the dynam-
ical equilibrium localization size Kloc predicted in sub-
section VA as show in Fig. 5(b), for the perturbation
strength p = 0.108. The dynamical equilibrium value for
the localization size Kloc is determined from Eq. (39) as
the eigenvector matrix cLk is independent of the initial
condition.

Figure 7 shows with black squares the prediction for
the localization size Kloc as a function of the pertur-
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Figure 7. Localization cluster size Kloc as a function of
the perturbation strength for the perturbation Hamiltonian
Σ = Hdd. Yellow diamonds shows the experimentally de-
termined localization sizes only for the largest perturbation
strengths where localization effects are observed. We observe
a power-law dependence Kloc ∝ p−2 shown with a dotted
line as a guide to the eye. The black squares are the local-
ization size predicted by our model for every studied pertur-
bation using the measured parameters χ′(1) and α from the
black symbols in Fig. 6 (b) and (c). The red circles are
the predicted localization size determined from our model as-
suming the single-parameter Ansatz of Eq. (40) using the
experimentally determined parameters s, ν, α0 and α∞. The
predicted localization size Kloc exhibits two different scaling
regimes as a function of the perturbation strength, for weak
and strong perturbations. The determined critical perturba-
tion pc, where this transition occurs, is shown with a vertical
dashed line.

bation strength p compared with the ones determined
from the experimental data (blue diamonds scatters). We
determined Kloc from Eq. (39) which only depends on
the eigenvector coefficients cL1 associated to the small-
est eigenvalue λ1. The calculation of a single eigenvector
can be performed in shorter times compared with solv-
ing the full system dynamics, allowing us to calculate
Kloc for systems with N = 2 · 105. The computed values
of Kloc evidence two different regimes. For large per-
turbations (p > 0.025) our model predicts a scaling for
the localization size Kloc(p) ∝ p−2. For weak pertur-
bations (p < 0.025), we observe a weaker dependence
of the localization size as a function of the perturbation
that can be described approximately by Kloc(p) ∝ p−0.5.
This transition is consistent with the transition on the
decoherence scaling exponent α shown in Fig. 6(b). Ex-
perimental evidence of localization effects are only ob-
served for p > 0.026, therefore only this experimental
data is shown in Fig. 7. Within this perturbation regime
the experimental values exhibits a functional dependence
Kloc(p) ∝ p−2 consistently with our predictions from the
model. We do not observe experimental evidence of lo-
calization effects for weaker perturbations within the ac-
cessible time which is limited by the decoherence decay
of the NMR signal. The largest cluster sizes observed ex-

perimentally for the weak perturbations are always lower
than the predicted localization sizes.

In a previous work [18], we showed experimental ev-
idence that the scaling behavior of decoherence as a
function of the cluster size is consistent with the single-
parameter Ansatz for the asymptotic functional depen-
dence at long times

χ′(p,K) ∼

{
(pc − p)sKα0 p < pc
(p− pc)−2νKα∞ p > pc,

(40)

where we obtained the critical exponents s = (−0.911±
0.004) and ν = (−0.57 ± 0.03). The scaling exponents
are α∞ = 0.96 ± 0.02, near to a linear scaling, and
α0 = (0.48 ± 0.03). The determined critical perturba-
tion is pc = (0.026 ± 0.006). Due to the finite evolution
time of the experimental data, the transition from one
regime to another is smooth (see Fig. 6). The experi-
mental data give a smooth functional behavior also for
the decay rate Γ(K) = χ′(K) that we introduced in our
model [black squares in Fig. 6(b,c)]. To further evaluate
the consistency of the scaling behavior determined by Eq.
(40) and extrapolate its predicted behavior for the weak
perturbations where we do not have experimental data,
we assume this functional behavior for Γ(K) = χ′(K)
using the extracted parameters s, ν, α0 and α∞. Figure
7 shows with red circles the prediction for the localiza-
tion size Kloc as a function of the perturbation strength
p. The localization-size Kloc determined from Eq. (39)
now fit better the experimental data for the strong per-
turbations (p > 0.025). Again for weak perturbations
(p < 0.025), we observe a weaker dependence of the lo-
calization size as a function of the perturbation strength.
However, our model now predicts a finite localization size
when p→ 0.

Both assumptions for Γ(K) = χ′(K) manifest differ-
ent scaling laws for Kloc comparing the weak and strong
perturbation regimes. For weak perturbations, it seems
from the predicted curves that there might exist a limit-
ing value for Kloc for p → 0. Further experimental de-
signs need to be implemented to verify if the experimen-
tal behavior match these predictions, but we expect that
this limiting value is due to intrinsic perturbations on the
experimental implementation that are not accounted in
our microscopic model described in Sec. II and in Refs.
[9, 18].

VI. CONCLUSION AND DISCUSSIONS

We developed a model for studying the quantum in-
formation scrambling dynamics measured with out-of-
time-order correlations by Loschmidt echoes combined
with Multiple Quantum Coherence experiments. Exper-
imental implementations ubiquitously contain imperfec-
tions in the quantum operations that leads to the pres-
ence of non-reversed interactions in the LE procedure for
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measuring the OTOC. Based on an imperfect experimen-
tal protocol, we derived expressions for OTOC functions
connected with the effective number of correlated spins
that are active on quantum superpositions generated by
coherence transfers of a local information, that survived
the perturbation effects. Decoherence effects induced by
the time reversal imperfection arise naturally by the de-
rived OTOCs as a leakage of the ideal unitary dynamics.
The derived OTOCs quantify the observable degree of
scrambling of information based on a inner-product be-
tween the ideal and the perturbed scrambling dynamics.
The main prediction of our model is the existence of local-
ization effects on the measurable information scrambling
that bound the effective cluster size K(t) where the ideal
information was propagated. We also found that whether
the initial information onK(0) is local or not, the dynam-
ics of the effective cluster size K(t) tends to a dynamical
equilibrium value Kloc. Our prediction were contrasted
with quantum simulations performed with NMR experi-
ments on a solid state adamantane sample, showing ex-
cellent quantitative agreement with the experimental ob-
servations.

Levy and Gleason originally proposed a model to de-
scribe the dynamics of the spin-cluster of correlated spins
in MQC experiments in solid-state samples. The model
was based on simplifying the spin quantum dynamics to
a phenomenological equation depending on two physical
parameters: the mean value of the spin-spin interactions
and the number of dimensions of the system. It correctly
described how the number of correlated spins grows in
NMR solid-state experiments with only these parame-
ters. Our work revisit this model and adapt it to treat
information scrambling. We also introduced a decoher-
ence process induced by imperfection on the experimen-
tal implementations into the model. The decoherence
process is described by a leakage rate that depends on
the number of active spins involved on the states that
describe the dynamics of the system. Determining this
rates from experimental data, we obtained accurate pre-
dictions of the cluster size growth as a function of time
and the localization values that were experimentally ob-
served. Our results indicates that quantum information
scrambling dynamics and its localization effects due to
perturbations are phenomena that can be predicted in
terms of few physical parameters by the presented model.

Treating many-body dynamics with exact numerical
solutions is not possible with present technology. There-
fore, the results shown in this work provide a framework
for describing the quantum information scrambling dy-
namics of many-body systems determined from experi-
ments affected by non-unitary decays, either by imper-
fections on the control or from interaction with external
degrees of freedom. In this article, we have focused on
modeling the dynamic of quantum information based on
OTOC functions that give the cluster size of correlated
spins generated by the scrambling dynamics. However,
the model building block is based on finding the density
matrix evolution of the system by solving the Liouville-

von Neumann equation reduced to average operator of
the active spins in the dynamics. Therefore, one can en-
visage that the approach can be adapted to study the dy-
namic behavior of relevant physical quantities such other
types of correlations in the presence of decoherence ef-
fects [89–93]. The framework presented here can be a
useful tool to predict the quantum information dynam-
ics in large quantum systems, and address the effect of
imperfections on the control Hamiltonian that drives the
quantum evolutions.
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Appendix A: Quantum information scrambling as
the cluster size of active spins

We here demonstrate that the norm of the commu-
tator

[
Iz, σ

0(t)
]
quantifies the average number of active

spins in the operator σ0(t) = U0(t)σU†0 (t) with σ an ar-
bitrary operator of the system. Then, when the operator
σ = Iz, the following demonstration relates the cluster
size of correlated spins of Eq. (13) and the OTO com-
mutator of Eq. (11). We first calculate the commutator[
Iz, σ

0(t)
]
of the OTOC expression of Eq. (11). We find

that
[
Iz, σ

0(t)
]

=
∑N
j

∑
~u C

0
~u(t)[Ijz , P~u], where we used

that σ0(t) =
∑
~u C

0
~u(t)P~u and Iz =

∑N
j I

j
z . The operator

Iz is a mixture of local spin operators Ijz ,

Ijz = I⊗ ...︸ ︷︷ ︸
j−1

⊗ I(1)
z︸︷︷︸
j

⊗ ...⊗ I︸ ︷︷ ︸
N−j

. (A1)

The operators P~u are the elements of the orthonormal
product basis

{(√
2
)N⊗N

k=1 I
(1)

uk

}
, where the coefficients

of the vector ~u are ui ∈ {x, y, z, 0} (0 for identity operator
I0 = I). By using the following property of the Kronecker
product

[A⊗B,C ⊗D] = [A,C]⊗BD + CA⊗ [B,D] (A2)
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and the expression for Ijz of Eq. (A1), the commutator
[Ijz , P~u] results

[Ijz , P~u] =
(√

2
)N

Iu1 ⊗ ...︸ ︷︷ ︸
j−1

⊗[I(1)
z , Iuj ]⊗ ...⊗ IuN︸ ︷︷ ︸

N−j

=


iP~u′(j) if uj = x

−iP~u′(j) if uj = y

0 if uj = 0, z

. (A3)

The operator P~u′(j) belongs to the product basis {P~u},
where the vector ~u′(j) is a vector identical to ~u, except
for the j-th element (e.g. if uj = x then u′(j)j = y

and vice versa). We have used that [I
(1)
z , I

(1)
x ] = iI

(1)
y ,

[I
(1)
z , I

(1)
y ] = −iI(1)

x and [I
(1)
z , I

(1)
z ] = [I

(1)
z , I] = 0. This

means that if [Ijz , P~u] 6= 0, then [Ijz , P~u] is proportional
to other element P~u′(j) of the product basis {P~u}. The
sign of [Ijz , P~u] depends on whether uj = x (+) or uj = y
(−).

We then find that the commutator

[Iz, P~u] =

N∑
j=1

[Ijz , P~u] =
∑

j∈A(~u)

±iP~u′(j),

where A(~u) is the set of indexes {j} corresponding to ac-
tive spins in ~u, this is, those which satisfy uj = x, y. The
set A(~u) has L(~u) elements, where L(~u) is the number of
elements uj equal to x and y, which implies that [Iz, P~u]
has L(~u) non-zero terms ±iP~u′(j). The resulting expres-
sion for the OTOC and therefore for cluster size K0(t) is
then

K0(t) = Tr
{

[Iz, σ
0(t)][Iz, σ

0(t)]†
}

=
∑
~u,~v

C0
~uC

0∗
~v ×

×
∑

i∈A(~u)

∑
j∈A(~v)

Tr
[(
±iP~u′(i)

)
·
(
±iP~v′(j)

)†]
. (A4)

Finally, we prove that the factor of the previous equa-
tion is equal to the function L(~u,~v) introduced in Eq.
(14)

L(~u,~v) =
∑

i∈A(~u)

∑
j∈A(~v)

Tr
[(
±iP~u′(i)

)
·
(
±iP~v′(j)

)†]
.

(A5)
To prove this, we divide the demonstration in five differ-
ent propositions as we discuss below. We introduce the
notation h0z(~u,~v) for the Hamming distance between ~u
and ~v considering only the elements 0, z, and hxy(~u,~v)
for the Hamming distance between ~u and ~v considering
only the elements x, y. In Propositions 1 and 2, we de-
duce the necessary conditions that ~u and ~v must satisfy
for obtaining L(~u,~v) 6= 0. Then, Propositions 3, 4 and
5 provides the values of L(~u,~v) when the conditions de-
duced in Propositions 1 and 2 are satisfied.

Proposition 1 If L(~u,~v) 6= 0, then h0z(~u,~v) = 0.
Proof: Since {P~u} is an orthonormal base

Tr
(
P~u′(i) · P~v′(j)

)
= δ~u′(i),~v′(j), to obtain L(~u,~v) 6= 0,

there must be states ~u′(i) = ~v′(j) for some i ∈ A(~u),
j ∈ A(~v). Since the vectors ~u′(i) and ~v′(j) are identical
to ~u and ~v respectively, in those elements that are
equal to z, 0, it is necessary that ul = vl if l = 0, z for
~u′(i) = ~v′(j) to exist. Therefore, the Hamming distance
h0z(~u,~v) = 0.

�

Proposition 2 If L(~u,~v) 6= 0, then hxy(~u,~v) = 0 or
hxy(~u,~v) = 2.
Proof: Again, to obtain L(~u,~v) 6= 0, there must be

states ~u′(i) = ~v′(j) for some i ∈ A(~u), j ∈ A(~v). We
prove Proposition 2 in two steps.

(i) We can see first that if L(~u,~v) 6= 0, hxy(~u,~v) ≤ 2.
From the definition of the vectors ~u′(i), we know that
~u′(i) only differs from ~u in the i-th element, and that ui
must be x or y. We thus deduce that hxy (~u, ~u′(i)) =
hxy (~v,~v′(j)) = 1, for every i ∈ A(~u), j ∈ A(~v). If
~u′(i) = ~v′(j) for some i, j, we then deduce from the tri-
angle inequality that

hxy(~u,~v) ≤ hxy (~u, ~u′(i)) + hxy (~v, ~u′(i))

= hxy (~u, ~u′(i)) + hxy (~v,~v′(j))

= 2. (A6)

(ii) We can also see that hxy(~u,~v) 6= 1. Let us sup-
pose that hxy(~u,~v) = 1, then there is a unique index
l such that ul 6= vl. Therefore ~v = ~u′(l), and then
it is impossible to find ~v′(j) such that ~u′(l) = ~v′(j),
because ~v′(j) 6= ~v = ~u′(l). If we consider ~u′(i) (with
i 6= l) then hxy (~u′(i), ~v) = 2 and again it is impossible
to find ~v′(j) such that ~u′(i) = ~v′(j). We have proven
that if hxy(~u,~v) = 1 then L(~u,~v) = 0. Therefore, if
L(~u,~v) 6= 0, then hxy(~u,~v) 6= 1. Therefore, if L(~u,~v) 6= 0,
hxy(~u,~v) = 0 or hxy(~u,~v) = 2.

�

Proposition 3 L(~u, ~u) = L(~u), where L(~u) is the num-
ber of elements in ~u that are equal to x, y. Notice that
in this case when ~u = ~v, the Hamming distances are
hxy(~u,~v) = 0 and h0z(~u,~v) = 0.
Proof: Since {P~u} is an orthonormal basis,

Tr
(
P~u′(i) · P~v′(j)

)
= δ~u′(i),~v′(j). As the number of

elements in A(~u) is L(~u), we get

L(~u, ~u) =
∑

i∈A(~u)

∑
j∈A(~u)

Tr
[(
±iP~u′(i)

)
·
(
±iP~u′(j)

)†]
= −i2

∑
j∈A(~u)

1

= L(~u). (A7)

�
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Proposition 4 If hxy(~u,~v) = 2, h0z(~u,~v) = 0 and ~u is
not a permutation of ~v, i.e. ~u 6= Π(~v), then L(~u,~v) = −2.
Proof: Since hxy(~u,~v) = 2 and h0z(~u,~v) = 0, there

are only two indexes l1 and l2 for which ul1 6= vl1 and
ul2 6= vl2 . Since l1, l2 ∈ {x, y} and ~u 6= Π(~v), there must
be the following conditions ul1 = x, ul2 = x and vl1 = y ,
vl2 = y, or vice versa that is equivalent to exchange ~u and
~v. Then, we have that ~u′(l1) = ~v′(l2) and ~u′(l2) = ~v′(l1).
These are the only two terms different from zero in Eq.
(A5). If ul1 = ul2 = x, then the operators P~u′(l1) and
P~u′(l2) have a multiplicative factor i. Analogously, since
vl1 = vl2 = y , then the operators P~v′(l1) and P~v′(l2)

have a multiplicative factor −i. Therefore, the operator
products P~u′(l1)·P~v′(l2) and P~u′(l2)·P~v′(l1) are proportional
to i2 = −1, and the function L(~u,~v) is

∑
i∈A(~u)

∑
j∈A(~v)

Tr
[(
±iP~u′(i)

)
·
(
±iP~v′(j)

)†]
=

= i · (−i)∗Tr
(
P~u′(l1) · P~v′(l2)

)
+

+ (−i)∗ · iTr
(
P~v′(l1) · P~u′(l2)

)
= −2. (A8)

�

Proposition 5 If hxy(~u,~v) = 2, h0z(~u,~v) = 0 and ~u is
a permutation of ~v, i.e. ~u = Π(~v), then L(~u,~v) = 2.
Proof: Since hxy(~u,~v) = 2 and h0z(~u,~v) = 0, there

are only two indexes l1 and l2 for which ul1 6= vl1 and
ul2 6= vl2 . Since l1, l2 ∈ {x, y} and ~u = Π(~v), it must
hold that ul1 = x , ul2 = y and vl1 = y , vl2 = x.
Then, we have that ~u′(l1) = ~v′(l2) and ~u′(l2) = ~v′(l1).
These are the only two terms different from zero in Eq.
(A5). Since ul1 = vl2 = x, then the operators P~u′(l1) and
P~v′(l2) have a multiplicative factor i. Analogously, since

vl1 = ul2 = y , then the operators P~v′(l1) and P~u′(l2)

have a multiplicative factor −i. Therefore, the operator
products P~u′(l1)·P~v′(l2) and P~u′(l2)·P~v′(l1) are proportional
to −i2 = 1, and the function L(~u,~v) is

∑
i∈A(~u)

∑
j∈A(~v)

Tr
[(
±iP~u′(i)

)
·
(
±iP~v′(j)

)†]
=

= i · (i)∗Tr
(
P~u′(l1) · P~v′(l2)

)
+ (i)∗ · iTr

(
P~v′(l1) · P~u′(l2)

)
(A9)

= 2.

�

These five propositions thus demonstrate the expres-
sion of Eq. (14) in the main text for the function L(~u,~v).

For the perturbed case the effective cluster size K(t)
of Eq. (21) is derived directly from the previous demon-
stration. But, we now write σ0(t) =

∑
~u C

0
~u(t)P~u and

σ(t) =
∑
~u C~u(t)P~u, and then it results

K(t) = Tr
[
[Iz, σ

0(t)][Iz, σ(t)]†
]

=
∑
~u,~v

C0
~u(t)C∗~v (t)

 ∑
i∈A(~u)

∑
j∈A(~v)

Tr
[(
±iP~u′(i)

)
·
(
±iP~v′(j)

)†] ,

(A10)

where the function L(~u,~v) =∑
i∈A(~u)

∑
j∈A(~v) Tr

[(
±iP~u′(i)

)
·
(
±iP~v′(j)

)†] is the
same of Eq. (14) for the non-perturbed case. The
expression for K(t) of Eq. (21) is obtained when
σ0(t) = I0

z (t) and σ(t) = Iz(t).
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