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Abstract
A relationship between the auxiliary density, ρ̃(r), defined within the
framework of the weighted density approximation and the kinetic energy
modulating factor, AN ([ρ(r)]; r), which appears in the local-scaling
transformation version of density functional theory is presented. This
relationship imposes the condition of positiveness on the kinetic energy
modulating factor and this, in turn, leads to an important mathematical condition
on any approximate kinetic energy density functional. It is shown that two
well-known approximate kinetic energy density functionals do not satisfy the
above relationship at distances very close to the nucleus. By forcing a given
approximate kinetic energy density functional to obey the above condition, both
the kinetic and exchange energies can be obtained within a framework similar
to that of the weighted density approximation. Results on some closed-shell
atomic systems provide support for those ideas.

1. Introduction

Almost four decades ago, Hohenberg and Kohn [1] provided an existence theorem stating that
there exists a relationship between the ground state electron density of a given system, ρ(r),
and the external potential, v(r), in which the electrons move. This fact has the important
consequence that the energy of the above ground state can be expressed as a functional of ρ(r)
instead of taking the usual approach of using the many-body wavefunction,�(r). Moreover,
Hohenberg and Kohn defined a universal functional of the ground state density containing
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the kinetic energy and the electron–electron interaction energy terms (for simplicity, [ρ(r)] is
replaced by [ρ] throughout this work when explicit dependence must be indicated):

E[ρ] = F[ρ] +
∫
v(r)ρ(r) dr,

F[ρ] = T [ρ] + Vee[ρ].
(1)

Unfortunately, no explicit form is supplied for such functionals by Hohenberg and Kohn.
Later, Kohn and Sham [2] featured an auxiliary set of functions, {ψi(r)}, which allow

one to replace the unknown kinetic energy functional, T [ρ], by the kinetic energy of a non-
interacting system, Ts [ρ]. The error introduced in such an approach is included in the so-called
exchange–correlation term, Exc[ρ], that also accounts for the non-classical part of the electron–
electron interaction energy:

E[ρ] = T [ρ] + Vee[ρ] +
∫
v(r)ρ(r) dr

= Ts[ρ] +
∫
ρ(r)ρ(r′)
|r − r′| dr dr′ +

∫
v(r)ρ(r) dr + Exc[ρ]. (2)

Thus, the only unknown quantity within the Kohn–Sham methodology is the exchange–
correlation density functional, Exc[ρ]. Equation (2) constitutes the basis of the modern
implementations of the density functional theory (DFT). This theory is usually implemented
within the local-density approximation (LDA) for Exc[ρ], which is valid for slowly varying
densities. Many accurate improvements to the original LDA to the exchange–correlation
density functional developed by Kohn and Sham [2] have been proposed. All of these
improvements go beyond the LDA by resorting to the gradient of the density. They are
collectively known as generalized gradient approximations (GGA) [3–5] and are widely used to
calculate properties of atoms, molecules, and solids nowadays [6, 7].

Unfortunately, similar improvements to the non-interacting kinetic energy functional
are lacking. Approximate kinetic energy functionals are usually developed by taking the
Thomas–Fermi expression as the starting point and adding to it the corrections necessary to
satisfy the limiting forms of the exact kinetic energy of the non-interacting electron gas. The
Padé approximant proposed by DePristo and Kress [8] and a GGA version for the kinetic
energy density functional suggested by Perdew [9] are examples of such developments. These
functionals are considered in detail below.

There exist, nevertheless, some other approaches for dealing with the non-interacting
kinetic energy functional. One of them is the weighted density approximation (WDA) [10, 11]
which exploits the fact that the kinetic and exchange–correlation energies are related through
the one-particle density matrix. Another approach is the local-scaling transformation version
of the DFT (LST) [12, 13]. In the LST, an initial (or ‘generating’) many-body wavefunction
is transformed to a final, density-dependent many-body wavefunction. Then, by solving the
Schrödinger equation for the transformed wavefunction, a density-dependent kinetic energy
functional is obtained.

The goal of the present work is to show that key quantities of the WDA and the LST are
closely related through their kinetic energy expressions. Interestingly, the above relationship
introduces an important mathematical condition that must be obeyed by any approximate
kinetic energy functional.

The rest of the present work is organized as follows. Section 2 is devoted to providing a
brief overview of the WDA and the LST. Then, the relationship mentioned in the last paragraph
is presented in section 3. Finally, in section 4 some numerical results are provided to make
clear the above connections.
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2. An overview to the weighted density approximation and the local-scaling
transformation version of density functional theory

2.1. The WDA

The WDA starts by writing the exchange energy in terms of the one-particle density matrix
as [11]

Ex [ρ] = −1

2

∫
ρ(r1, r2)ρ(r2, r1)

|r1 − r2| dr1 dr2. (3)

The one-particle density matrix can in turn be written in terms of the correlation function,
h(r1, r2), as

ρ(r1, r2) = √
ρ(r1)ρ(r2)(−2h(r1, r2)). (4)

Within the WDA, the correlation function for a system with density ρ(r1) is

h(r1, r2) = −9

2

(
sin x − x cos x

x3

)2

, (5)

where x = |r1 − r2|(3π2ρ̃1/3(r1)). The auxiliary density, ρ̃(r1), is numerically evaluated at
every point r1 to satisfy the Fermi hole sum rule∫

ρ(r2)h(r1, r2) dr2 = −1. (6)

In the WDA, the kinetic energy is written in terms of the one-particle density matrix, too:

Ts[ρ] = − 1
2

∫
∇2

1ρ(r1, r2)|r2=r1 dr1. (7)

Now, using equations (4) and (5) and assuming that

ρ(r1, r2) = ρ(r2, r1), (8)

equation (7) becomes

Ts[ρ] = Ck

∫
ρ(r)ρ̃2/3(r) dr +

1

8

∫
(∇ρ(r))2
ρ(r)

dr − 1

4

∫
∇2ρ(r) dr, (9)

where Ck = 3(3π2)2/3/10. Equation (9) is the WDA practical expression for calculating the
kinetic energy of a given system with density ρ(r).

2.2. The LST

In the LST the kinetic energy is written in terms of the locally scaled orbital set {ψρ,i(r)}
as [12]

Ts[ρ] = − 1
2

occ∑
i

∫
ψ∗
ρ,i (r2)∇2

1ψρ,i (r1)|r2=r1 dr1, (10)

where each locally scaled orbital is related to a generating orbital by means of

ψρ,i (r) =
√

ρ(r)

ρg(f(r))
ψg,i (f(r)). (11)

The transformation function, f(r), can be obtained through a first-order differential
equation:

1

r3
r · ∇ f 3(r) = ρ(r)

ρg(f(r))
, (12)
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which, for spherically averaged systems, reduces to(
f (r)

r

)2
∂ f (r)

∂r
= ρ(r)

ρg( f (r))
. (13)

Using equations (11) and (13), equation (10) becomes

Ts[ρ] = 1

2

∫
ρ5/3(r)AN ([ρ]; r) dr +

1

8

∫
(∇ρ(r))2
ρ(r)

dr − 1

4

∫
∇2ρ(r) dr, (14)

where the kinetic energy modulating factor AN([ρ]; r) depends on the transformation function,
the generating orbitals and the generating density (see [12] and [13] for details).

Within the LST, the exchange energy can be evaluated using an expression similar to
equation (3), with the locally scaled one-particle density matrix written in terms of the locally
scaled orbitals:

ρ(r1, r2) =
occ∑

i

ψρ,i (r1)ψ
∗
ρ,i (r2). (15)

Then, the LST exchange energy is [12]

Ex [ρ] = − 1
2

∫
ρ4/3(r)BN([ρ]; r) dr, (16)

where the exchange energy modulating factor BN ([ρ]; r) depends on the same factors as the
kinetic energy one.

It is worth mentioning that another exchange energy functional can be written within the
LST if the Levy–Perdew relationship [14] is used as starting point (see [15] for details).

Finally, it should be noted that if the kinetic energy operator 1
2∇1∇2 is used instead of

the operator appearing in both equations (7) and (10), the relationship

− 1
2∇2

1ρ(r1, r2)|r2=r1 = 1
2∇1∇2ρ(r1, r2)|r2=r1 − 1

4∇2
1ρ(r1, r1) (17)

or, in terms of orbitals,

− 1
2

occ∑
i

ψ∗
i (r2)∇2

1ψi (r1)|r2=r1 = 1
2

occ∑
i

∇2ψ
∗
i (r2) · ∇1ψi (r1)|r2=r1 − 1

4∇2
1ρ(r1) (18)

must be taken into account to ensure the correct local behaviour of the kinetic energy density, t .
In this case, two equations completely similar to equations (9) and (14) are obtained.

3. The relationship between the WDA and the LST

Karasiev et al [16] suggest that the kinetic energy modulating factor can be calculated using
one-electron Hartree–Fock or exchange-only Kohn–Sham orbitals:

1

2
AN ([ρ]; r) =

1
2

∑N
i ∇ψ∗

i (r) · ∇ψi (r)− 1
8
(∇ρ(r))2
ρ(r)

ρ5/3(r)

= − 1
2

∑N
i ψ

∗
i (r)∇2ψi (r)− 1

8
(∇ρ(r))2
ρ(r)

+ 1
4∇2ρ(r)

ρ5/3(r)
. (19)

An approximate kinetic energy density, tapprox[ρ], can be used in equation (19)
instead of the exact one, texact = − 1

2

∑N
i ψ

∗
i (r)∇2ψi (r), to calculate the corresponding

modulating factor. Note that the explicit dependence on the density is dropped from texact .
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Then, equation (19) can be immediately generalized for any kinetic energy density t[ρ] =
texact , tapprox [ρ]:

1

2
AN ([ρ]; r) = t[ρ] − 1

8
(∇ρ(r))2
ρ(r)

+ 1
4∇2ρ(r)

ρ5/3(r)
. (20)

From equations (9) and (14), on the other hand, it is clear that

Ck ρ̃
2/3(r) = 1

2ρ
2/3(r)AN ([ρ]; r). (21)

The above equation shows that a close relationship between the WDA and the LST exists
through ρ̃(r) and AN ([ρ]; r), even though they are calculated in very different ways.

If the above relationship is rewritten as

ρ̃1/3(r) = ρ1/3(r)

√
1

2Ck
AN ([ρ]; r) (22)

and it is accepted that ρ̃(r) is a real quantity related to the true density by means of non-local
terms, it immediately follows that the kinetic energy modulating factor must obey

AN ([ρ]; r) � 0, ∀r. (23)

It is then evident from equations (20) and (23) that

t[ρ] − 1

8

(∇ρ(r))2
ρ(r)

+
1

4
∇2ρ(r) � 0, ∀r, (24)

with t[ρ] = texact , tapprox [ρ]. Equation (24) introduces an important mathematical condition
to be satisfied by any kinetic energy density and it is expected to play a relevant role in the
development of new kinetic energy density functionals.

Finally, it is very interesting to note that equations (20) and (22) lead to

ρ̃1/3(r) =
√

t[ρ] − 1
8
(∇ρ(r))2
ρ(r)

+ 1
4∇2ρ(r)

Ckρ(r)
. (25)

We suggest that equation (25) could be thought of as a new version of the WDA in which
the auxiliary density, ρ̃(r), is calculated analytically instead of using the sum rule for the
exchange hole, equation (6). One of the advantages of using equation (25) to evaluate ρ̃(r)
is that the term δρ̃(r)/δρ(r), which appears as a consequence of applying the variational
principle to the total energy expression, can also be obtained analytically.

It should be also stated that the above expression can be used together with a kinetic energy
term calculated through equation (9) or through t = − 1

2

∑N
i ψ

∗
i (r)∇2ψi (r) as in [17].

The exploitation of equation (25) to predict some atomic properties is currently in progress.

4. Some numerical tests

In this section, the behaviour of several well-known kinetic energy density functionals is tested
against the condition imposed by equation (24).

Two kinetic energy density functionals were mentioned in the introduction, namely, the
one due to DePristo and Kress (DPK) [8] and another proposed by Perdew (GGA) [9]. The
DPK functional has the form

t DP K [ρ] = t (0)[ρ]
1 + 0.95x + a2x2 + a3x3 + 9b3x4

1 − 0.05x + b2x2 + b3x3
(26)
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where x = t (2)[ρ]/t (0)[ρ] and

t (0)[ρ] = Ckρ
5/3(r) (27)

t (2)[ρ] = 1

72

(∇ρ(r))2
ρ(r)

. (28)

It can be easily seen that

t DP K [ρ] → t (0)[ρ] + t (2)[ρ] as x → 0 (29)

and

t DP K [ρ] → 9t (2)[ρ] as x → ∞. (30)

Equations (29) and (30) are the corresponding slowly and rapidly varying density limiting
forms of the exact kinetic energy of the homogeneous electron gas, respectively.

On the other hand, the GGA functional is written as

tGG A[ρ] = t (0)[ρ]
1 + 88.3960s2 + 16.3683s4

1 + 88.2108s2
(31)

where s = |∇ρ(r)|/2(3π2)1/3ρ4/3(r). It can be seen in this case that

tGG A[ρ] → t (0)[ρ] + t (2)[ρ] as s → 0 (32)

but

tGG A[ρ] → t (2)[ρ] as s → ∞. (33)

Equation (33) shows that the rapidly varying density limiting form of the exact kinetic
energy for the homogeneous electron gas is underestimated by a factor of 9 in the GGA
functional.

Figures 1–4 show the kinetic energy modulating factor, AN ([ρ]; r), calculated for some
closed-shell atoms using equation (20) with t[ρ] = texact , t DP K [ρ], and tGG A[ρ] giving rise to
AH F

N , ADP K
N , and AGG A

N , respectively. Moreover, the kinetic energy modulating factor AW D A
N

is calculated with the following expression:

AW D A
N ([ρ]; r) = 2Ck

ρ̃2/3(r)

ρ2/3(r)
. (34)

The Hartree–Fock orbitals and electronic densities needed for the different kinetic energy
densities are taken from [18] and the WDA auxiliary densities required in (34) are evaluated
numerically from equation (6). The calculations are not self-consistent.

It is observed in the figures that both AH F
N and AW D A

N obey equation (23) over the whole
range for the systems under study. It can also be seen that the ‘peaks’ exhibited by AW D A

N
are much less pronounced than those of AH F

N . On the other hand, the ‘valleys’ in the AW D A
N -

curves are shallower than the exact ones. The DPK and GGA functionals provide very similar
modulating factors, being only slightly different at the beginning of the divergent region. Both
ADP K

N and AGG A
N exhibit the wrong behaviour very close to the nucleus although they show

the correct structure for larger distances. However, the ‘peaks’ shown by those functions are
higher than those shown by AH F

N . These results seem to suggest that the DPK and GGA kinetic
energy functionals could be parametrized again but now taking equation (24) into account to
ensure their correct local behaviour over the whole range.

A clear benefit of forcing a given kinetic energy density functional to satisfy equation (24)
is that the exchange energy term can then be calculated using an expression similar to that
of the WDA—see equations (3) and (7)—and taking advantage of the relationship given by
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Figure 1. Comparison of modulating factors calculated with different kinetic energy functionals
for the Ne atom.
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Figure 2. Comparison of modulating factors calculated with different kinetic energy functionals
for the Ar atom.

equation (22). To exemplify those assertions, tables 1 and 2 show the kinetic and exchange
energies of some closed-shell atoms calculated using

T M
s [ρ] = 1

2

∫
ρ5/3(r)AM

N ([ρ]; r) dr +
1

8

∫
(∇ρ(r))2
ρ(r)

dr − 1

4

∫
∇2ρ(r) dr (35)
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Figure 3. Comparison of modulating factors calculated with different kinetic energy functionals
for the Kr atom.
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Figure 4. Comparison of modulating factors calculated with different kinetic energy functionals
for the Xe atom.

and

E M
x [ρ] = −9

2

∫
ρ(r)ρ(r′)
|r − r′|

(
sin x M − x M cos x M

x M3

)2

dr dr′ (36)
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Table 1. Kinetic energies (in au) of some closed-shell atoms calculated with equation (35) using
different modulating factors. Hartree–Fock results are given for reference. See the text for the
meaning of the labels.

AH F
N AW D A

N ADP K a
N AGG A b

N HFc

Ne 128.55 133.66 136.01 135.87 128.55
(128.22) (127.85)

Ar 526.82 546.48 556.50 550.85 526.82
(527.56) (524.29)

Kr 2752.05 2813.53 2869.79 2854.83 2752.05
(2750.90) (2733.34)

Xe 7232.14 7338.00 7499.52 7464.59 7232.14
(7224.97) (7184.41)

a Values obtained with equation (26) are given in parentheses.
b Values obtained with equation (31) are given in parentheses.
c From [19].

Table 2. Exchange energies (with the opposite sign and in au) of some closed-shell atoms calculated
with equation (36) using different modulating factors. Hartree–Fock results are given for reference.
See the text for the meaning of the labels.

AH F
N AW D A

N ADP K
N AGG A

N HFa

Ne 16.69 12.83 9.78 9.82 12.11
Ar 44.51 32.22 31.03 30.77 30.19
Kr 133.97 100.56 99.97 100.49 93.89
Xe 248.87 191.67 198.57 199.55 179.19

a From [20].

where x M = |r − r′|(3π2ρ(r))1/3
√

1
2Ck

AM
N ([ρ]; r), with M = HF, WDA, DPK, and GGA.

Those points for which AM
N ([ρ]; r) does not obey equation (23) are merely excluded from the

integration domain.
It should not be a surprise that AH F

N gives the exact kinetic energy values in table 1 since it
is generated from Hartree–Fock orbitals. The rather large values provided by AW D A

N indicate
that the ‘valleys’ mentioned above tend to dominate the overall behaviour. On the other
hand, the kinetic energy values obtained with the DPK and GGA functionals after applying
the condition given by equation (23) are systematically larger than the values obtained using
equations (26) and (31). This is not surprising at all since the relationship mentioned above
eliminates negative contributions to the kinetic energy, thus favouring greater values.

It can be seen from table 2 that AH F
N provides very small exchange energy values, whereas

the other three kinetic energy modulating factors give very reasonable results (smaller than the
exact ones, too), especially taking into account that they are not self-consistent. It is not easy
to analyse the nature of the discrepancies in those cases due to the form of the variable x M in
equation (36).

In any case, it is clear from the tables that the results are quite encouraging considering
their non-self-consistent nature. It is worth noting that both the kinetic and exchange energies
obtained with the DPK and GGA kinetic energy density functionals are comparable to the
WDA values. This is very promising considering that self-consistent WDA calculations give
very acceptable results (see [21] for example).

It should be clear, of course, that even though any new kinetic energy density functional
is designed considering the condition given by equation (24), the exchange energy can
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be evaluated using any of the several well-known approximate exchange energy density
functionals instead of using a WDA-like philosophy such as the one presented in this work.

5. Summary

A relationship between key quantities of the WDA and the local-scaling transformation version
of the DFT was presented in this work. This relationship imposes an important mathematical
condition on every approximate kinetic energy density functional.

It was shown that two well-known approximate kinetic energy density functionals do not
satisfy the above relationship at distances very close to the nucleus. It is proposed that their
empirical parameters could be recalculated taking into account the mathematical condition
introduced in this work.

One of the advantages of forcing a given approximate kinetic energy density functional
to obey the above condition is that both the kinetic and exchange energies can be calculated
within a framework similar to that of the WDA. Some numerical tests performed on atomic
systems seem to support those ideas.
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[15] López-Boada R, Karasiev V V, Ludeña E V and Colle R 1998 Int. J. Quantum Chem. 69 503
[16] Karasiev V V, Ludeña E V and Artemyev A N 2000 Phys. Rev. A 62 062510
[17] Gritsenko O V, Cordero N A, Rubio A, Balbás L C and Alonso J A 1993 Phys. Rev. A 48 4197
[18] Bunge C F, Barrientos J A and Bunge A V 1993 At. Data Nucl. Data Tables 53 113
[19] Froese Fischer C 1977 The Hartree–Fock Method for Atoms (New York: Wiley)
[20] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B

46 6671
[21] Glossman M D, Rubio A, Balbás L C and Alonso J A 1992 Int. J. Quantum Chem. Quantum Chem. Symp. 26

347


