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The discovery of magnetic spherules in acid-insoluble residues from conodont samples encouraged a systematic search for Ordovician
micrometeorites from northwestern Argentina. Some 220 melted micrometeorites were recovered from the magnetic fraction of six samples
(total rock weight: 23 kg) from the Cordillera Oriental (Santa Rosita Formation) and 17 from five samples (total rock weight: 8.9 kg) from the
Argentine Precordillera (Las Aguaditas, Gualcamayo and Las Vacas formations). The specimens resemble I-type cosmic spherules, in their
chemistry and distinct dendritic and polygonal crystalline structures. They represent a flux of micrometeorites several orders of magnitude
greater than present. The wide differences in spherule abundance between the Precordillera and the Cordillera Oriental samples could reflect
uncertainties in the sedimentary rates or temporal variations in the flux of extraterrestrial matter to Earth. The micrometeorite-bearing
formations span the late Tremadocian to the late Darriliwian (~480–460Ma), which is consistent with a period of elevated flux of
extraterrestrial material, as recorded several thousand kilometres away from coeval horizons in Scotland, Sweden and central China.
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1. INTRODUCTION

Fluctuations in the influx of extraterrestrial materials to Earth
play an important role in the weak equilibrium between the
oceans, atmosphere, climate, and life (e.g. Álvarez et al.,
1980). The extraterrestrial flux is assumed to have been more
or less constant except for a few peaks in the accretion rates,
such as at the K/T boundary. Currently, the principal
component of extraterrestrial matter accreted by the Earth is
cosmic dust in the size range of micrometeorites, nearly
1000 times more by mass than meteorites (e.g. Love and
Brownlee, 1993; Taylor et al., 1998). The flux peaks are
intimately related to gravity perturbations of the orbits of
the comets and catastrophic disruptions in the asteroid belt
(e.g. Matese et al., 1995; Nesvorný et al., 2009).

The discovery of numerous fossil meteorites in Middle
Ordovician marine limestones from southern Sweden
indicates an increase in the flux of meteorites up to two
orders of magnitude greater than today for that period
(Schmitz et al., 2001). A Middle Ordovician increase in

the meteorite flux is further supported by an iridium
anomaly, osmium isotope data and by the distribution of
sediment-dispersed extraterrestrial (ordinary chondritic)
chromite grains from Sweden and central China (Schmitz
et al., 1997; Cronholm and Schmitz, 2010). Accordingly,
Dredge et al. (2010) determined a flux of micrometeorites
one to two orders of magnitude greater than present in
Dapingian (~472–468Ma) limestone samples from the
Durness Group in Scotland.
The extraordinary Middle Ordovician increase in the flux

of extraterrestrial matter to Earth is thought to result from the
catastrophic disruption of the L-chondrite parent body in
the asteroid belt at 470� 6Ma (Greenwood et al., 2007;
Korochantseva et al., 2007). Up to 25% of all meteorites that
reach Earth even today show gas retention ages referable to
this breakup event, probably one of the most important in the
late history of the solar system (Schmitz et al., 2001).
Nesvorný et al. (2009) estimated that approximately five
large terrestrial impacts are likely to have occurred within
�2million years after the family-forming meteorite breakup.
The high meteorite influx probably produced mass wasting
at continental margins on a global scale (Parnell, 2009;
Alwmark et al., 2010). Additionally, it could have tremen-
dous implications for the Earth’s biosphere; for instance,
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Schmitz et al. (2008) speculated that the large quantities of
cosmic material accreted by the Earth at ~470Ma may have
perturbed the climatic/biologic conditions on the Earth,
leading to the Great Ordovician Biodiversification Event
(GOBE). Furthermore, the Ordovician was also a period of
widespread magmatism, terrane accretion and continental
or back-arc rifting (Finney and Berry, 2010 and references
therein), affecting the biosphere as well.
The discovery of magnetic spherules in acid-insoluble

residues from conodont samples by the present authors
encouraged a systematic search for Ordovician micro-
meteorites. This study analyses the occurrence of cosmic
spherules from Precordillera and Cordillera Oriental of
northwestern Argentina (Figure 1), in an attempt to
understand the effects of the Ordovician cosmic events in
the southwestern Gondwanan continental margin.

2. PREVIOUS STUDIES OF MICROMETEORITES

Micrometeorites are extraterrestrial dust particles between
10 mm and 1mm in size recovered from the Earth’s surface
(Rubin and Grossman, 2010). Extraterrestrial dust is subject
to a range of heating during atmospheric entry depending
on entry velocity and entry angle allowing a proportion of
particles to survive to be recovered from the Earth’s surface
(e.g. Love and Brownlee, 1991). Melted micrometeorites
formed as largely molten droplets during atmospheric entry
are known as cosmic spherules and comprise 50%–75%
of micrometeorites 50–100 mm in size (Genge et al., 2008).
The majority of cosmic spherules are olivine- and glass-
dominated spheres (S-types). However, spheres dominated
by the iron oxides magnetite and wüstite (I-types) comprise
1%–5% of recent spherules.

Figure 1. Location maps of the study areas. The asterisks indicate the spherules localities.
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Measurements of the present-day flux of extraterrestrial
dust from microcraters on satellites (Love and Brownlee,
1993), and from collections of micrometeorites (Taylor
et al., 2000), suggests an accretion rate of ~10 000 t a�1,
significantly larger than the annual influx of meteorites
(2.9–7.3 t a�1 according to Bland et al., 1996). The majority
of present-day micrometeorites are thought to have been
extraterrestrial dust particles prior to atmospheric entry,
rather than debris separated from larger meteoroids during
their passage through the atmosphere.

Recent micrometeorites (<2Ma) have been collected in
large numbers from Antarctic ice (Maurette et al., 1991)
and traps (Rochette et al., 2008), and from deep-sea
sediments (Brownlee et al., 1984). Antarctic collections
contain abundant pristine unmelted and partially melted
micrometeorites, whilst deep-sea collections are dominated
by spherules and rare partially melted particles. Micro-
meteorites have also been recovered from a range of sediments
in the geological column including: Jurassic hardgrounds
(Taylor and Brownlee, 1991), Triassic pelagic sediments
and evaporites (Davidson et al., 2007; Onoue et al., 2011),
and Ordovician carbonates (Schmitz et al., 1997; Cronholm
and Schmitz, 2010; Dredge et al., 2010).

3. GEOLOGICAL SETTING

Two important depocentres containing Ordovician fossilif-
erous rocks from the Andes of Argentina are presently
analysed: the Central Andean Basin, situated in northwest
Argentina and extending into Chile, Bolivia and Perú, and
the Precordillera Basin (as part of the Cuyania composite
terrane), located along the eastern foothills of the southern
Central Andes and limited to the south by the northern
extension of Patagonia (Ramos, 2009) (Figure 1).

Outcrops of the Central Andean Basin are superbly
exposed in the Cordillera Oriental, a thick-skinned mostly
east-vergent thrust system limited to the west by the Puna
plateau and to the east by the Sierras Subandinas. The
stratigraphy of the Cordillera Oriental reflects relatively
shallow-marine environments ranging from outer shelf to
shoreface, rarely dominated by tidal complexes, in contrast
to the deep-water setting of the Puna (Astini, 2003). In
particular, in the Zenta Range, the Lower Ordovician strata
are over 3000m in thickness (Santa Victoria Group), yet
the sedimentary and palaeontological aspects of this
succession are scarcely known, lacking clear stratigraphic
subdivisions. In this area, the sedimentary succession
exhibits rhythmic monotonous series of shaly intervals
punctuated by clastic wedges, which correspond to prograd-
ing coastal systems dominated by wave activity and storms
towards the top (Astini, 2008).

The Precordillera of NW Argentina comprises a high-
level fold-and-thrust belt, mostly composed of Cambrian to

Carboniferous strata, triggered by flat-slab subduction of
the Nazca Plate in Neogene times (Ramos et al., 2002).
The Eastern and Central domains of the Precordillera
involve an important passive margin carbonate platform,
Cambro-Ordovician in age, which is covered by siliciclastic
foreland deposits (Astini, 2003). The Western Precordillera
exhibits deeper water environments, with slope to ocean
floor deposits, which include pillow lavas and mafic-
ultramafic bodies in the westernmost sections. It is affected
by a very low-grade metamorphism that locally reaches
greenschist facies and shows evidence of a complex
deformation and metamorphism during the Ordovician and
Silurian to Devonian times (Buggisch et al., 1994; Robinson
et al., 2005; Voldman et al., 2010)

3.1. Palaeogeography

The regional tectonic evolution of the western margin of
Gondwana (Figure 2) reveals a long history of plate
convergence since the Neoproterozoic rifting of Rodinia
until the late Palaeozoic termination of the Terra Australis
Orogen, which led to the final assembly of Pangaea. The
Pacific margin of South America is mostly characterized
by a siliciclastic platform, with rift-drift transitions gradually

Figure 2. Palaeogeographic reconstruction of the Southern Hemisphere at
~470Ma including the study sites [modified from Cocks and Torsvik (2002)
and Parnell (2009)]. Chromite data from Alwmark et al. (2010) and Cronholm
and Schmitz (2010), Scottish cosmic spherules from Dredge et al. (2010).
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younging to the north and deposited over an autochthonous
basement from Venezuela to northwestern Argentina
(Cawood, 2005). However, the sedimentary sequences are
largely obliterated by later tectonic events related to the
building of the present Andean margin. The general
asymmetric configuration and the stratigraphy of the
neighbouring regions across the Central Andean Basin
suggest an evolution compatible with a broad Ordovician
foreland basin (Astini, 2003).
Further south, the early Palaeozoic history of the southern

Central Andes is different, despite the striking synchronicity
of the magmatic and tectonic processes that encompassed
the whole proto-Andean margin of Gondwana (e.g. Ramos,
2008). Major changes in its basin configuration and
palaeobiogeographic affinities were classically related to
stages of rifting, drifting and collision of the Precordillera
with the South American margin (Figure 2). The drowning
of the Precordillera carbonate platform in the Middle
Ordovician was associated with an important palaeogeogra-
phical rearrangement of depocentres and source areas. A
large influx of fine-grained clastics filled rapidly subsiding

marine basins, punctuated by local deposition of olisto-
stromes, debris flows, conglomerates, and turbidites (e.g.
Astini et al., 1995; Keller, 1999). In the western slope facies
of the Precordillera, local infill of Cambrian-Ordovician
olistoliths record gravitational collapse of the passive
continental margin. This mass wasting could be either
related to earthquake and tsunami-driven slope failure
caused by bombardment of the Earth’s surface with large
meteorites over a period of almost 10Ma (Parnell, 2009)
or more probably, to instability of slopes related to plate-
tectonic processes (Alonso et al., 2008; Meinhold et al.,
2011). According to the most supported hypothesis, the
Precordillera drifted from a low-latitude position in the
Cambrian to collide against the proto-Andean margin of
Gondwana by the Early-Middle Ordovician (Thomas
and Astini, 2003; Voldman et al., 2009). The time of the
collision is supported by the particular geographic distribu-
tion of endemic faunas and the widespread distribution of
Hirnantian glacial deposits in Gondwana, which overlaps
the Precordillera and the Central Andean Basin (Figure 3)
(Benedetto et al., 2009; Albanesi and Bergström, 2010).

Figure 3. General stratigraphy of the Ordovician system from the Argentine Precordillera and the Zenta Range (Cordillera Oriental). Position of the cosmic
spherules and world impact craters from Alwmark et al. (2010) and Earth Impact Database (2011). IUGS time scale (Ogg et al., 2008). Dapin., Dapingian;

Hir., Hirnantian.
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4. ANALYTICAL METHODS

All of the rock samples were collected as whole specimens
to minimize possible contamination, employing an Estwing
pick. The rock samples were processed in the Laboratory
of Micropaleontology of the Universidad Nacional de
Córdoba, following the standard techniques employed to
remove the carbonate content and recover conodonts (Stone,
1987). This way, the rock samples were fragmented in a
metallic press to 5–10 cm pieces, in order not to modify
the original taphonomic information, then washed with tap
water to remove loose particles, weighed, and digested in
10% acetic acid under a fume cupboard. All containers were
kept covered in an effort to eliminate dust contamination and
retain toxic gases. The insoluble residue was then separated
with a sieve size 200 (75 mm) and inspected for microfossils
and spherules under the binocular microscope. The
spherules were first noted due to their highly spherical
shapes and their metallic lustres. Heavy liquid and magnetic
separations were used to recover spherules and greatly
improved the yield. The surface texture of the spherules
was imaged using a SEM Hitachi S-4800 at the Advanced
Microscopy Facility of the University of Victoria, operated
with a beam current of 10 nA, at an accelerating voltage of
1 kV. The elemental compositions of the spherules were
determined using a Bruker EDX detector by analysis of the
unpolished surface. The effects of surface geometry make
analyses necessarily semi-quantitative; however, EDX
spectra can be used to distinguish metal and oxides by the
presence of the O Ka peak. Analytical totals for oxide
spheres suggest analytical uncertainties of ~10%. Spherules
were also imaged by SEM Σigma at the Laboratory of
Electron Microscopy and X Ray Analysis of the Universidad
Nacional de Córdoba, operated with a beam current of
10 nA, at an accelerating voltage of 5 kV.

5. LOCAL STRATIGRAPHY AND SAMPLING

In the Zenta Range of Cordillera Oriental (Central Andean
Basin), the Santa Rosita Formation is represented by a thick
succession (~3000m) consisting of monotonous alternating
series of shales and sandstones with subordinate calcareous
concretions, coquinas and calcarenites (Figure 3). In 2007,
Albanesi collected six calcarenite/coquina samples (total
rock weight: 23 kg) to conduct micropalaeontological
studies in this area (Albanesi et al., 2011). The micrometeor-
ite-bearing samples were recovered from two distant
localities along the road from the Zenta path to the Santa
Ana path, in both flanks of a local anticlinal structure
(Figure 1 and Table 1). Contamination by artificial spherules
in the laboratory can be discounted, since although several
samples were processed simultaneously, only three yielded T
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magnetic spherules. Sample Z4 (78.7 spherules kg�1) was
taken from a mudstone level located in the eastern flank of
the anticline at Santa Ana path, 15m below sample Z5, a
calcareous coquina that yielded conodonts of the Acodus
deltatus–Paroistodus proteus Zone of late Tremodocian
age, and close to a shaly interval characterized by the
graptolite Araneograptus murrayi (J. Hall). Sample Z8
(37.1 spherules kg�1) is a silicified greenish-grey fine-grained
sandstone with dark brown, slightly calcareous concretions,
recovered from the western flank of the anticline at ca.
4000m altitude. Despite the stratigraphic correlation between
the aforementioned samples is precluded by the complex
tectonics, it is possible to estimate a thickness of about
500m between samples Z4 and Z8. It yielded an anomalous
monospecific concentration of graptolites of the Hunnegrap-
tus copiosus Zone; i.e. late Tremadocian (~480Ma, Albanesi
et al., 2011). The graptolites are frequently orientated,
fragmented and accumulated in large numbers associated with
lingulid brachiopods, suggesting mass mortality and bottom
reworking by erosive episodes within the basin.
Of the tens of insoluble residue samples that were prelim-

inary inspected for metallic microspherules from different
localities of the Precordillera (Figure 1), only four limestone
samples yielded positive results (Figure 3 and Table 1). The
samples from the Precordillera were exploratory and were
selected by their spherule abundance, therefore precluding
statistical estimations. The variable number of spherules
recovered in each sample may reflect changes in the
lithology, depositional environment, bioturbation or in the
primary infall rate. Due to the relatively slow deposition
and their limited clastic input, the Gualcamayo Formation
is optimal for the search of fossil micrometeorites. Sample
Vill1 (7.1 spherules kg�1) is a condensed black mudstone,
recovered from the basal interval of the Gualcamayo
Formation at Don Braulio Creek, where a transitional
package of parted limestones covers the San Juan Formation
and marks the drowning of the Precordillera carbonate
platform (Peralta, 2003). In this section, the Gualcamayo
Formation is 39m thick and extends from the Lenodus
variabilis Zone to the Eoplacognathus suecicus Zone of
Darriwilian age (~467–464Ma) (Sarmiento, 1985; Albanesi
and Ortega, 2002). Additionally, three deep-water mudstone
samples, LAF 24 (6.0 spherules kg�1), LAF30 (1.2 spherules
kg�1) and LAF70 (0.3 spherules kg�1) from the Las Aguaditas
Formation, taken at 62, 70 and 116m, respectively, from its
base at the homonymous creek in the Central Precordillera,
contained metallic spherules and conodonts referable to the
Pygodus serra and P. anserinus biozones of late Darriwilian
age (~463–459Ma) (unpublished data of Albanesi, cf.
Eberlein, 1990). The lower Las Aguaditas Formation
correlates to the north with conglomerates of the Las Vacas
Formation in the Guandacol area (Albanesi et al., 1999). A
reworked limestone clast (sample LVacCl, 0.6 spherules kg�1)

from the latter stratigraphic unit at Las Vacas Creek yielded
one spherule and conodonts referable to the Oepikodus
evae Zone of Floian age (~475–472Ma), suggesting erosion
and reworking of the San Juan Formation (cf. Voldman
et al., 2009).

6. RESULTS

A total of ~220 spherules, generally ranging ~75–250 mm in
diameter, were recovered from the samples Z4 and Z8 from
the Zenta Range of the Eastern Cordillera. Additionally,
17 spherules were obtained from samples from the Argentine
Precordillera (Gualcamayo, Las Aguaditas and Las Vacas
formations). In the delicate stub mounting process, three of
the five magnetic microspherules from the sample Vill1
were lost. The size range of the spherules is consistent with
most of the material collected from Antarctica and the deep
sea (e.g. Taylor et al., 1998; Rochette et al., 2008; Parashar
et al., 2010) and the modern-day extraterrestrial dust flux,
which has a mass flux peak at 200 mm (Love and Brownlee,
1993). SEM imaging of the particles reveal hollow, massive,
spherical or drop-shaped forms (Figures 4–6). These
morphologies are consistent with solidification of a melt
droplet since their shapes are in agreement with surface
tension. The hollow interior of some spherules is recognized
amongst spherules from modern collections and suggested
to form by contraction on crystallization (Marfaing et al.,
2008). Some holes are visible suggesting escape structures
of an immiscible phase, such as FeNi metal (Figures 4A,
5E, and 6C).

Most of the spherules exhibit a well-developed crystalline
texture of dendrites, also observed in deep-sea spherules.
Regularly, polygonal and brickwork textures of equant
crystals are also observed (Figure 4C, D) and are similar to
Antarctic particles (e.g. Genge et al., 1997). The surface
textures have been described by numerous authors (Koeberl
and Hagen, 1989; Wang and Chatterton, 1993; Yada et al.,
1996; Szöőr et al., 2001; Stankowski et al., 2006; Dredge
et al., 2010; Korchagin et al., 2010), and are related to rapid
cooling from high temperatures precluding a sedimentary or
diagenetic origin for the spheres. EDX analysis of the
particles suggests they are composed principally of low-Ni,
iron oxides consistent with I-type spherules (Table 2),
containing mainly magnetite and/or wüstite with rare Fe-Ni
metal droplets (Genge et al., 2008). Wüstite is metastable
at low temperatures, being extremely rare in terrestrial rocks,
but present in the fusion crusts of iron meteorites. The
occurrence of metallic iron among the analysed microparti-
cles also supports their cosmic origin (see spherule Z8-8 in
Table 2), as native metal is exceedingly rare in terrestrial
volcanic rocks due to their higher oxygen fugacities. Surface
EDX indicates up to ~1wt% Al, Si, Ca, Mg, Ni, Co and Cr.
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7. INTERPRETATION

Spherical particle morphologies are particularly ambiguous
since they may be terrestrial (e.g. diagenetic, biogenic,
volcanic, anthropogenic), extraterrestrial or may be delivered

from the impacts of crater-producing meteorites, as dissipated
melt (Raukas, 2000; French and Koeberl, 2010). Although Ni
enrichment is usually considered a marker for an extraterres-
trial origin, only minor amounts of Ni were detected in the
spherules (Table 2). This is in accordance with the heating of

Figure 4. SEM secondary images of I-type spherules from the Santa Rosita Formation (late Tremadocian) recovered from the Zenta Range in Cordillera
Oriental. (A) Spherule with dendritic texture and extreme distortion due to outgassing structures. (B) Drop-like spherule with polygonal texture and protruding
knobs. (C) Spherule with coarse polygonal texture. (D) Spherule showing brick-work texture superposed on a polygonal pattern. (E) Hollow spherule

displaying dendritic texture. (F) Detail of the inner side of spherule E showing a fine dendritic pattern.
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I-type spherules during atmospheric entry: as the microme-
teorites melt to form immiscible silicate/oxide and metallic
melts, these are subsequently separated into individual
spherules due to density contrast during deceleration (Brownlee
et al., 1984). A significant proportion of the metallic liquid

oxidizes during entry heating, leaving a high Ni metallic core,
very occasionally with a Pt group-rich nugget. Depending on
the deceleration experienced, metallic cores of the spherules
migrate to the front of the particle and separate, leaving a
remnant that comprises a Fe-oxide spherule free of Ni (Bi et al.,

Figure 5. SEM secondary images of I-type spherules recovered from the Precordillera. The variable features of these particles suggest quite different thermal
histories (cf. Marini et al., 2004). For the sample location and age refer to the text. (A) Spherule with coarse polygonal pattern. (B) Spherule with fine dendritic
pattern (filigree). (C) Spherule with distinctive smooth surface. (D) Detail of the inner side of the spherule B showing a hollow core with a fine dendritic pattern.
(E) Spherule with smooth surface, minor cracks and escape structure. (F) Inner side of a spherule showing a fine dendritic pattern surrounded by thick, massive

walls.
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1993; Yada et al., 1996). Similar I-type spherules depleted in
Ni occur in Ordovician rocks of the Durness Group in NW
Scotland (Dredge et al., 2010), in Oligocene sediments in
the coastal plain of South Carolina, USA (Taylor et al.,
1996), and in modern collections from the Transantarctic
Mountains (Rochette et al., 2009) and the Central Indian

Ocean (Parashar et al., 2010). Conversely, droplets produced
during meteorite ablation form at lower altitudes and contain
higher Ni concentrations, in response to the higher oxygen
fugacity (Genge and Grady, 1999). Products of Tunguska-like
disruptions of larger bodies are likewise Ni-bearing due to
their low terminal altitudes (van Ginneken et al., 2010).

Figure 6. SEM secondary images of I-type spherules recovered from the Precordillera (sample LAF24-1) and the Zenta Range (samples Z4 and Z8) in
Cordillera Oriental. (A) Spherule with fine polygonal pattern. (B) Detail of the inner side of a spherule showing a hollow core with a fine dendritic pattern.
(C) Spherule with smooth texture and extreme escape structure. (D) Similar to B. (E–F) Broken hollow spherule showing an inner fine dendritic pattern.

g. g. voldman ET AL.230
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Spherules produced by collisions of larger objects that
generate impact craters have a range of compositions
relating to mixtures of melted and vapourized target rocks
and projectile materials. Those microtektites incorporating
significant materials from projectiles can include iron
oxides, of which Ni-rich spinels are important tracers of
meteorite impacts due to their formation in atmosphere at
high fO2 (e.g. Robin and Molina, 2006).
Silicate and glass spherules were not observed during the

picking procedure, perhaps as a result of the magnetic
technique used for extraction. Alternatively, this could be
explained by preferential weathering, dissolution and
destruction of the S-type particles in deep-sea deposits with
increasing depositional age, as suggested by Onoue et al.
(2011), to account for an anomalously small proportion of
S-type spherules (3%) and a large proportion of I-type
spherules (94%) in an Anisian (~240Ma) chert from Japan.
Iron-rich industrial spherules are very common in the

terrestrial environment and can appear similar to the
proposed micrometeorites. However, magnetic spherules of
industrial origin (e.g. coal-fired power plants, welding
operations) usually exhibit perfectly spherical shapes with
smooth, polished surfaces, and may have grains of zircon
and other minerals welded upon them (e.g. see Puffer
et al., 1980; Blaha et al., 2008; Uścinowicz, 2009). Typical
contamination fly-ash spherules are comparatively poor
in Fe but rich in Si, Al, and minor admixtures of other
elements (Na, Ca, Mg, K) (Marvin and Einaudi, 1967;
Shoumkova, 2011).
Contamination is more likely in the case of samples

recovered from recent ice/sediments and not from outcrop
rocks. Anthropogenic contamination can be discounted
since the samples were washed with water and the spherules
occur diagenetically attached to the host sediment. Addition-
ally, industrial and volcanogenic magnetic spherules tend to
be rich (~5%–10%) in Ti (Szöőr et al., 2001; Korchagin
et al., 2010), whereas it only constitutes a trace component

in the current particles. Volcanic magnetites are never pure,
but rather, titaniferous or, in volcanic sublimates, display Ni
and Cr substitutions (El Goresy, 1968; Toutain et al., 1985).
According to del Monte et al. (1975), volcanic ferromagnetic
particles are also characterized by crystals generally
idiomorphic, mostly octahedron and rhombic dodecahedron
shapes, and by the absence of hollows (cf. Miono, 1995).
Additionally, Wright and Hodge (1965) observed that
metallic microspherules are extremely rare in volcanic ash
deposits sampled in volcanic areas, in contrast to the
ferromagnetic matter found in Arctic and Antarctic ice.
Otherwise, thermodynamic considerations, the morphology,
and the absence of magmatic silicate inclusions rule out a
volcanogenic genesis for our spherules (del Monte et al.,
1975; Iyer et al., 1999).

A biogenic origin for the spherules can be rejected by the
presence of dendritic structures within the particles. This
type of structure is due to quenching under rapid cooling
of molten material at high temperature. Alternatively, Suk
et al. (1990) demonstrated that magnetite spheres may
originate by alteration of framboidal pyrite. However, the
structures observed in our spherules do not agree with
framboidal pyrite precursors.

In summary, the internal and external microstructural
features, and the chemical and mineral compositions all
strongly favour an extraterrestrial origin for our metallic
microspherules.

8. DISCUSSION AND CONCLUSIONS

Fossil cosmic microspherules provide insights into the
fluctuation of accretion rates of extraterrestrial matter to
Earth, variations in the composition of the flux, and the
influence of these processes on climate change and the
evolution of life on Earth. I-type cosmic spherules are
abundant in deep-sea collections, as they have greater

Table 2. Chemical composition of the spherules by surface EDX analysis (unpolished samples)

Component LVacCl-1 LAF30-1 LAF30-2 LAF70-1 Vill1-1 Vill1-2* Vill1-4 Z8-3 Z8-8

O 24.37 19.93 16.20 19.10 14.70 19.67 18.59 26.56 0.03
Fe 72.67 77.85 81.59 77.19 82.77 77.22 77.60 69.00 95.98
Ni 0.00 0.00 0.02 0.10 0.00 0.09 0.06 0.01 0.00
Co 0.96 1.00 1.00 1.03 1.06 1.16 1.00 0.98 2.66
Al 0.37 0.14 0.04 0.72 0.36 0.50 0.50 0.00 0.00
Si 0.34 0.20 0.07 0.13 0.06 0.00 0.36 0.21 0.00
Ti 0.02 0.03 0.00 0.00 0.10 0.00 0.03 0.00 0.00
Cr 0.05 0.05 0.16 0.17 0.14 0.16 0.17 0.03 0.11
Ca 0.08 0.04 0.03 0.04 0.04 0.03 0.06 0.03 0.07
Mg 0.15 0.07 0.08 0.08 0.04 0.05 0.14 0.12 0.00
Others 0.99 0.69 0.81 1.44 0.73 1.12 1.49 3.06 1.15

Unit of measure of chemical components: wt%.
*Measured on the inner side of the particle.
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resistance to weathering under sea-water in contrast to the
silicate and glassy spherules. However, they constitute only
1%–3% in the Antarctic micrometeorite collections, a
value similar to the ~5% found for iron meteorite falls (e.g.
Rochette et al., 2008). From the study of the South Pole
Water Well micrometeorite collection (Taylor et al., 2000),
we estimate a current flux rate of I-type spherules
>100 mm of 3.4� 103Ma�1m�2 (recalculated from
Rochette et al., 2008).

The late Tremadocian samples Z4 and Z8 from Cordillera
Oriental contain 78.7 and 37.1, respectively, spherules per
rock kilogram (Table 1). Assuming a sandstone density
of 2500 kgm�3 for the samples, this is equivalent to
~9.2–19.6� 104 spherules m�3 of rock. Given the structural
complexity and the lack of detailed fossil records, it is
difficult to assess the sedimentary deposition rate of the
Santa Rosita Formation in the study area. As a preliminary
estimate, and considering an integrated stratigraphic column
of the basin (Buatois et al., 2006), the sedimentary
deposition rate of the Santa Rosita Formation (upper
Furongian–Tremadocian) is ~100mMa�1. Thus, the mean
spherule accumulation rate is ~9.2–19.6� 106Ma�1m�2.

This preliminary estimate is consistent with the period of
elevated flux of extraterrestrial material, as recorded several
thousand kilometres apart in Scotland, Sweden and central
China, and the high abundance of Middle to early Late
Ordovician craters discovered in Laurentia and Baltica
(Figures 2 and 3) (Schmitz et al., 2001; Alwmark et al.,
2010; Cronholm and Schmitz, 2010; Dredge et al., 2010;
Earth Impact Database, 2011). The wide differences in
cosmic spherule contents, both between the two Argentinean
basins and the previous Ordovician flux estimations from
the above authors, may arise from uncertainties in the
sedimentary rate estimates, which are critical in all flux
calculations. In particular, the greater spherule abundance
in the clastic sedimentary rocks from Cordillera Oriental
could reflect local processes, such as redistribution of
spherules by ocean-floor currents. This is supported by the
anomalous concentration of orientated graptolites, which
accumulated concurrently with lingulids (Albanesi et al.,
2011). Moreover, the estimated accumulation rate value
must be considered as highly speculative, since the time-
span needed for sedimentation of one sedimentary bed is
unconstrained and it does not consider periods of erosion
or the sampling of anomalously-rich spherule layers.
Interestingly, these layers deposited before the L-chondrite
body breakup (~470Ma) and yet they contain a much larger
content of spherules than do the younger Precordilleran
samples. A fully integrated stratigraphic and biostratigraphic
approach is required to obtain a reliable sedimentation rate
for the Santa Rosita Formation at the Zenta Range and to
confirm the temporal variations in the flux of extraterrestrial
matter during its deposition.

On the other hand, the size range of our cosmic spherules
is 75–250 mm, in agreement with most populations reported
from modern samples (e.g. Taylor et al., 2000). Size
comparison with correlative cosmic spherules from
Scotland (Dredge et al., 2010) is precluded by the different
sieves employed for extraction. Nonetheless, they show
similar mineral and major element compositions, containing
trace levels of Al, Si, O, Ti, Mg, Ca and Cr, and typical
dendroidal structures.
Parnell (2009) related the enhanced Middle Ordovician

meteorite flux with global-scale deposition of olistostromes
by destabilization of continental margins following meteor-
ite impacts. The author proposed that up to 500 impactors
of 100m in diameter, including 250 impactors if only
landward impacts are considered, fell within about 30 km
of the 20 000-km-long Iapetus coastline. Alternatively,
Meinhold et al. (2011) challenged the idea that mass
wasting was mainly produced by meteorite impacts over a
period of almost 10Ma, and proposed an earthquake-driven
mechanism related to plate-tectonic processes, possibly
magnified during a period of global sea-level lowstand.
The particles recovered in the current study are I-type

spherules which represent only a small fraction of the
current-day micrometeorite flux and are formed from
extraterrestrial dust, rather than large objects such as
meteorites (Genge et al., 2008). The iron-oxide dominated
nature of these spherules suggests that their pre-atmospheric
precursors were FeNi metal grains. Metal does occur within
L-chondrites at abundances of around 1 vol%. The observed
spherules could, therefore, be related to the L-chondrite
break-up event.
An elevated extraterrestrial dust flux does not necessarily

imply that large impacts occurred at this time, since the large
numbers of dust particles derived from disruption of the
L-chondrite parent body are much more likely to be captured
by the Earth than the relatively small numbers of objects
>500m in size produced by the event. Indeed, the absence
of Ni-rich spinels amongst particles recovered in this
study implies a lack of detectable impact ejecta in the
horizons sampled.
Impact, extraterrestrial and volcanic spherules are increas-

ingly used for geological correlation. The apparent absence
of cosmic spherule enrichments in the limestones and
condensed shales from the Precordillera, in contrast to the
Cordillera Oriental levels, could reflect uncertainties in
sedimentation rate or sedimentological controls on spherule
accumulation and survival, due to concentration of ‘heavy
mineral’ spherules due to transport. Indeed, this study
reveals that not all sediments are created equally when it
comes to their spherule contents. Whether the I-type
spherules reported here are part of the L-chondrite influx
remains uncertain, in particular, due to the lack of chromites
that are frequently considered a unique component of the

g. g. voldman ET AL.232

Copyright © 2012 John Wiley & Sons, Ltd. Geol. J. 48: 222–235 (2013)



mid-Ordovician ‘spike’ from the breakup of the L-chondrite
body at ca. 470Ma (e.g. see Alwmark and Schmitz, 2009).
Future geochemical, petrographical and biostratigraphical
studies, with targeted searches for spherules, would provide
evidence of the true magnitude and geographical distribution
of these cosmic events during the early Phanerozoic history
of the Earth and its role during the explosion of biodiversity
in the Ordovician Period (e.g. Schmitz et al., 2008).
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