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We analyze the vector nulls of velocity, Lagrangian acceleration, and vorticity, coming from direct
numerical simulations of forced homogeneous isotropic turbulence at Reλ ∈ O([40−600]). We show
that the clustering of velocity nulls is much stronger than those of acceleration and vorticity nulls.
These acceleration and vorticity nulls, however, are denser than the velocity nulls. We study the
scaling of clusters of these null points with Reλ and with characteristic turbulence lengthscales.
We also analyze datasets of point inertial particles with Stokes numbers St = 0.5, 3, and 6, at
Reλ = 240. Inertial particles display preferential concentration with a degree of clustering that
resembles some properties of the clustering of the Lagrangian acceleration nulls, in agreement with
the proposed sweep-stick mechanism of clustering formation.

I. INTRODUCTION

Single-phase and particle-laden turbulent flows are of interest in many industrial, natural and environmental sit-
uations. But despite their relevance, there are still many open questions that severely limit our understanding of
these flows. For instance, the study of geometrical properties of the velocity, the Lagrangian acceleration, and the
vorticity fields in turbulent flows has received considerable attention in the last decades. The geometrical properties
of these fields can be useful to model important phenomena in turbulent flows such as superdifusivity, preferential
concentration of particles, vortex reconnection, among many others. Some works, focused on characterizing simply
connected regions of vorticity, have found that such regions tend to cluster [1–4]. Other studies have focused on the
vector field nulls [5–7], the points where the modulus of vectorial quantities is equal to zero (i.e., the set of points
Xp = {xn = (xn, yn, zn) ∈ <3 |p(xn, yn, zn) = 0}, where p is some vector field as, e.g., the vorticity). It is nevertheless
unclear how these quantities relate to each other and, furthermore, their dependence on different parameters such as
the Reynolds number or the homogeneity and isotropy of the underlying flow.

In spite of the limited knowledge on their spatial distribution and scaling properties, the geometry of these vector
nulls, also known in some cases as stationary or fixed points, has successfully been related to the underlying physics
of turbulence and to turbulence-particle interactions. For instance, their statistics and scaling properties have been
associated with the fractal nature of turbulence, and scaling laws for the distribution of vector nulls have been derived
from fractal dimensions of the velocity field compatible with Kolmogorov scalings [5, 6, 8]. Also, it has been noted
that the velocity nulls carry information about the turbulent kinetic energy dissipation rate ε (see [6, 9–11]) and can
be used to model relative pair dispersion [12]. Furthermore, the Lagrangian acceleration nulls have been related to
the degree of preferential concentration found when inertial particles are added to a turbulent flow [5, 13, 14].

Some specific results for three choices of these null points are worth mentioning. On the one hand, it has been
shown that properties of the set of velocity nulls (satisfying v(xn) = 0 where v is the fluid velocity field, and referred
in the following as “stagnation points” or STPS) from a one-dimensional (1D) measurement, can be related to the
Taylor microscale λ of homogeneous isotropic turbulence (HIT) via the Rice theorem [11, 15]. More recently, Goto and
Vassilicos extended these results to three-dimensional (3D) fields [10], i.e., the showed that the average distance beteen
STPS in 3D is also proportional to the Taylor length-scale. On the other hand, the set of Lagrangian acceleration
nulls (with a(xn) = 0, and referred in the following as ZAPS for “zero acceleration points”), are at the core of the
proposed sweep-stick mechanism [13], that models preferential concentration in inertial-particle-laden flows. This
model suggests that the inertial particles mimic the spatial distribution of ZAPS, for particles with a Stokes number
St above unity [14, 16, 17]. Finally, the vorticity nulls (ωωω(xn) = 0, or WZERO in the following), have been related
to vortex reconnection events and the turbulent cascading process [7, 18]. Furthermore, low vorticity regions are
also expected to control the centrifugal expulsion of inertial particles (and their clustering) for St < 1. Within this
mechanism, dense particles are expected to be expelled from the core of eddies and to accumulate in regions of high
strain and low vorticity [19].

Despite the interest and ongoing research in the topic, to the authors best knowledge no joint systematic study
on the global properties and Reλ-dependence of the clustering of these points has been carried out (where Reλ is
the Reynolds number based on the flow Taylor microscale), nor of their relation with inertial particle concentration
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fields. Vassilicos and collaborators have conducted the most extensive studies on the geometry of STPS and ZAPS
using pair distribution functions [6, 8, 13, 20, 21]. These works have provided analytical predictions on these points’
statistical properties, and some recent studies [14, 16, 22] have retrieved some evidence that partially validates some of
these predictions. Considering that Vassilicos and collaborators used pair distribution functions to examine the vector
nulls clustering, they could not examine the local vicinity around a null point so that conditioned statistics could be
computed and related to surrounding turbulent phenomena (e.g., to preferential concentration). In this respect, the
study of Obligado and collaborators [16] found that the 2D spatial distribution of inertial particles with St = 2 and
4 (characterised via Voronöı tessellations) presents similarities with the regions of low Lagrangian acceleration.

In this work we analyze velocity, Lagrangian acceleration, and vorticity nulls through Voronöı tessellations [23]. The
fields examined come from forced direct numerical simulations (DNSs) of HIT. We study seven different DNS datasets,
exploring a wide range of Reynolds numbers (Reλ ∈ [40− 610]) and different forcing schemes. Voronöı tessellations,
contrary to pair correlation functions, allow the examination of the nulls local “concentration” maps and cluster size
distributions, similar to previous studies of clustering of inertial particles [24, 25]. Our results show that the degree
of clustering of STPS is much larger than the respective ones for ZAPS or WZERO (while the concentration follows
an inverse trend), and display a clear scaling with Reλ. The results also confirm that the concentration of STPS
is at least one order of magnitude smaller than those of ZAPS or WZERO, in agreement with the scalings of Chen
et al. [8]. Also, while the properties of ZAPS and WZERO have a similar trend with Reλ, STPS spatial structure
presents a different dependence with this parameter.

Finally, for one of our DNS (with Reλ = 240) we also studied the behaviour of dense, point-like inertial particles.
The objective is to generalise the results from the previous work of Obligado and collaborators [16]. In this aspect, the
novelty of the present work compared to previous ones is twofold: we generalise the study to 3D Voronöı tessellations
(thus eliminating any bias caused by projecting fields to 2D) and instead of studying regions with low vorticity or
acceleration, we use an interpolation method that allows to actually detect nulls as points (as detailed in Sec. II B). We
then compare the clustering properties of different nulls datasets with the clustering of inertial particles with Stokes
numbers St of 0.5, 3 and 6. We find that, in agreement with previous works, the spatial segregation of particles with
St > 1 presents larger similarities with the ZAPS than with the other vector nulls, consistently with the behavior
expected from the sweep-stick mechanism.

II. METHODOLOGY

A. Numerical simulations

Our numerical datasets of the Eulerian velocity, Lagrangian acceleration, and Eulerian vorticity came from DNSs.
These simulations follow standard practices regarding their temporal integration, de-aliasing procedures, and have an
adequate spatial resolution of the smallest scales, i.e., κη & 1 [26]. Here η is the Kolmogorov lengthscale, η = (ν3/ε)1/4

(where ε is the kinetic energy dissipation rate, and ν the kinematic viscosity of the fluid), and κ = N/3 the maximum
resolved wavenumber in Fourier space (with N the linear spatial resolution). Fully dealiased pseudospectral methods
with second-order Runge-Kutta methods for the time stepping are used. The 3D simulation domain for all datasets
has dimensions of 2π × 2π × 2π. All relevant simulation parameters can be found in Table I.

Numerical simulations solve the incompressible Navier-Stokes equations for the velocity v with a random solenoidal
forcing f ,

Dv

Dt
=
∂v

∂t
+ v · ∇∇∇v = −∇∇∇p′ + ν∇2v + f , (1)

where p′ = p/ρ (with p is the pressure and ρ a uniform mass density), which is obtained from the incompressibility
condition ∇∇∇ · v = 0. In Eq. (1), Dv/Dt = a is the Lagrangian acceleration of the fluid elements, while the vorticity

field is given by ωωω = ∇∇∇ × v. We define the r.m.s. velocity as u′ =
〈
|vi|2

〉1/2
(where vi is a Cartesian component of

the velocity), the Taylor scale as λ = (15νu′2/ε)1/2, and the integral scale as L = π/(2u′2)
∫
E(k)/k dk (where E(k)

is the isotropic energy spectrum).
We use a total of seven numerical datasets. The first five datasets (labeled in the following as “DNS-N”, where N is

the linear resolution of each dataset) were obtained using the Ghost code (see [27, 28] for further details of the code).
In this case, the solenoidal forcing f is given by a superposition of Fourier modes with random phases in the shell with
wavenumber k = 1. A new random forcing was generated every 0.5 large-scale turnover times, and the forcing was
linearly evolved from its previous state to the next state along this period of time. This results in a continuous and
slowly evolving random forcing with correlation time of 0.5 turnover times, which at the largest resolution considered
has an integral scale L/(2π) ≈ 0.309, and which will be useful for simulations with inertial particles as discussed



3

below. These simulations also use the largest Reynolds number attainable at their given spatial resolution, with
κη ≈ 1 (see Table I). The last two datasets (labeled “JHU-N”) correspond to simulations of homogeneous and
isotropic turbulence from the Johns Hopkins Turbulence (JHU) database [29], at Reλ similar to the largest simulation
in the “DNS” dataset. It is worth noting that the JHU database does not provide the Lagrangian acceleration or the
vorticity field as primary globally accessible variables; these fields can be queried and computed instead at each point
in the physical space via finite differences [29]. Due to limited computational resources, and to the different numerical
errors between finite differences and pseudospectral computation (used for all the other simulations and fields in this
study), we only computed for the JHU database the STPS from the available velocity fields. In these simulations,
the forcing f keeps the kinetic energy constant in Fourier shells with k ≤ 2. For dataset JHU-4096 [30], this results
in an integral scale L/(2π) ≈ 0.221. The last simulation is better resolved, with a value of κη approximately 2.7
times larger than the “DNS-N” datasets. While resolution has been found to impact significantly in some statistical
properties of turbulence, as, e.g., the scaling of extreme field gradients [31, 32], we will see that it does not seem to
affect so significantly the statistics of clustering of nulls of the vector fields.

In particular, the numerical simulations DNS-1024, JHU-1024, and JHU-4096 have similar values of Reλ (between
430 and 610), but different values of κη (with, as already mentioned, the JHU simulations being better resolved).
These simulations can thus be used to partially consider the effect of resolution in the statistics of null points. As
will be shown below, we obtain consistent results in all simulations, but with the simulations with larger values of
κη having a slightly larger number of null points. Note that while a priori it could be expected that less resolved
simulations should have more vector field nulls (as a result of Gibbs phenomena if the vector fields are not well
resolved), the simulations display the opposite behavior. This indicates that Gibbs phenomena is not dominant even
in the simulations with κη ≈ 1. Instead, the increase in the number of null points with larger values of κη indicate
that as the vector fields become more intermittent, the number of zeros in the fields increases. Previous studies
comparing simulations with different values of κη in a different context [31, 33] also indicate that this can be the case:
the simplest criterion that the Kolmogorov scale should be resolved yields simulations with accurate estimations of
the statistical lower-order moments of the vector fields, but much more stringent conditions are needed to capture
higher-order statistical moments, with intermittency increasing as κη increases [33]. However, the DNS and JHU
simulations also have different forcing schemes, which are also known to affect the distribution and number of null
points [34]. Thus, a detailed study of the effect of varying the forcing mechanism, and of the effect of varying κη for a
fixed forcing scheme on the statistics of nulls, would also be of interest. The fractal properties of many field nulls were
considered in experimental data [9, 35], and in numerical data for different flows [36–38] but in the simulations mostly
for cases with κη ≈ 1. We thus warn the reader of the limitations in our knowledge of the effect of both varying the
forcing and the spatial resolution, and leave a detailed study of these effects for a future work.

For DNS-512 we also have data of 106 inertial point particles without gravity, which will be considered in Sec. IV.
Particles are integrated following the equations

dxp
dt

= vp,
dvp
dt

=
1

τp
[v(xp)− vp] , (2)

where xp is the particle position, vp the particle velocity, v(xp) the fluid velocity at the particle position, and τp the
Stokes time. The Stokes number of the particles is then defined as St = τp/τη, where τη is the eddy turnover time at
the Kolmogorov scale. These equations are integrated with a high-order Runge-Kutta method to evolve in time, and
a high-order three-dimensional spatial spline interpolation to estimate the fluid velocity v(xp) at the particle position
(see [39, 40] for details).

Dataset N L/(2π) 103η Reλ # snapshots
DNS-64 64 0.304 50 40 80
DNS-128 128 0.291 24 70 50
DNS-256 256 0.291 12 120 50
DNS-512 512 0.238 6 240 20
DNS-1024 1024 0.309 3 520 9
JHU-1024 1024 0.217 2.8 430 15
JHU-4096 4096 0.221 1.4 610 1

TABLE I: DNS parameters. N is the number of points in each direction, such that N3 is the total number of grid
points in the simulation domain. L/(2π) is the integral lengthscale in units of the domain linear size of length 2π. η

is the Kolmogorov dissipation scale, multiplied by 103 for convenience. Reλ is the Reynolds number based on the
Taylor microscale λ, and # snapshots is the number of snapshots of the vector fields used for the analysis.
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The Taylor-based Reynolds number, Reλ = u′λ/ν, spans one and a half decades. We have Reλ ∈ [40, 610] for
spatial resolutions of 643, 1283, 2563, 5123, 10243, and 40963 grids points. We took enough snapshots of the vector
fields to have adequate global statistics. The JHU datasets were post-processed using the Sciserver platform [41], and
we used the Python library Freud [42] to compute the 3D Voronöı diagrams for all datasets.

B. Nulls calculation

We applied the method proposed by Haynes and collaborators [43–45] to compute our data vector nulls. Although
they developed this method for magnetic fields, recent studies have used the same method to compute nulls of vorticity
fields [7]. We briefly describe this algorithm main steps: First, for each cell in the domain, we survey its vector values
at the cell’s corners (i.e., at the grid points) to determine if there is a change of sign in all components of the target
vector field (i.e., we survey the 8 corners of the target cubic cell). For a properly resolved and dealiased DNS, if any of
the x, y, or z components of the field do not change in sign within the cell, there cannot be a zero inside it. If, on the
other hand, there are changes of sign in every vector component inside the cell (i.e., there is a change of sign in any of
the 8 corners of the cubic cell, and for each vector component x, y, and z), we use the 8 corner component values to
feed a trilinear interpolation algorithm, and thereby, we build a local vector interpolation function. Then, we proceed
by feeding this function into a Newton-Raphson method [46] to verify if there is a zero within the cell. This algorithm
is somewhat similar to those proposed by Vassilicos and collaborators [13, 47], and can be easily parallelized.

However, considering the non-linearity and resulting spatial complexity of the turbulent fields here studied, there
is a caveat: some of the cells’ zeros can be located outside the target cell. Haynes and Parnell [43] propose that these
zeros could be accepted if the zeros’ locations are not very far from the local cell. Although these “satellite” zeros
increase the nulls density (and improve the statistics), we opted for a more conservative approach and considered as
valid nulls only those zeros found inside the target cell. We took this decision based on a benchmark calculation that
showed that including these “satellite” nulls may lead to pathological behaviors of the global parameters coming from
the Voronöı tessellation analyses.

III. NULLS ANALYSIS

We computed the nulls of velocity, Lagrangian acceleration, and vorticity following the Haynes algorithm for all
the data in table I. Table II summarizes the total number of zeros found by this algorithm (for all snapshots in a
given simulation), as well as the average number of zeros per field snapshot in each simulation. We then applied the
3D Voronöı tessellation analysis on these nulls positions. This analysis followed the same protocol of studies focusing
on inertial particle clustering [16, 24]. Thus, we quantified their degree of clustering via the standard deviation σV of
the normalized Voronöı cells volume V = V/〈V 〉 (where 〈V 〉 denotes the average volume), which ultimately quantifies
the effects of the “voids” (i.e., of low density regions [17]) present in the nulls spatial distribution. We consider that
clustering is present when σV > σRPP [24], where σRPP ≈ 0.42 is the standard deviation of a 3D random Poisson
process (RPP), which has no correlations at any scale [48].

Analogous to inertial particle studies, we also computed the clusters volume probability distribution function (PDF)
via the algorithm proposed by Monchaux et al. [24]. We selected from the volume cells collection those cells that are
below a threshold Vth, and considered as clusters the groups of two or more of those cells sharing a boundary (face).

Dataset total # of STPS 〈STPS〉snap total # of ZAPS 〈ZAPS〉snap total # of WZERO 〈WZERO〉snap
DNS-64 1528 64 ± 27 35956 443 ± 163 141026 1720 ± 520
DNS-128 12431 264 ± 100 193742 2849 ± 1000 976850 14365 ± 4900
DNS-256 34000 700 ± 300 886963 17931 ± 6500 5108326 102166 ± 33858
DNS-512 85598 5708 ± 3700 5155101 343673 ± 165719 26868036 2239003 ± 776174
DNS-1024 65537 7282 ± 1188 6040950 1006825 ± 30143 38000000 6024043 ± 1265305
JHU-1024 258849 19911 ± 500 – – – –
JHU-4096 100000 100000 – – – –

TABLE II: Number of zero nulls found for each vector field (STPS, ZAPS and WZERO) and simulation. Both total
numbers of zeros (i.e., aggregated for all times available) and averages per snapshot with their respective standard
deviation (indicated by the ± deviation) are given. The averages just mentioned, indicated by angular brackets,

refer to the average number of the respective zeros per field snapshot.
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We picked Vth as the location of the first crossing (i.e., for V < 1) between an RPP PDF and the Voronöı cells’ PDF.
In our analysis we took Vth ≈ 0.5 (and Vth ≈ 0.56 for the inertial particles in Sec. II B). Interestingly, this threshold
did not depend strongly on Reλ or on the dataset we analyzed. We note, however, that there were not sufficient
clusters in single snapshots of the DNS-64 dataset to reach adequate statistics.

Nevertheless, there is a discrepancy in the values of Vth between our simulations and the JHU datasets, as will
be shown later. This is partially related to the fact that the JHU datasets have a larger number of nulls. Although
it could be expected both JHU and our DNS datasets should strictly follow the same power-law fitting exponents,
it is worth pointing out that due to the their different large-scale forcing methods, this may not the case. This
argument is supported by the simulations and theoretical predictions of Goto and Vassilicos [10] that show that the
stagnation point structure changes depending on the forcing method, and the forcing wave number. In other words,
even simulations with similar Reλ but different forcing may exhibit different topologies (besides the effect of spatial
resolution already discussed in Sec. II A). These authors further argued that differences in STPS topology may impact
the turbulent cascading process via changes in the normalized dissipation rate Cε. Weiss et al. [34] also reported
that the degree of particle clustering depends on the forcing used to sustain the turbulence. Taking into account that
Coleman and Vassilicos have linked particle clustering to properties of the ZAPS, the effect of spatial resolution, and
the results of Weiss and collaborators that highlight the non-negligible influence of the large scales on the turbulent
field topology, we consider that such a discrepancy is to be expected. Moreover, as will be shown next, once Vth is
defined as described above, other results from all the datasets are compatible between themselves.

A. Scaling of averaged quantities for all vector field nulls

Vassilicos and collaborators [5, 6, 8] report that the number density (ns ∼ 〈V 〉−1, i.e., the inverse of the average

Voronöı cell volume) of 3D STPS and of 3D ZAPS scale as ns ∼
(
L/η

)δ
, where δ (a fractal dimension) takes the

values of 2 and 3 respectively for each set of nulls. For STPS, this fractal dimension can be seen as a consequence
of viewing turbulence as a self-similar process. Under such assumption, the energy spectrum exponent (i.e., the
-5/3 power law) can be related to the fractal exponent δ via Orey’s theorem leading to δ = 2 for the 3D STPS
(see [6, 8]). Likewise, Moisy and Jimenez [2] report a box dimension for the number density of vortical structures
(resp. WZERO points) close to −3. Our results for the average Voronöı volume size (〈V 〉 ∼ n−1s ) of the different null
points are consistent with the mentioned scalings and observations (see Fig. 1a). However, we may not have enough
scale separation in the inertial range (only a decade in terms of L/η) to ascertain without doubt their exact numerical
values. Moreover, our results do reveal that the STPS are indeed very scarce (i.e., they have a smaller concentration in
space) when compared to ZAPS or WZERO, and thereby, their larger average Voronöı cell volume, which as already
mentioned is inversely proportional to the number density of the respective nulls: In other words, note from Fig. 1a
that 〈V 〉|v=0 > 〈V 〉|a=0 > 〈V 〉|ω=0 for all Reλ considered.

The Voronöı volume standard deviation for the nulls, which quantifies the degree of clustering via Voronöı tes-
sellations, except the for smallest value of Reλ, roughly satisfies a similar ordering as the mean (see Fig. 1b), i.e.,
σV |v=0 > σV |a=0 > σV |ω=0. In other words, the stagnation points become more “clustered” than the acceleration
or vorticity nulls. This is consistent with the findings of Chen et al. [8], who used pair distribution functions to
characterize the geometry of STPS and ZAPS. At increasing Reλ, the velocity nulls (STPS) cluster more strongly
than the acceleration and vorticity nulls, with σV |v=0 growing with Reλ (a power law is indicated in the figure as
a reference). The increased complexity (at all scales) of the STPS topological structure is reflected in its respective
PDF (see Fig. 2a and the discussion in Sec. III B), which shows that at increasing Reλ a power law close to -5/3
emerges in the PDF of the Voronöı volumes of these nulls. In addition, the standard deviations of the cell volumes of
vorticity and acceleration nulls depend weakly on Reλ, if at all. As will be shown later, this is a consequence of the
behavior of their respective PDFs (see Figs. 3a and 4a). These PDFs, for different values of Reλ, roughly collapse
for V/〈V 〉 > 1 (i.e., for cells with volumes larger than the average), which correspond to the cells that contribute the
most to σV .

Interestingly, at our smallest values of Reλ, the ZAPS and WZERO exhibit similar numerical magnitudes of the
standard deviation and of the normalized average cluster size 〈VC〉/〈V 〉 (see Fig. 1c, where VC denotes the volume of
the clusters). In other words, under the Voronöı analysis criteria, both fields display a similar degree of clustering.
We note however that this statistical signature does not necessarily imply that both fields coincide. This observation
is indeed contentious, as in the literature the study of Coleman and Vassilicos [13] shows that ZAPS are found for
several values of the Okubo-Weiss parameter [49], which gauges the importance of strain over vorticity. More precisely,
Coleman and Vassilicos suggest that ZAPS cannot be uniquely associated with regions of high strain and low vorticity.
On the other hand, the study of Bragg et al. [50] advances that “regions where the fluid acceleration is low (a → 0)
are associated with regions where the coarse-grained strain exceeds the coarse-grained rotation.”

Moreover, the average cluster size normalized by the average Voronöı cell size (〈VC/〈V 〉〉) shows that clusters for
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a)

b)

c)

d)

FIG. 1: Global Voronöı statistics for the different field nulls. a) Average Voronöı volume sizes of STPS, ZAPS, and
WZERO. STPS for the JHU datasets (“STPS-JHU”) are indicated by a different marker here an in the following

panels. b) Standard deviation of the Voronöı cell volumes with respect to the one from a Poisson distribution
(RPP). c) Average cluster volume normalized by the average cell volume. d) Average cluster size over Kolmogorov

(η, left vertical axis with closed markers) and integral length scales (L, right vertical axis with open markers).
Markers shapes are the same for all panels. Power laws and some reference values are indicated by straight lines.

ZAPS and WZERO in Fig. 1c are independent, or at least weakly dependent, on Reλ. On the contrary, 〈VC/〈V 〉〉 for
STPS increases with Reλ. To relate these cluster sizes with actual turbulent length scales, we plot in Fig. 1d the mean
linear size of clusters for all nulls, 〈VC〉1/3 against the Kolmogorov and integral lengthscales, respectively. It is worth
mentioning that to the authors’ best knowledge, this is the first time the clusters of null Lagrangian acceleration and
vorticity are characterized via 3D Voronöı tessellations. For STPS, we see that the cluster average size is two orders of
magnitude larger than the Kolmogorov length-scale, somewhat larger than the Taylor length-scale, and grows slowly
with Reλ. This behavior is to be expected, as the average distance between STPS is related to the Taylor length-scale
[10], and for HIT λ/η ≈ 2

√
Reλ [51]. For WZERO, we find that the clusters of null vorticity are consistently smaller

than for the other two fields, and they seem to be on the order of 20η. For ZAPS we retrieve 〈VC〉1/3/η ≈ 30 − 50
in lieu of 〈VC〉1/3/η ≈ 10 − 20 in [16]. This mild discrepancy is due to our definition of a cluster: at least two cells
(NPC ≥ 2) below the threshold Vth and that share a face (resp. edge in 2D) are required to define a cluster. Using
this definition yields an average cluster size 2 to 4 times larger than when a condition NPC ≥ 1 is used. Hence, it is
thus unsurprising that for ZAPS we obtain a slightly larger value of 〈VC〉1/3/η than in other studies.

In the literature, the origin of these clusters of ZAPS has been suggested to be related to vortical structures. For
instance, by means of a 2D numerical study, Faber and Vassilicos [20] argue that vortical structures centered around
ZAPS scale with some lengthscale larger than η, in fact, a length scale between η and L. If we apply this logic to
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a)

b)

FIG. 2: Stagnation points (STPS) Voronöı tessellation analysis. a) PDFs of the normalized Voronöı cell volumes
V = V/〈V 〉. As a reference, the PDF of an RPP is indicated by the dashed black line, an exponential by a red

dashed line, and a −5/3 power law by the green dashed line. The vertical dotted line indicates the first crossing of
the PDFs with the RPP. Note the similar behavior of the “DNS” and “JHU” simulations at the largest resolutions.

b) PDFs of the clusters volumes normalized by the average volume (VC/〈V 〉), following Monchaux et
al. methodology [24]. A power law is indicated as a reference.

our observations and assume that clusters of ZAPS scale similarly to those vortical structures identified by Faber and
Vassilicos, we can argue that the size of such structures should be close to 0.1L. In addition, the behavior of this
quantity is also in agreement with the study of Sumbekova et al. [17] for inertial particles, which suggests that the
average cluster size is an increasing function of the Reynolds number and a fraction of the integral scale.

In the following we continue our analysis characterizing the different shapes of the PDFs of the Voronöı cell
volumes. As it will be detailed below, not only the global parameters present important differences for STPS, ZAPS,
and WZERO, but each set of nulls also has different PDFs and clusters with very different geometrical properties.

B. Probability density functions of velocity nulls

In this section we consider the PDFs of the Voronöı cell volumes and of the volumes of clusters of the velocity nulls
in the turbulent field, normalized in all cases by the mean cell volume. To compute each PDF of cluster volumes we
used the same volume threshold (Vth) for all datasets, and we followed the cluster algorithm of Monchaux et al. [24]
to detect clusters, i.e., we took all the neighbouring cells for which V < Vth. The same procedure was used in the
following sections to compute PDFs for the volumes of clusters of other vector field nulls.

The Voronöı cell volume PDF for velocity nulls exhibits an increasingly wider power-law behavior with an exponent
close to −5/3 (see Fig. 2a) at increasing values of Reλ. This is an expected result: the larger the Reynolds number, the
wider the range of scales induced (i.e., the existence of stagnation points separated by different length scales can be
just the result of these points being the zeros of a multiscale and approximately self-similar flow). Mora and Obligado
[52] also reported the widening power-law behavior with of Reλ to the right of the peak of the PDF in laboratory
experiments downstream of an active grid using 1D Voronöı tessellations. As mentioned before, mathematically this
power-law can be a consequence of the power-law behavior of the velocity autocorrelation function. Indeed, Smith
et al. [53] found that successive zero crossings (nulls in 1D) of a Gaussian process have power-law behavior with
exponent −2 + β if its spatial autocorrelation function is of the form ρ(r) = 1 − O(r2β) for r � 1 (see also [6, 54]).
The figure also suggests that the crossing at the left of the peak of the PDFs with the PDF of a synthetic random
Poisson process (RPP) is somewhat the same for all datasets (as a reference, the crossing is indicated by the vertical
blue line in the figure). Thus, one could expect this crossing to be related to some specific length-scale (e.g., to the
Taylor length-scale λ, taking into account that for these nulls 〈V 〉1/3 = Bλ with B some constant [10]). However, we
did not find conclusive evidence that λ is the length scale associated to such crossing. Finally, our volume PDFs also
hint that the degree of clustering for STPS scales with Reλ, in agreement with the results in the previous section.

The PDF of the cluster volumes of velocity nulls exhibits an even clearer power-law (see Fig. 2b), also with an
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a)

b)

FIG. 3: Zero acceleration points (ZAPS) Voronöı tessellation analysis, for the “DNS” datasets. a) PDFs of the
Voronöı cells normalized volumes V = V/〈V 〉. b) PDF of the cluster volumes normalized by the average volume

(VC/〈V 〉). Power laws and PDFs of exponential and RPP processes are shown as references.

exponent close to −5/3. The power-law widens over several decades as Reλ increases. However, some previous studies
have proposed that this behavior may be trivial or spurious. For instance, Uhlmann and collaborators [14, 55] have
shown that the cluster detection algorithm applied to synthetic random (RPP) data can also yield power-laws. The
latter prompts the question of how to differentiate random structures from turbulence driven ones. Mora et al. [56]
have addressed this problem using a PDF mixture model [57] (see also Sec. III D). After analyzing the histograms of
the number of points inside a cluster (NPC), they suggested that this power-law behavior in turbulent flows follows
from the functional dependence of these histograms. Mora et al. further argue that if the probability P of finding a
cluster with NPC points goes as P (NPC) ∼ Nγ

PC , the respective cluster volumes PDF will have a power-law with an
exponent close to γ. Although in 3D the cluster volumes in a RPP may also exhibit such behavior for certain values of
the Vth threshold, Mora et al. [56] found this behavior is of much wider extent for turbulence-driven clusters. In other
words, the collapse seen in the cluster PDFs is a result of the normalization by 〈V 〉, but the extent of the power-law
is due to the intensity of the background turbulence, i.e., of the value of Reλ, consistent with the argument advanced
by Uhlmann [58].

C. Probability density functions of zero acceleration points and vorticity nulls

Contrary to the STPS, the zero Lagrangian acceleration points PDFs of Voronöı cell volumes do not exhibit a
power-law behavior, and interestingly, when V = O(1) they display an almost exponential decay (see Fig. 3a). Once
again, the left crossing of the PDFs with the RPP seems to be the same for all datasets. But as reported in the
previous section, the respective ZAPS clusters PDFs exhibit a strong power-law, only this time with an exponent close
to −2 (see Fig. 3b). The collapse seen in the data is due to the normalization by the average cell volume. Conversely,
the extent of this power-law increases with Reλ. The behavior of the PDFs of cluster volumes is thus similar to the
one observed for the cluster volumes of STPS, but with a different power law. Obligado et al. [16] report a similar
algebraic exponent for ZAPS, and argue it is a signature of the ZAPS clusters’ fractal nature. Note that for ZAPS,
and for WZERO next, we only report data from the “DNS” datasets as a result of data availability.

We now consider the PDFs of Voronöı cell volumes and of cluster volumes for WZERO. The vorticity nulls Voronöı
cell PDFs display (see Fig. 4a) a similar behavior as the one found for the ZAPS Voronöı cell volume PDF. And
qualitatively, the same similarities are observed in the PDFs of the cluster volumes for WZERO. However, the PDFs
of cluster volumes of vorticity nulls have a slightly broader power-law behavior than the respective ZAPS PDFs (see
Fig. 4b). To confirm these subtle differences a comparison between the three null fields (see Figs. 5a and 5b) was
conducted for the three datasets of nulls in the DNS-512 case (see table I). The comparison reveals that: (1) The left
crossing between the nulls Voronöı cell PDFs and the RPP is somewhat similar for all fields (although the position of
the peaks are vastly different), (2) the nulls cluster PDFs collapse to some extent, and (3) the extent of the power-law
is ordered the different vector nulls as STPS < ZAPS < WZERO (note that for clarity only a −2 power law is shown
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a)

b)

FIG. 4: Vorticity null (WZERO) points Voronöı tessellation analysis. a) PDF of Voronöı cell volumes V = V/〈V 〉.
b) PDF of the clusters volumes normalized by the average volume (VC/〈V 〉) as in Monchaux et al. algorithm [24].

a)

b)

FIG. 5: Analysis of Voronöı tessellation for STPS, ZAPS, and WZERO in the DNS-512 simulation. a) PDF of the
Voronöı cells volumes V = V/〈V 〉. b) PDF of the clusters volumes normalized by the average volume (VC/〈V 〉) using

Monchaux et al. algorithm [24]. Power laws and the PDF of a RPP are indicated as references.

for the PDFs of cluster volumes). In the next section we study the origin of this power-law.

D. Power laws in the probability density functions of the cluster volumes

We now examine the PDFs of ZAPS and WZERO clusters volumes using the approach of Mora et al. [56]. These
authors claim that clusters PDFs, obtained by the clustering detection algorithm in Monchaux et al. [24] (see also
Sec. III) can be analytically described by a mixture PDF model [57]. PDF mixture models are based on PDFs linear

superpositions: Invididual PDFs fi are multiplied by weights αi, i.e., fmix =
∑NP

i αifi, where NP is the number of
PDFs to combine. For instance, NP can be associated with the number of points (resp. particles) in the clusters, and
the PDFs of clusters of two, three, four, and up to NP points can be combined to construct a PDF which represents
the statistics of VC/〈V 〉. These NP -points cluster PDFs are computed via convolutions (i.e., assuming statistical
independence and strong-mixing conditions [59, 60]) using a limited 3D random Poisson distribution as base function.
For more details, see [56].
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a)

b)

FIG. 6: a) Probability histogram SN of the number of clusters with NPC points inside the clusters, for STPS, ZAPS
and, WZERO, at different values of Reλ. Power laws are shown as references. b) PDF of clusters volumes of ZAPS
and WZERO including the PDF from the model proposed by Mora et al. [56] with Vth = 0.5 and NPC up to 5000.

Mora et al. [56] suggest computing the weights αi as αNPC
= number of clusters with NPC points divided by

the total number of clusters. Thus, we estimated these weights by computing histograms (SN ) of the number of
clusters conditioned on the number of null points (resp. particles) in a cluster NPC (see Fig. 6a). These histograms
have a power-law behavior with an exponent close to −16/9 or to −2 (maybe slightly dependent on the field nulls
considered), and similar to the exponent proposed by Yoshimoto and Goto [61] for inertial particles. The observation
of this scaling cannot be overlooked, as it gives credence to some aspects proposed by the sweep-stick mechanism:
particle clustering is a multi-scale process that resembles the clustering of acceleration nulls. Indeed, it is remarkable
that previous studies with inertial particles [21] found a compatible self-similar structure to that followed by these
pairs, triplets, quartets, and so on of vector nulls.

We thus fed the mixture PDF model with αPC ∼ N−2PC (i.e., the probability of having clusters of NPC points
follows a power-law), and computed the PDF summing up to NPC = 5000 with max(VC/〈V 〉) ≈ 5000Vth ≈ 2500 for
Vth = 0.5. For clarity we only compare the result of this mixture PDF model with the cluster volume PDFs for ZAPS
and WZERO, which have a wider power-law extent (c.f. Fig. 5b), and which also show a more compatible behavior
with the assumption that αPC ∼ N−2PC . The result is shown in Fig. 6b. Indeed we find a good agreement, recovering
the power-law behavior of the PDFs of ZAPS and WZEROS for several decade (also shown in Fig. 6b).

This result is remarkable considering that the PDF mixture model uses convolutions of limited RPP distributions,
each of them with no correlation at any scale [23]. However, their superposition can have correlations given by the
coefficients in the expansion. Therefore, the broader power-law behavior seen in the clusters PDFs (Figs. 2b, 3b,
and 4b) can only have a turbulent origin. Indeed, its origin resides in the power law scaling of the αi weights. The
resulting behavior, although it may depend on the threshold Vth used, is therefore not a spurious artifact of the 3D
Voronöı tessellations (see also Fig. 13 in [58]); turbulence increases the probability –through the weights αi– of having
very large structures as those found in STPS, ZAPS, or WZERO.

IV. INERTIAL PARTICLES IN HIT

As previously mentioned, Coleman and Vassilicos [13] have related the geometry of ZAPS to inertial particle
clustering (also known as preferential concentration). To examine this phenomenon, we tracked point inertial particles
in DNS-512 with Stokes numbers St equal to 0.5, 3, and 6 respectively. Each dataset of particles (for each value of
St) comprised 20 snapshots containing instantaneous 3D positions of 106 inertial particles.

We found evidence of clustering of particles for all Stokes numbers considered (see Fig. 7a, which also shows a
comparison with the PDFs of cell volumes of STPS, ZAPS and WZERO). Interestingly, the particles Voronöı volumes
PDF have better agreement with the WZERO PDF for V � 1, and on the contrary, they exhibit better agreement
with the ZAPS PDF for V & 1 (albeit not as good for the particles with St = 0.5, as evidenced by a slightly faster drop
of the PDF of these particles for V & 5). But given the overall similarities of the PDFs for V & 1, it is unsurprising
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FIG. 7: Voronöı tessellation analysis of inertial particles’ instantaneous positions. a) PDF of the normalized Voronöı
cells volumes V = V/〈V 〉. Markers follow the legend in panel b). b) PDF of the clusters volumes normalized by the
average volume (VC/〈V 〉) using Monchaux et al. criteria. The inset shows a detail of the peak of the PDFs in linear

scale. Open markers refer to STPS, ZAPS and WZERO in DNS-512, while closed markers are for particles with
different Stokes numbers. c) Histogram of number of clusters conditioned on the number of points in the cluster, for
STPS, ZAPS, WZERO, and particles with different St. The inset shows the compensated histogram by an algebraic

exponent of 2, i.e., the PDFs in the main figure multiplied by N2
PC . d) Linear cluster size (normalized by the

Komogorov and integral lengths) against the number of particles inside the cluster. In these panels, RPP
distributions and power laws are shown as references.

that the inertial particles degree of clustering shows an overall better agreement with the ZAPS field (as later shown
in Fig. 8b), as larger cells, also known as voids, are the main contributors to the standard deviation of the cell volumes
σV [17]. However, all these observations also suggest that the sweep-stick mechanism may only be an approximate
representation of the phenomenon underlying the physics at all scales, as discussed by Bragg et al. [50].

The behavior for V � 1 has not been observed by the Obligado et al. study [16], which used experimental data
for inertial particles (using 2D high-speed imaging) and patches of low Lagrangian acceleration obtained from DNS.
These patches were also averaged into 2D planes with several pixels thickness (to mimic the finite thickness of a
laser sheet in the experiments). Therefore, both experiments (due to finite spatial resolution) and DNS (due to the
averaging) did not resolve the range V � 1 corresponding to very small cells. For larger cells, a statistical agreement
between particles clustering and ZAPS was reported, in agreement with the present results. As will be explained
below, we believe that for physical reasons the V � 1 range is less relevant, at least for the simulations we consider
and the approximations we made in the dynamics of the inertial particles.

Interestingly, we also retrieve a power law (see Fig. 7b) in the PDF of cluster volumes of particles, analogous to
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the one found for ZAPS and WZERO. The cluster volume PDFs peak at VC/〈V 〉 ≈ 1 can be explained from the
histograms of number of clusters conditioned on the number of particles inside a cluster NPC (Fig. 7c); clusters with
NPC = 2 have a larger probability, and therefore, VC/〈V 〉 ≈ 2Vth ≈ 1 is the most likely value. Considering that
the normalized cells V close to the threshold Vth have the highest probability, our observation is insensitive to the
reported linear behavior between NPC and cluster size (see Fig. 7d and [62]). Also, note that all the PDFs in Fig. 7b
are normalized by the respective mean cell volume. For clarity, the actual mean value and dispersion of the cluster
sizes (compared with those of STPS, ZAPS and WZERO) will be discussed later, for which a dependence with St will
be more clearly observed. Closer inspection of the histogram in Fig. 7c reveals good agreement between the different
particles sets and ZAPS or WZEROS for St = 0.5, St = 3 and St = 6 up to NPC < 10. In other words, for clusters
with NPC > 10 a dependence on the value of St of the particles can also be observed (see the inset in 7c, which
shows the PDFs compensated by N2

PC). In particular, beyond this value the largest Stokes numbers start to depart
from the smallest one. This discrepancy agrees with the expectation that at larger Stokes numbers the particles filter
out certain flow scales [40, 63]. In particular, for large values of St, particles are expected to be less sensitive to fast
changing (and small scale) motions in the fluid.

Considering again the PDF of cluster volumes, note also that the probability of having small clusters VC/〈V 〉 � 1
(see Fig. 7b) is higher for all the vector nulls than for the particles, a behavior similar to that observed in Fig. 7a for
the Voronöı cell volumes). Although dispelling why this is the case is interesting, we refrain from analyzing these high
concentration regions as numerical models for inertial particles simulations may reach, there, physical limits. In these
regions, the particle local concentration can indeed be orders of magnitude larger than the surrounding conditions
[64, 65] (as a cluster of NPC particles such that VC/〈V 〉 < 0.1 is for instance at least 10NPC times denser than the
average seeding concentration 〈V 〉−1). Therefore, the assumption of the one-way coupling approximation may become
invalid in these regions as the particle clusters should actually strongly modify the surrounding turbulence (though
a so called two-way coupling) in a real flow [66–68]. To be more specific, in the present study where 106 particles
are simulated in a (2π)3 numerical volume, the linear dimension of a cluster such that VC/〈V 〉 = 0.1 is lc ' 0.006,
hence about the size of η for the 5123 simulation. Besides, by the definition of the Stokes number, the diameter of the
particles relates to η by dp = (6St1/2 η)/

√
1 + 2Γ, where Γ = ρp/ρf is the particle to fluid density ratio. Therefore,

if we were for instance interested in water droplets in air (a problem relevant for clouds), particles with St ' 1 are
such that dp ' 0.15η. As a result, a cluster such that VC/〈V 〉 = 0.1 can realistically contain at most 5 to 6 particles,
which are then fully compact (hence at odds with the one-way coupling approximation), while a cluster such that
VC < 0.01〈V 〉 should contain at most 1 particle, which then becomes irrelevant. Finally, these small clusters tend
to be either clusters with very few particles (which just happened to be sporadically close, but cannot be relevantly
considered as coherent clusters [22]) or too highly seeded (hence out of the physical approximations of numerical
models). This justifies, that when it comes to take into consideration physical constraints in real particle laden flows,
such small or presumably too highly concentrated clusters, which are artificially accessible in numerical simulations,
must not be over-considered. As a result we focus mostly on the self-similar clusters (VC/〈V 〉 > 1) as done, e.g., by
Baker et al. [22, 69].

Interestingly, inertial particle clusters volumes are (on average): (1) Smaller than the average volume of STPS
clusters, (2) of the same order of ZAPS clusters, and (3) larger than WZERO clusters (see Fig. 8a, which compares the
ratios of the mean particles cluster volumes to those of the three nulls). However, the ratios between these volumes are
not completely independent of the Stokes number of the particles. The ratios seem to grow with St until saturating, and
for particles with St = 0.5 the mean volume of the clusters is somewhere in between those of WZERO and ZAPS, being
≈ 3 times larger than the mean volume of clusters of WZERO, and ≈ 2 times smaller than the mean volume of clusters
of ZAPS. A qualitatively similar behavior is observed in the standard deviation of the PDFs of V (the normalized
Voronöı cell volumes) for the particles with different St compared with the standard deviation in V for STPS, ZAPS,
and WZERO (see Fig. 8b). In particular, note that for St = 3 and 6, (σV |St)/(σV |ZAPS) ≈ 1. Given that the standard
deviation of the Voronöı tessellation quantifies the degree of clustering, whereas the PDFs of clusters depend on the
probability of finding clusters of 2, 3, 4, and larger number of particles (as shown in Sec. III D and in Fig 6b), the
statistical similarities between the clustering of ZAPS and of inertial particles are again remarkable. Indeed, both
quantities have average cluster volumes of the same order of magnitude, i.e., (〈VC〉|St)/(〈VC〉|ZAPS) ∈ [0.5 − 2] as
already reported, and specially so for the particles with St > 1. Obligado et al. [16] reported a similar trend from
experimental measurements taken via 2D imaging. The ratio of the standard deviations (which, as just mentioned,
provides a way to quantify the strength of the clustering [24]) in Fig. 8b is also in agreement with the results of Obligado
et al. [16]. This observation further supports the observation that the degree of clustering of inertial particles for
St ≥ 1 has indeed a close resemblance to self-similar clustering of ZAPS.

We therefore find that, while the 3D nature and more detailed spatial resolution of this study shows that no set
of nulls perfectly mimics the inertial particles spatial distribution, for St ≥ 1 the results from [16] remain valid: the
spatial segregation of particles is consistent with that of ZAPS (specially for larger Voronöı volumes), supporting an
agreement with the sweep-stick mechanism. On the other hand, very small particles’ Voronöı cells deviate from this
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FIG. 8: Particle clusters global parameters. a) Inertial particles average cluster size over the different average cluster
sizes coming from the nulls of fields of the DNS-512 dataset. b) Ratio of the standard deviation of the inertial
particle cluster volumes over the standard deviation for the different nulls fields, also for the DNS-512 dataset.

behavior, and particles with St = 0.5 do not present complete similarities with any of the set of nulls discussed here.
It is nevertheless expected that for lower values of the St number, inertial particles will eventually agglomerate within
low vorticity regions of the flow.

As a closing comment, note other scaling relations can be inferred or confirmed from these results. Previous studies

[56, 70] indicate that the linear cluster size of inertial particles LC = 〈VC〉|1/3St is of O(L/10). Our results also indicate
LC/L ∈ [0.1 − 0.15], with similar values for linear cluster sizes of ZAPS for Reλ > 200. In a related observation,
Wittmeier and Shrimpton [71] recently reported that when the product between the particle number density and the

Kolmogorov length scale is held constant, i.e., n
1/3
p η = η/〈V 〉|1/3particle = constant, some measures used to quantify

preferential concentration become independent of the Reynolds number for Reλ ≥ 200. We can test this claim in the
following way: first, we assume that the particles follow the sweep-stick mechanism, and that the number density of

ZAPS and of inertial particles are similar such that we can write n
1/3
p η ∼ n1/3ZAPSη. Then, using Fig. 1a (see also [8])

we can advance nZAPS ∼ (L/η)3 and thus n
1/3
p η ∼ n

1/3
ZAPSη ∼ L. Our DNS results supports this proposal, and the

degree of clustering of ZAPS appears to saturate for Reλ ∈ [250, 610] , i.e., (σV |ZAPS)/σRPP ≈ 4.

V. CONCLUDING REMARKS

We have analyzed the velocity, Lagrangian acceleration, and vorticity nulls in datasets coming from high fidelity
numerical simulations, in a wide range of Taylor-based Reynolds numbers. Mean values and standard deviations of
Voronöı cells volumes for these fields nulls display scaling dependence with Reλ. The number density of the velocity
and acceleration nulls roughly follow the scalings proposed by Vassilicos and collaborators [5, 6, 8]. Vorticity nulls
(the densest of all fields) also exhibit a scaling similar to the acceleration nulls, as reported by Moisy and Jimenez[2].
The velocity nulls are scarce, but they are the most strongly clustered field at increasing Reλ, as indicated by the
standard deviation of Voronöı cells volumes. On the contrary, clustering of vorticity and Lagrangian acceleration nulls
(again as indicated by the standard deviations) barely changes with Reλ, with their normalized cluster size depending
weakly on Reλ.

Our results confirm the presence of a power-law with an exponent close to −5/3 in the Voronöı volume cell PDF for
velocity nulls (or stagnation points) at increasing values of Reλ. This behavior is absent for acceleration and vorticity
nulls. Moreover, when considering the PDFs of cluster volumes, the PDFs for all null fields show a power-law behavior
with an algebraic exponent close to −5/3 for velocity nulls, and to −2 for Lagrangian acceleration and vorticity nulls.
We showed evidence that this behavior is not an artifact of the 3D Voronöı tessellation, and that the extent of the
scaling stems from the underlying dynamics of the turbulent flow.

When considering the clustering (or preferential concentration) of point inertial particles, our results show that for
Voronöı cells with normalized volume V > 1 (i.e., for volumes larger than the mean), the Voronöı cell PDF of inertial
particle clustering better matches the ZAPS Voronöı cell PDF, specially for the particles considered with St > 1.
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Likewise, the average cluster volume of both inertial particles and ZAPS have the same order of magnitude for these
particles. These observations give credence to the observation that on the average, the preferential concentration
mimics the topology of the zero acceleration points, as reported elsewhere [13, 16]. However, for very small particles’
Voronöı cells and for particles with St = 0.3, deviations from this behavior are observed, indicating that the sweep-
stick mechanism may be only an an approximate representation of a more complex physical process underlying the
preferential concentration of particles. Finally, we find evidence that the cluster linear size scales with the integral
length scale, LC = O(L/10), in agreement with previous studies by Mora et al. [56].
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