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Abstract: In this work we discuss logical structures related to indistinguishable (or 
similar) particles. Most of the framework used to develop these structures was 
presented in previous works. We use these structures and constructions to discuss 
possible ontologies for identical particles. In other words, we use these structures in 
order to characterize the logical structure of quantum systems for the case of similar 
particles, and draw possible philosophical implications. We also review some proposals 
available in the literature which may be considered within the framework of the 
quantum logical tradition regarding the problem of indistinguishability. Besides these 
discussions and constructions, we advance novel technical results, namely, a lattice-
theoretical structure for identical particles for the finite dimensional case. This 
approach has not been present in the scarce literature on quantum logic and similar 
particles. 
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ESTRUTURAS LÓGICO-QUÂNTICAS PARA PARTÍCULAS 
SEMELHANTES 
 
Resumo: Neste trabalho discutimos estruturas lógicas relacionadas a partículas 
indistinguíveis (ou semelhantes). A maior parte do quadro teórico usado para 
desenvolver essas estruturas foi apresentada em trabalhos anteriores. Usamos essas 
estruturas e construções para discutir possíveis ontologias para partículas idênticas.  Em 
outras palavras, usamos essas estruturas para caracterizar a estrutura lógica de sistemas 
quânticos para o caso de partículas semelhantes, e traçamos possíveis implicações 
filosóficas. Também examinamos algumas propostas disponíveis na literatura que 
podem ser consideradas dentro do quadro da tradição da lógica quântica concernentes 
ao problema da indistinguibilidade. Além dessas discussões e construções, 
apresentamos novos resultados técnicos relativos à estrutura da teoria de reticulado 
para partículas idênticas, no caso de dimensão finita.  Esta abordagem não está presente 
na pequena literatura sobre lógica quântica e partículas semelhantes.   
 
Palavras-chave: lógica quântica, conjuntos convexos, partículas indistinguíveis. 
 
 

1. Introduction 
 

Among the foundational problems of quantum mechanics (QM), the 
discussion about identical particles (so denominated for example by VAN 

FRAASSEN, 1991, chaps. 11 and 12) plays a central role.1 The case of similar 
particles is treated separately in almost all introductory books on QM 
(BALLENTINE, 2000; SAKURAI, 1985) and in many works on physics 
(SCHRÖDINGER, 1950; MESSIAH & GREENBERG, 1964; GIRARDEAU, 1965; 
AMICO et al., 2008; DOWLING et al., 2006; GHIRARDI & MARINATTO, 2004; 
PLASTINO et al., 2009), and philosophical debates have been dedicated to this 
problem (SCHRÖDINGER, 1952; D’ESPAGNAT, 1976; FRENCH & KRAUSE, 2006; 
POST, 1963). 

From the interpretational point of view, one of the most important 
open tasks is the right characterization of the word ‘similar’ (or ‘identical’, or 
‘indistinguishable’) as used in this context. On the one hand, the axioms of 
QM, as standardly formulated, are based on classical logic and mathematics: 
that mathematics that can be built in a fragment of the Zermelo-Fraenkel set 

                                                           
1 In this work we follow Dirac and call them similar particles. 
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theory with the axiom of choice (ZFC) (MANIN, 1977; HALMOS, 1960; KUNEN, 
1980). Thus, it involves – at least at the formal level – the ‘classical’ theory of 
identity, which says that there are no indiscernible objects: indiscernible, or 
indistinguishable, entities must be the very same object, and that’s all there is to it. 
But on the other hand, the theory does not seem to provide the means to 
distinguish (or label) quanta in most cases. On the contrary, it seems to point in 
the direction that quanta cannot be discerned at all. Thus, at the interpretational 
level, many authors inclined themselves towards a point of view in which quanta 
cannot be considered individuals (SCHRÖDINGER, 1950, 1952; FRENCH & 

KRAUSE, 2006, 2010; KRAUSE, 2003, 2010; POST, 1963). This position is usually 
called the received view. 

The question of whether elementary particles are indiscernible by 
‘physical properties’ only (but retain individuality), or whether they are 
absolutely indiscernible, being entities that even in God’s mind cannot be 
discerned, either by physical or logical tools, is not a settled topic (see for 
example MULLER & SEEVINCK, 2009, and FRENCH & KRAUSE, 2006, for a 
complete discussion). We will return to this problem in this paper and use 
logical tools to shed light onto it. 

Many authors claim that the alleged indiscernibility concerns only 
‘physical properties’, and usually state that even if quanta cannot be discerned 
by physical means, they still retain their individuality as some kind of ‘primitive 
thisness’. For advocates of this position, an ontology of individuals is possible, 
but the theory provides no means to discern the particles by observational 
methods. Thus, this alternative opens the door for some kind of hidden 
variables, or parameters (in this case, as a form of “hidden identity”), which 
would be represented at least in the logical domain of the theory – logic here 
encompassing mathematics – and which hide themselves when we try to 
manipulate them experimentally (as happens with “hidden variables” in Bohm’s 
interpretation). No one knows the implications of this assumption, as for 
instance, whether there is some kind of no-go theorem concerning ‘logical’ 
properties. Confusion usually appears in crucial questions, such as testing 
experimentally whether quanta are individuals or not. In order to settle these 
questions, the problem must be properly formulated and some questions 
clarified. Logic may be helpful for this task, and we explore this possibility 
throughout the paper. 
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It is important to discuss here the relationship between a given 
formalism and its possible interpretations. The axiomatization of a physical 
theory depends heavily on the mathematical formalism used to describe it. And 
this axiomatization involves different levels of discourse: on the one hand, we 
have the mathematical formalism used to describe the theory; but we also have 
rules connecting elements of the mathematical formalism with empirical data. 
For example, in QM, one says that to the energy observable of the particle 
corresponds a self-adjoint operator in a Hilbert space. 

Interpretation of the mathematical formalism plays a crucial role here 
and vice versa: the mathematical formalism is used to show things at the 
interpretational level, as for example, in the derivation of Kochen-Speckers’s 
theorem. Theorems of a physical theory intermingle mathematics and 
interpretation in a complicated way. 

If the received view is accepted, there is in fact a foundational problem 
of logical nature when the interpretation – which presupposes non-individuality 
– is contrasted with the standard axiomatic formulation of the theory, which as 
mentioned above, presupposes the classical theory of identity. In other words, 
if electrons are assumed to be non-individuals, it is not reasonable to deal with 
them as if they were collections of distinguishable objects as the ones appearing 
in ZFC. This situation has given rise to different kinds of criticisms, as the 
discussion about the “surplus structure” in REDHEAD & TELLER (1991, 1992) 
or the demand for a more direct formulation (avoiding the symmetrization 
postulate) in KRAUSE (2003) and POST (1963). In MULLER & SEEVINCK (2009) 
the contradiction is exploited in order to support the position that quanta can 
be discerned (at least in a weak form). 

In this work, we remark that there is a deeper level in the 
axiomatization of a given theory: in the end, any mathematical formalism relies 
on a logical background. For example, the axioms of QM can be formulated 
using functional analysis, and functional analysis relies on set theory (as for 
example, ZFC). But set theory relies on first order classical logic. This simple 
fact implies that the conclusions that we extract out of a given axiomatization 
depend in part on this logical level.2 What happens if the logical level is 
changed? As we show in section 4.2, it is possible to change the logical level of 
the theory in a way which is compatible with the received view. As far as we 

                                                           
2 We are considering set theory, in this case ZFC, as part of the logical level. 
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know, in this axiomatization, particles are not individuals, and cannot be 
discerned. 

Usually, defenders of the received view are quite aware of the surplus 
character of particle labels, labeled tensor products and all the elements of the 
theory which depend on the fact that the mathematical formalism is not 
prepared to deal with non-individual entities. But in MULLER & SEEVINCK 
(2009) the dependence of the logical dimension of mathematical proofs is 
forgotten, and used to regain a weak form of discernibility in the quantum 
formalism. One may wonder whether it is not simpler to use a different 
formulation of QM, like Bohmian mechanics, and just assert that particles are 
discernible by their trajectories. Anyway, we think that the position which 
asserts that elementary particles are weakly discernible is a valid one, because of 
metaphysical underdetermination. Our point in this work is that there is still 
another possibility (see section 4.2 of this work) in which particles are 
indiscernible non-individuals, and that particular emphasis should be put on the 
logical background of the theory when dealing with these matters. 

Another important foundational problem in QM concerns compound 
systems (of which the indistinguishability problem may be considered as a 
particular case), in particular, the notion of entanglement (BENGTSSON & 

ŻYCZKOWSKI, 2006), which was considered by Schrödinger as “the 
characteristic trait of quantum mechanics” (SCHRÖDINGER, 1935, 1936; 
EINSTEIN, PODOLSKY & ROSEN, 1935). Entanglement has to do with quantum 
systems after they have interacted; inquiry into entanglement of similar particles 
has been growing relatively recently. Many questions remain open and, as is 
well known, correlations originating in entanglement are very different from 
those originating in statistics (exchange correlations) (GHIRARDI & 

MARINATTO, 2004; DOWLING et al., 2006; AMICO et al., 2008; PLASTINO et al., 
2009). The singular features which appear when aggregates of systems of 
identical particles are studied give the subject its own particular problems. This 
has to be taken into account when structural properties of aggregates of quanta 
are studied. 

In this paper, we outline a discussion on certain topics involving indiscernible 
particles within the scope of different mathematical structures that are motivated by quantum 
theory. One of them has to do with quantum logics (QL) and compound quantum 
systems of identical particles. The standard quantum logical approach to QM 
(BIRKHOFF & VON NEUMANN, 1936; JAUCH, 1968; PIRON, 1976; 
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BELTRAMETTI & CASSINELLI, 1981; DVUREČENSKIJ & PULMANNOVÁ, 2000; 
DALLA CHIARA et al., 2004; ENGESSER et al., 2009) uses the lattice of 
projections of the Hilbert space of the system as the lattice of propositions (see 
section 3). This approach has been useful for the study of structural properties 
of quantum systems by the characterization of their operational lattices, and for 
the clarification of differences with other theories (such as classical mechanics). 
Recently, an alternative proposal has been developed (DOMENECH et al., 2010; 
HOLIK et al., 2010; HOLIK et al., 2013) in order to solve some problems which 
appear in the study of compound quantum systems (see for example AERTS, 
2000). After reviewing the standard formulation of the formalism of similar 
particles and posing its problems in section 2, we adapt the constructions 
presented in DOMENECH et al. (2010), HOLIK et al. (2010), and HOLIK et al. 
(2013) for the indistinguishable particle case in section 3. This construction is 
particularly suitable for an extension of the QL approach to the case of similar 
particles, which is difficult to accommodate in the traditional approach, and has 
not been explored in the literature (see however GRIGORE, 1993). It provides a 
new formal framework for the study of compound quantum systems in the 
indistinguishable case and its entanglement properties, as discussed in section 
3.2. 

The other formal structure discussed in this work is the theory of 
quasi-sets (KRAUSE, 2003), which is based on a non-classical logic, namely, a 
non-reflexive logic, and has to do with the problem of the identity of similar 
particles.3 This is done in section 4. In this section we review the main 
characteristics of quasi-set theory and discuss its implications. We also review 
how it can be used for an alternative formulation of the Fock-space formalism 
(DOMENECH et al., 2008; DOMENECH et al., 2009), discussing the implication 
of such a construction for the interpretation of QM. Next, in section 5, we pose 

                                                           
3 We call ‘non-reflexive’ those logics which deviate from classical logic in what respects 
the theory of identity, in particular, by questioning the principle of identity in some 

formulation. In our case, we question the principle in the form x (x=x) (also called 
the reflexive law of identity), since we assume that there are entities to which the 
standard notion of identity (described by the theory governing the symbol ‘=’) does not 
hold. This assumption is based on some of Schrödinger’s opinions – see 
SCHRÖDINGER (1952) and FRENCH & KRAUSE (2006) for a detailed history and 
context. 
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the problem of identical particles in a new form, under the light of the logical 
structures presented in this work. 

Finally, we present our conclusions in section 6, where we try to 
condense some ontological implications of the discussions posed in sections 3, 
4 and 5. 

 
 

2. The problem of identical particles 
 
We sketch here a brief introduction to the standard formulation of the 

problem of identical particles. We emphasize the usual mathematical trick that 
is used to achieve indistinguishability, namely, permutational symmetry. The 
clarification of that trick opens the door – from the foundational point of view 
– to the idea that a different mathematical formalism would be in order. We 
explore the (old) idea that physics may suggest new logical schemas (see for 
example PUTNAM, 1968). 

 
 

2.1. States and compound quantum systems 
 
In the standard quantum mechanical formalism, for any system S, a 

Hilbert space H is assigned and observables are represented by self-adjoint 

compact operators. Let B(H) denote the set of bounded operators on a suitable 

Hilbert space H, while the set of bounded self-adjoint operators is denoted by 

A.  B(H) is a well known example of a von Neumann algebra (RÉDEI, 1998).  

States are represented (for either single or compound systems) by the 
set of positive trace class and self-adjoint operators of trace 1, 

 

C  =  {  A | Tr() = 1  and    0} ,                         (2.1.1) 

 

where the operators  are called density operators. They represent the more 
general available states, and for any observable represented by an Hermitian 
operator A, they assign a real number (which is interpreted as the mean value 
of the observable) according to the rule  

 

Tr(A) = A .                                           (2.1.2) 
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If P is a projection operator (i.e., a self-adjoint operator satisfying P 2 = P ) 
intended to represent an elementary test or event (BIRKHOFF & VON 

NEUMANN, 1936; PIRON, 1976), then the real number Tr(P) is interpreted as 

the probability of obtaining the event P given that the system is in state . This 
is nothing but Born’s rule. 

There is a special subclass of states, called pure states, which are the 

density operators satisfying  2 = . They have a representation as normalized 

vectors in |   H  in the form 

 

pure =|   |  .                                          (2.1.3) 
 

States which are not pure are called mixed states. For pure states, we have the 
superposition principle: any normalized linear combination of states yields a 

new state. In formulae, if |  and |  are normalized vectors representing 

pure states, and if  and  are complex numbers satisfying ||2 +||2 = 1, 
then 

 

|  = |  + |                                        (2.1.4) 
 

is also a state.4 
For a compound quantum system formed by two subsystems repre-

sented by Hilbert spaces H1 and H2, we assign a Hilbert space H = H1  H2, 

where “” denotes the tensor product. Observables are represented by Hermitian 

operators in B(H1  H2).  Let  {|i }  and  {|j }  be  orthonormal bases of 

H1 and H2  respectively. The set {|i   |j } forms an orthonormal basis for 

H1  H2.  Then,  a  pure  state  of  the  composite  system  can  be  written  as 

|  = i,j ij |i   |j . Given a state  of the composite system, partial 

states 1 and 2 can be defined for the subsystems. The relations between , 1 

and 2 are given by: 

                                                           
4 An analogous version of this principle exists for mixed states, replacing linear 
combination by convex combination, and pure states by general density matrices (see for 
example HOLIK et al., 2010). 
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   1 = Tr2() ,   2 = Tr1() ,                                 (2.1.5) 
 

where Tri stands for the partial trace over the ith degrees of freedom. A density 

matrix of the composite system  is said to be a convex combination of 

product states, if there exists {pi} and states { i
1} and { i

2} such that 
 
 

𝑝𝑖  1
 𝑖2

 𝑖  .                             (2.1.6)                                   =  

 
 
If a state of the composite system can be written as a convex combination of 
product states (or approximated by a sequence of them), then it is said to be 
separable. If not, it is said to be entangled (BENGTSSON & ŻYCZKOWSKI, 2006). 
 
 
2.2. Similar particles 

 
If particles are identical – in the sense of sharing all their intrinsic 

properties (for example, a collection in which all particles are electrons) –, we 
must add the condition that all pure states should be symmetrized. This is the 
content of the symmetrization postulate (FRENCH & KRAUSE, 2006), and this 
means that all states must have a definite symmetry with respect to the action 

of the permutation operator. For example, if | H1, | H2, and |  | ,  

then the corresponding symmetrized states are 
 

|  =   1

√2
 ( |   |     |   |  )  ,                       (2.2.1) 

 
where the “+” sign stands for bosons and the “–” sign for fermions. For 

bosons, states of the form |   |  (and all possible normalized linear 

combinations) are also possible. If {|i }iI  and {|j }jI  are bases of H1 and 

H2 respectively, then {|i   |j }i,jII  is a basis of H.  Then, a permutation 

operator 
 

P12  :  H → H,   P12|i |j   → |j |i                     (2.2.2) 
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can be defined, because it is defined on each element of this basis (and 
extended linearly in a trivial way). It can be shown that it is independent of the 
chosen basis. As P12

2 = 1, its eigenvalues are 1 and –1 for bosons and fermions, 

respectively. Then, this operator selects two special subspaces of H according 

to its eigenvalues 
 

H+ = {|   H |  P12|  = | }   ,                       (2.2.3a) 

H– = {|   H |  P12|  = –| }  ,                       (2.2.3b) 

 
which represent the possible (pure) states of the system when similar particles 
are involved. Quantum theory postulates that all physical states of similar 
particles must obey these symmetry conditions. This is an empirical statement, 
and up to now, no other symmetries have been found (see GIRARDEAU, 1965, 
and MESSIAH & GREENBERG, 1964, for a discussion of this statement). So, 
while the mathematical formulation of the theory opens the door for “para-
statistics”, it seems that none of them where found to have correspondents in 
nature, and we will not treat this case here. 

 
 

2.3. How does the symmetrization postulate work and its open problems 
 
It is important to make here the crucial observation of how the scheme 

of the symmetrization postulate works. First, particles are labeled by assigning 

them normalized vectors |  and |  in their corresponding spaces H1 and H2. 

If the state of the compound system were simply |   | , then, particles 
could be distinguished by special observables, i.e., the theory would allow for an 
asymmetry between both systems. But things are not so, and the 
symmetrization postulate must erase any observable characteristic which allows 
us to individuate any of the particles. Thus, the state must be symmetrized as in 
2.2.1. This is how the symmetrization postulate works: by first attaching a label 
in order to individuate each particle, and then making it physically unobservable 
by imposing a postulate.5 This ‘mathematical’ individuation might be in conflict 
with the standard interpretation of QM, for which physical individuation is not 

                                                           
5 This form of individuation may be termed ‘mathematical’. 
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possible. It is not difficult to realize that this trick is unavoidable in the standard 
formulation of QM, given that its axiomatics is formulated using standard 
(Zermelo-Fraenkel) mathematics, based on the classical theory of identity. 
Thus, the symmetrization postulate hides particle identities, leaving the door 
open to an interpretation based on non-individuals. This is one of the reasons 
why many authors support the received view. 

But the received view has been criticized in many ways. One of them 
has to do with a contradiction between the method of introducing the adequate 
symmetries and the interpretation itself. On the one hand, Schrödinger and 
others tell us that we must give up any intent to provide individuality for 
elementary particles, and this position has a considerable agreement with 
experience. But it is also true that particles are labeled in the symmetrization 
mechanism, and thus, they seem to posses some form of individuality. How to 
reconcile these views? 

The problem was discussed and a possible solution was proposed in 
REDHEAD & TELLER (1991, 1992). The authors characterized the non-
symmetrical parts of the Hilbert space, discarded by the symmetrization 
postulate, as surplus structure, i.e., a mathematical structure which plays no role in 
the final formulation of the theory and its predicted experience. Next, they give 
arguments in favor of the Fock-space formulation of QM. As is well known, it 
is possible to use the Fock-space formalism as an alternative approach to QM 
(ROBERTSON, 1973). The criticism raised against this solution reads that the 
Fock-space mechanism also appeals to particle labeling (FRENCH & KRAUSE, 
2006), and so, it has a similar problem as that of the usual symmetrization 
postulate formulation. 

From a different point of view, MULLER & SAUNDERS (2008) argue 
that fermions can be discerned in a weak form: they are weakly discernible 
because they have the same state (represented by the same reduced density 
operator), but they satisfy some symmetric and irreflexive relation. In a later 
work, MULLER & SEEVINCK (2009) show that elementary particles in general 
can be discerned. In section 4 we will see that this reduces to the fact that QM 
is axiomatized using ZF mathematics, and we argue that the conclusion drawn 
by the authors is premature, and the problem and its alternative solutions are 
not properly posed. 

There is still a possibility for a reconciliation between the received view 
and a valid reformulation of QM, but one which encompasses a radical change 
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in the logical framework of the theory. This is done in sections 4 and 6, after 
clarifying the problem in a clear logical and ontological form. 

One question is still at stack. Is the received view really desirable? Or 
unavoidable? The assumption of the individuality of quanta seems to play no 
role in any experience or, at least, it can be removed and experiments can be 
successfully explained. On the contrary, if the assumption of individuality is not 
taken with special care and protected by suitable hypotheses, it may lead to 
wrong results. Then, in spite of this, why not still postulate a form of “hidden 
individuality”, playing no role but satisfying a particular metaphysical taste? This 
can be done, and we discuss the consequences of this assumption when things 
are properly formulated, in the following sections. 

 
 

3. A quantum logical formalism for identical particles 
 
In this section, we introduce the lattice of convex subsets formalism 

presented in DOMENECH et al. (2010), HOLIK et al. (2010), and HOLIK et al. 
(2013). Next, we apply it to the case of identical particles using the preliminaries 
introduced above. The traditional approach to quantum logic uses the bounded 
projection operators (or equivalently, closed subspaces) of the Hilbert space as 
propositions or properties, using the direct sum as the disjunction, the 
intersection as the conjunction, inclusion as the order relation, and orthogonal 
complement as negation (BIRKHOFF & VON NEUMANN, 1936; DALLA CHIARA 

et al., 2004; ENGESSER et al., 2009). Contrary to that, we use a lattice formed by 
convex subsets of the state space. This lattice is more suitable in order to define 
maps that relate states of a compound system to states of the subsystems, and 
allows for the introduction of mixed states (something almost unavoidable 
when we have for example, bipartite systems of identical particles) (HOLIK et 
al., 2010; HOLIK et al., 2013). It is important to remark that no similar 
construction can be made with the usual projection lattice for the identical 
particles case. 
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3.1 The lattice of convex subsets 
 
According to the orthodox quantum-logical approach, the propositions 

of classical mechanics are the subsets of the set of states (classical phase space) 
(DALLA CHIARA et al., 2004). In HOLIK et al. (2010) and HOLIK et al. (2013) 
the convex subsets of the convex set of states are considered. Convexity is a key 
feature of QM (see for example MIELNIK, 1968, 1969, 1974, for an 
axiomatization based on convex sets). Let us begin by considering the set of all 
convex subsets of C (defined in eq. 2.1.1). We restrict the discussion to finite 

dimensional Hilbert spaces. 
 

Definition 3.1. LC := {C  C | C is a convex subset of C}. 

 
In order to give LC a lattice structure, we introduce the following operations: 

 

Definition 3.2. For all C, C1, C2  LC  : 
 

()  C1  C2  :=  C1  C2  . 
 

()  C1  C2  :=  conv (C1,C2).  It is again a convex set, and it is included in C 

(using convexity). 
 

()  C  :=  C  C  . 
 

(→) C1 → C2  :=  C1   C2  .  
 

With the operations of definition 3.2, it is apparent that (LC ; →) is a 

poset. If we set Ø = 0 and C = 1, then (LC ; →; 0,1) will be a bounded partially 

ordered set (poset). With the operations defined in 3.5, LC will be a bounded, 

atomic and complete lattice. 
It is possible to define maps which connect states of the compound 

system with states of the  subsystems  as  follows  (HOLIK et al., 2010).  Given 

C1  C1  and C2  C2 , define 

 

C1  C2 := {1  2 | 1  C1, 2  C2} .                 (3.1.1) 
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Using the above definition, it is possible to define the map 
 

 : LC1
   LC2

 → LC ,    (C1 , C2 ) → conv (C1  C2)  .               (3.1.2) 

 
If we use partial traces: 
 

tri : C → Cj ,     → tri () ,                            (3.1.3) 

 
we can also construct the maps 

 

i : LC → LCi
 ,    C  →  tri (C ) ,                            (3.1.4) 

 
which link the elements of LC (compound system) to the elements of LC1

 and 

LC2
 (subsystems). 

Next, define the product map 
 

 : LC → LC1
   LC2

  ,    C → (1(C ), (2(C ))  .               (3.1.5) 

 

In HOLIK et al. (2010) and HOLIK et al. (2013) it is shown that using  and  it 
is possible to link states of the compound system to the states of its subsystems 
(at the lattice level). This cannot be done in the standard QL formalism. In the 
following we will take this feature of LC as an advantage for constructing a 

lattice for the case of identical particles; the use of mixtures then becomes 
unavoidable. 

 
 

3.2. The identical particle lattice LC of convex subsets (bipartite case) 

 
Let us now define a lattice for the identical particles case. For the sake 

of simplicity we restrict ourselves to the finite-dimensional bipartite case. We 
begin by building the lattice of convex subsets for symmetrized Hilbert spaces. 
Taking into account the principle of indistinguishability, let 
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Definition 3.3.   C   :=  { : H  → H  | tr()=1,  † =   and   0} , 

and define (in analogy with LC): 

 

Definition 3.4. LC := {C  C  | C is a convex subset of C  } . 

 

C  can be considered a convex subset of C , namely C   LC . This is 

because any matrix in C  can be canonically extended to the whole Hilbert 

space. In order to provide LC  with a lattice structure similar to that of LC , we 

define the following operations: 
 

Definition 3.5. For all C, C1, C2  LC : 

 

()  C1  C2  :=  C1  C2  . 
 

()  C1  C2  :=  conv (C1,C2) .   
 

()  C  :=  C  C  . 

 

(→) C1 → C2  :=  C1   C2  . 
 

C is the orthogonal complement of C with respect to the scalar 

product A,B = tr(AB†), namely C = {  CNN| tr( †) = 0,   C}. 

With these operations, it follows that (LC ; → ) is a partially ordered set. And if 

we take  = 0 and 1 = C, then (LC ; →; 0; 1) is a bounded partially ordered 

set. We also notice that, because C  LC , and since the operations of C are 

inherited from C, then LC  is a sublattice of LC. 

Let tri(LC
 ) := {tri(C )| C  LC}   LCj

 (i  j). It is possible to define 

the canonical projections i and  for the identical particles case as follows: 
 

i
 : LC → trj (LC)  ,    C → trj (C )  .                      (3.2.1) 

 
and the product map 
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 : LC → tr2(LC)  tr1(LC)  ,    C → (1
(C ), (2

(C ))  .              (3.2.2) 

 
 

Figure 1. Canonical maps between the lattices LC , LC1
 , LC2

 , LC . The arrows i and  

represent inclusions and canonical projections. 

 
 

In other words, the maps 1
 = i|LC

 and  = |LC
 are the restrictions 

of i and  respectively to LC. Given that the subsystems are identical, it 

follows that 1
 = 2

. The map  is defined in analogy with (3.1.5), and it 
allows one to link states of the compound system to states of its subsystems. 

It would be of great interest to find an extension  of the canonic 

map . However, such an extension for the identical particle case is not 

immediate, because the elements of the set tr2(C1)  tr1(C2) will not be 
symmetrized states in the general case. The connection between the lattices LC1, 

LC2 and LC  with the lattice of the identical particles LC is shown in Fig. 1. 
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4. Quasi-set theory 
 
In this section, we basically follow the exposition of KRAUSE & 

ARENHART (2009); for details, see FRENCH & KRAUSE (2006, ch. 7; 2010). 
Quasi-set theory is a mathematical theory that enables us to deal with 
collections (quasi-sets) of objects that may be indiscernible without being 
identical (being the same object). The only way of dealing with objects of this 
kind in a standard theory is to allow the introduction of some ad hoc devices, 
such as the restriction of the lexicon of properties, that is, by taking a language 
with a finite number of them. This is Quine’s famous way of defining identity, 
namely, by the exhaustion of the chosen (finitely many) predicates (QUINE, 
1952, ch. 12). But this just defines indiscernibility relative to the language’s 
predicates only, and not identity strictly speaking, for there may exist other 
predicates not in the language which could distinguish the entities. 

In ZFC (the same can be said of most theories with due qualification) 
or in some conservative extension of it, let a be a particular set. The postulates 
of ZFC enable us to form the unitary set A = {a} and define a unary 
“property” (a formula with just one free variable) to be identical with a, by posing 

Ia(x) iff x  A (alternatively, iff x=a). This formula of course distinguishes (or 
discriminates) a from any other object, for only a satisfies it. Saying in other 
words, in the standard mathematics (in the sense mentioned in section 1), 

whenever we have a set with cardinal  > 1, its elements are distinct. In short, if 
electrons are modeled as elements of ZFC, i.e., if it is assumed that a collection 
of electrons can be described as an element of ZFC, then, electrons are not 
indiscernible, except with respect to a few chosen predicates.  

Quine says that objects may be strongly discriminable when for every 
object there is a formula with only one free variable that is satisfied only by the 
object. Two objects are moderately discriminable when there exists a formula with 
two free variables that is satisfied by the two objects in one order but not in the 
reverse order (QUINE, 1982, ch. 15). As he recalls, any two real numbers are 
strongly discriminable, although they may be ‘specified’, that is, definable by a 
formula.  

But in the interpretation that supports the received view, there is no 
way to attribute an identity to quanta (let us call this a ‘which is which 
criterion’), something that isolates one of them from the others in such a way 
that this chosen object remains with its identity forever. In this way, elementary 
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particles are considered as not individuals in a deep ontological sense. This 
assumption of the received view implies that quanta do not obey the formal 
properties of identity at the ontological level. Of course, one may licitly assume 
the received view and still represent 6 quanta as elements of ZFC; but under this 
assumption, the formal properties of identity of ZFC do not represent the 
ontological properties of quanta: there is no harmony between formalism and 
ontology. And as is well known, the ontological assumption that quanta are 
utterly indiscernible has influenced the prediction of very concrete physical 
phenomena, like Bose-Einstein condensates and the statistical properties of 
quanta (Bose-Einstein, BE, and Fermi-Dirac, FD, statistics).7 In this way, the 
ontological properties of quanta related to utter indiscernibility, show 
themselves as deeply connected with observable physical properties; the 
empirical predictions are influenced (or guided) by these kinds of assumptions, 
and the explanation of phenomena depends heavily on them. 

Thus, how can we deal with the two electrons of a helium atom in the 
fundamental state, according to the perspective of the received view? We know 
that they have all the same properties but distinct spins in a given direction, and 
so they obey an irreflexive and symmetric relation: “to have different spin of”. 
Some authors claim that they have found objects (the mentioned electrons) that 
are weakly discernible8 (MULLER & SAUNDERS, 2008) and thus, not utterly 
indiscernible (see also MULLER & SEEVINCK, 2009, and MULLER, 2015). But 
this way of approaching the problem of quantum indiscernibility is not the only 
one (KRAUSE, 2010) and has been criticized. For example, in CAULTON (2013) 
it is argued that the properties used to discern (weakly) are unphysical. Similarly, 
DIEKS (2010, p. 29) claims that: 

 
All evidence points into the same direction: “identical quantum particles” 
behave like money units in a bank account rather than like Blackean 
spheres. It does not matter what external standards we introduce, they 
will always possess the same relations to all (hypothetically present) 

                                                           
6 We could also use the word “describe” or “model ” here. 

7 The fact that these phenomena can be also explained using other interpretations of 
QM, is irrelevant for the discussion presented here. 

8 One should not confuse ‘weak discernibility’ with the Quinean notion of ‘moderate 
discernibility’. 
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entities. The irreflexive relations used by Saunders and others to argue 
that identical quantum particles are weakly discernible individuals lack the 
physical significance required to make them suitable for the job. 

 
The solution proposed in CAULTON (2013) is not entirely satisfactory, 

because particles are weakly discerned by using an observable based on their 
(squared) relative positions in space. And in this way, one may argue that what 
has been achieved is weak discernibility of relative space-time positions 
(because as is well known, it is problematic to attribute positions to quantum 
particles before measurement). With regard to weak discernibility, BIGAJ (2015, 
p. 118) points out that: 

 
One sense of discerning involves recognizing some qualitative 
differences (whether in the form of different properties or different 
relations) between the objects considered. When we discern objects in 
this sense, we should (at least in principle) be able to pick out one of 
them but not the other. Being able to discern objects in that way seems 
to be a prerequisite for making successful reference, or giving a unique 
name, to each individual object. But by discerning we can also mean 
recognizing objects as numerically distinct. In this sense of the word, 
discernment is a process by which, using some qualitative features of the 
objects, we make sure that there are indeed two entities and not one. 

 
Furthermore, DIEKS (2010, p. 29) asserts that 

 
The analogy between quantum mechanical systems of “identical 
particles” and classical collections of weakly discernible objects is only 
superficial. There is no sign within standard quantum mechanics that 
“identical particles” are things at all: there is no ground for the 
supposition that relations between the indices in the formalism possess 
physical significance in the sense that they connect actual objects. 
Consequently, the irreflexivity of these relations is not important either. 
Conventional wisdom appears to have it right after all. 

 
Thus, we see that many criticisms were raised against the weak 

discernibility approach in QM. Indeed, different criticisms against weak 
discernibility can be found in LADYMAN & BIGAJ (2010), DIEKS (2010), BIGAJ 
(2015), HAWLEY (2006, 2009), and VAN FRAASSEN & PESCHARD (2008). The 
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validity of the principle of identity of indiscernibles (PII) was questioned in 
ARENHART (2013a), BUTTERFIELD (1993), and FRENCH & REDHEAD (1988), 
and more discussion about the plausibility of non-individuals can be found in 
ARENHART (2013b) and ARENHART & KRAUSE (2014). In this way, we see that 
there exist interesting attempts to overthrow the received view. But this interpretation is still 
strong, because the criticisms raised against it up to now are not conclusive. In this work, we 
concentrate in the study of formalisms which are in harmony with this 
interpretation.9 

If electrons are formally represented using classical logic,10 being 
objects (in some sense of the word) in a finite number, they can always be 
named, say a and b, and the above property ‘to belong to A = {a}’, which is 
true just for a, distinguishes them absolutely! In Quine’s words, they can be 
always specified, that is, in the language (of ZFC) there is always a formula in 
one free variable that is uniquely satisfied by a given object (a set) (QUINE, 
1982, p. 134). Of course, it is possible to argue that the property Ia(x) (‘being 
identical with a’) is not a “legitimate property”of x. Or more specifically, that it 
is not a “legitimate physical property” of x. But a lot of care is to be taken here. 
According to the received view, quanta are not individuals and may be also 
indiscernible entities. In this case, Ia(x) is not a legitimate property in an 
ontological sense, and this assumption has important physical consequences (as 
for example, the well known implications of the symmetrization postulate). The 
objects of the assumed ontology and their properties should not be confused 
with the representation of these objects in a mathematical formalism: Ia(x) will be 
(or not) a legitimate property depending on the assumed ontology. And the 
formal properties of the mathematical language used to describe the objects 
may be either in agreement with their ontological properties or it is not. Many 
possibilities are at stake here, and the conclusions depend drastically in the 
assumptions involved. 

Quasi-set theory offers a different alternative to deal with these 
questions: with this theory, the ontology of the received view can be put in 

                                                           
9 Notice that this does not implies that we deny or reject other possible interpretations. 

10 The mentioned authors assume that they are using ZFC and their conclusions and 
definitions depend heavily on this assumption. These conclusions could be very 
different if quanta were represented using a different mathematical formalism or 
different ontological properties were assumed. 
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harmony with the formalism used to describe it. Although electrons do present 
a difference due to Pauli’s exclusion principle (for instance, differences in their 
spins), any permutation of them does not change the relevant probabilities, as is 
well known; in other words, there is no ‘which is which criterion’ for electrons 
in certain situations, say for the electrons of a helium atom in its fundamental 
state. So, it seems that it is perfectly possible to say that the electrons may be 
indiscernible without collapsing them in being the very same object. A 
paradigmatic example may be that of atoms (or molecules) in a Bose-Einstein 
condensate. Thus, we need to avoid that indiscernibility implies identity (in the 
philosophical sense of being the same entity). To cope with this idea, we 
“separate” the concepts: indiscernibility, or indistinguishability, is a relation that 
holds (being true or not) for all objects of our domain, but identity does not. 
Identity simply does not apply for certain objects. Thus, certain objects may be 
indiscernible without turning out to be the same object, as implied by the 
standard theory of identity, and they may form collections with cardinals greater 
than one (this is achieved by the postulates of the theory), but in a way that they 
cannot be identified, named, labeled, counted in the standard way.11 There is no 
space here to give the details of the theory, so we suggest FRENCH & KRAUSE 

(2006, 2010) for detailed references and for the axioms. Anyhow, in the next 
subsection we outline, without the details, the main ideas of the theory. 

 
 

4.1. Basic ideas of the theory Q 

 
Intuitively speaking, a quasi-set is a collection of objects such that some 

of them may be indistinguishable without being identical. 
As mentioned above, quasi-set theory Q derives its main motivations 

from some insights advanced by SCHRÖDINGER (1952, p. 17-18), for whom the 
concept of identity makes no sense when applied to elementary particles. 
Another motivation is (in our opinion) the need, stemming from philosophical 
worries, of dealing with collections of absolutely indiscernible but not identical 

                                                           
11 We mean: a series of, say, five objects can be counted by proving that the set having 
them as elements (and no other element) is equinumerous to a finite ordinal, in the 
case, the ordinal 5 = {0,... , 4}. We remark that in order to define the bijection, we need 
to distinguish among the elements being counted – they need to be individuals. 
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items. Spatio-temporal differences could be used in this case, you may say, and 
this serves do distinguish them. Without discussing the role of spatio-temporal 
properties here (but see FRENCH & KRAUSE, 2006), we can argue that these 
objects are invariant by permutations; in other words, the world does not 
present differences after substituting one of them for the other. Thus, it would 
be difficult to say that they have some form of identity, for they (in principle) 
lack any identifying characteristic. Objects of this kind act like those that obey 
Bose-Einstein statistics, that is, bosons (we should remember that the 
indiscernibility hypothesis was essential in the derivation of Planck’s formula – 
see FRENCH & KRAUSE, 2006). 

Thus, the first point is to guarantee that identity and indistinguishability 
(or indiscernibility) will not collapse into one another when the theory is 
formally developed. We assume that identity (symbolized by ‘=’) is not a 
primitive relation, but we use a weaker primitive concept of indistinguishability 

(symbolized by ‘’) instead. This is just an equivalence relation and holds 
among all objects of the considered domain. If the objects of the theory are 
divided up into groups, namely, the m-objects (standing for ‘micro-objects’) and 
M-objects (for ‘macro-objects’) – these are ur-elements – and quasi-sets of 
them (probably having other quasi-sets as elements as well), then identity 
(having all the properties of standard identity of ZF) can be defined for M-
objects and quasi-sets having no m-objects in their transitive closure (this 
concept is like the standard one). Thus, if we take just the part of the theory 
obtained by ruling out the m-objects and collections (quasi-sets) having them in 
their transitive closure, we get a copy of ZFU (ZF with Urelemente); if we further 
eliminate the M-objects, we get a copy of the ‘pure’ ZFC. It is important to 
remark that all observations made above concerning ZFC can be applied to 
ZFU as well.  

Technically, expressions such as x=y are not always well formed, for 
they are not formulas when either x or y denote m-objects (entities satisfying the 
unary primitive predicate m). We express that by informally saying that the 
concept of identity does not always make sense for all objects (it should be 
emphasized that this is just a way of speaking). The objects (the m-objects) to 
which the defined concept of identity does not apply are termed non-individuals 
for historical reasons (see FRENCH & KRAUSE, 2006). As a result (from the 
axioms of the theory), we can form collections of m-objects which have no 
identity; these collections may have a cardinal (termed its ‘quasi-cardinal’) but 
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not an associated ordinal. Thus, the concept of ordinal and of cardinal are taken 
as independent, as in some formulations of ZFC proper. So, informally 
speaking, a quasi-set of m-objects may be such that its elements cannot be 
identified by names, counted, ordered, although there is a sense in saying that 
these collections have a cardinal (that cannot be defined by means of ordinals, 
as usual, which presupposes identity). 

When Q  is used in connection with quantum physics, the m-objects are 

thought of as representing quanta (henceforth, q-objects), but they are not 
necessarily ‘particles’ in the standard sense (associated with classical physics or 
even with orthodox QM), but may be waves, field excitations (the ‘particles’ in 
quantum field theory – QFT), perhaps even strings or whatever entities 
supposed indiscernible that can be taken as possible interpretations of the m-
objects. Generally speaking, any ‘objects’ sharing the property of being 
indistinguishable can also be values of the variables of Q (see FALKENBURG, 

2007, ch. 6, for a survey on the various different meanings that the word 
‘particle’ has acquired in connection to quantum physics). 

Another important feature of Q is that standard mathematics can be 

developed using its resources, for the theory is conceived in such a way that 
ZFU (and hence also ZFC) is a subtheory of Q . In other words, the theory is 

constructed so that it extends standard Zermelo-Fraenkel with Urelemente 
(ZFU); thus standard sets (of ZFU) can be viewed as particular qsets (that is, 
there are qsets that have all the properties of the sets of ZFU, while the objects 
in Q corresponding to the Urelemente of ZFU are termed M-atoms; these satisfy 

the primitive unary predicate M). The ‘sets’ in Q  will be called Q -sets, or just 

sets for short. An object is a qset when it is neither an m-object nor an M-object. 
In order to make the distinction, the language of Q  encompasses a third unary 

predicate Z, such that Z(x) says that x is a qset which is a copy of a set of ZFU 
(these objects obeying Z correspond to the objects of ZFU). It is also possible 
to show that there is a translation from the language of ZFU into the language 
of Q , so that the translations of the postulates of ZFU turn to be theorems of 

Q ; thus, there is a ‘copy’ of ZFU in Q, and we refer to it as the ‘classical’ part of 

Q . In this copy, all the usual mathematical concepts can be stated, as for 

instance, the concept of ordinal (for sets). 
Q -sets are qsets whose transitive closure (defined as usual) does not 

contain m-atoms (in other words, they are ‘constructed’ in the classical part of 
the theory – see Fig. 2). 
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Figure 2. The quasi-set universe Q. On is the class of ordinals, defined in the classical 
part of the theory. See KRAUSE & ARENHART (2009). 

 
In order to distinguish between Q -sets and qsets that may have m-

atoms in their transitive closure, we write (in the metalanguage) {x : (x)} for Q 

-sets and [x : (x)] for qsets. In Q , we term ‘pure’ those qsets that have only m-

objects as elements (although these elements may not always be 
indistinguishable from one another, that is, the theory is consistent with the 
assumption of the existence of different kinds of m-atoms), and for them it is 
assumed that the usual notion of identity cannot be applied (that is, let us recall, 

x=y, as well as its negation, x  y, are not well formed formulas if either x or y 

stand for m-objects). Notwithstanding, the primitive relation    applies to 
them, and it has the properties of an equivalence relation.  

But, in order to restore the notion of identity for the ‘classical’ objects, 
the theory has a defined concept of extensional identity and it has all the 
properties of standard identity of ZFU. More precisely, we write x =E y (read ‘x 
and y are extensionally identical’) iff they are both qsets having the same 

elements (that is, z (z  x  z  y)) or they are both M-atoms and belong to 

the same qsets (that is, z (x  z  y  z)). From now on, we shall not bother 
to always write =E, using simply the symbol “=” for the extensional equality. 
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Since m-atoms cannot be identified in the formalism, it is not possible 
in general to attribute an ordinal to qsets of such elements. Thus, for certain 
qsets, it is not possible to define a notion of cardinal number by means of 
ordinals. The theory uses a primitive concept of quasi-cardinal instead, which 
intuitively stands for the ‘quantity’ of objects in a collection.12 The theory has 
still an ‘axiom of weak extensionality’, which states (informally speaking) that 
those quasi-sets that have the same quantity of elements of the same sort (in 
the sense that they belong to the same equivalence class of indistinguishable 
objects) are indistinguishable by their own. One of the interesting consequences 
of this axiom is related to the unobservability of permutations in quantum 
physics, which is one of the most basic facts regarding indistinguishable quanta 
(for a discussion on this point, see FRENCH & RICKLES, 2003). In standard set 

theories, if w  x, then of course (x \ {w})  {z} = x  iff  z = w. That is, we 
can ‘exchange’ (without modifying the original arrangement) two elements iff 
they are the same elements, by force of the axiom of extensionality. In Q we can 

prove the following theorem, where [[z]] (and similarly [[w]]) stand for a quasi-
set with quasi-cardinal 1 whose only element is indistinguishable from z 
(respectively, from w – the reader shouldn’t think that this element is identical to 
either z or w): 

 
Theorem 1 (Unobservability of Permutations). Let x be a finite quasi-set such 
that x does not contain all indistinguishable from z, where z is an m-atom such 

that z  x. If w  z and w  x, then there exists [[w]] such that (x – [[z]])  [[w]] 

 x. 
 

Informally speaking, supposing that x has n elements, then if we ‘exchange’ 
their elements z by corresponding similar elements w (set theoretically, this 

means performing the operation (x – [[z]])  [[w]], then the resulting quasi-set 
remains indistinguishable from the one we started with). In a certain sense, it does 

not matter whether we are dealing with x or with (x – [[z]])  [[w]].  So, within 
Q , we can express that ‘permutations are not observable’, without necessarily 

introducing symmetry postulates, and in particular derive ‘in a natural way’ 
quantum statistics (see FRENCH & KRAUSE, 2006, ch. 7). 

                                                           
12 But a notion of finite quasi-cardinal can be defined for finite qsets (see DOMENECH 

& HOLIK, 2007). 
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4.2 The Q -space 

 
As we have seen in section 2, if particles are similar, the state of their 

composite system can only be a symmetrized one. But particles are labeled in 
this construction, and this procedure was criticized (section 2.3). It has been 
claimed that the Fock-space formalism poses a solution to the questions raised 
by this criticism (REDHEAD & TELLER, 1991, 1992). But the Fock-space 
formalism also makes use of particle labeling in order to obtain the correct 
states (FRENCH & KRAUSE, 2006). 

How can we avoid this problem of the Fock-space formulation of 
QM? If we could avoid the individuation of the particles at every step of the 
construction of a Fock-like formulation of QM, we would give a positive 
answer to the problem posed in REDHEAD & TELLER (1991, 1992) (recalled in 
the Introduction) that is not affected by the criticisms linked to it. Quasi-set 
theory can be used for this purpose, and in fact, this construction has been 
done (DOMENECH et al., 2008; DOMENECH et al., 2009). There, an alternative 
proposal is presented that resembles the Fock-space formalism but is based on 
Q. This avoids artificial labeling. We give a sketch of the construction here, 

mainly following DOMENECH et al. (2008) and DOMENECH et al. (2009). In the 
following section, we also see that this kind of construction not only allows us 
to solve the problem posed above, they also give rise to interesting 
foundational issues. 

Let us consider a set   ={i}iI (that is, a “set” in Q ), where I is an 

arbitrary collection of indices (this makes sense in the ‘classical part’ of Q ). 

Suppose that the elements i represent the eigenvalues of a physical observable. 

Next, quasi-functions f are constructed, such that f :   Fp, where Fp is the 

quasi-set formed of finite and pure quasi-sets. f is a quasi-set formed by ordered 

pairs i ; x with  i    and  x  Fp. 

These quasi-functions are chosen in such a way that whenever i(k) ; x 

and i(k’) ; y belong to f and k  k’, then  x  y = .  It is further assumed that 
the sum of the quasi-cardinals of the quasi-sets which appear in the image of 
each of these quasi-functions is finite. This means that  qc(x) = 0  for every x in 

the image of f, except for a finite number of elements of . These quasi-
functions form a quasi-set called F.  
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A pair i ; x is interpreted as the statement “the energy level i has 
occupation number qc(x)”. Quasi-functions of this kind are represented by 

expressions such as fi(1)i(2)...i(m)
. If the symbol i(k) appears j-times, the level i(k) 

has occupation number j. The levels that do not appear have occupation 
number zero. 

At this point of the construction, the indexes appearing in fi(1)i(2)...i(m)
 

have no preferred order at all. But an order can be defined as follows. Given a 

quasi-function f  F, let {i(1)i(2)...i(m)} be the quasi-set formed by the elements 

of  such that  i(k) ; x  f  and  qc(x)   0 (k = 1...m). This quasi-set is denoted 

supp(f ).  Consider  now  the  pair  o; f ,  where  o  is  a  bijective  quasi-function 

o : {i(1)i(2)...i(m)}{1,2,...,m}. Each one of the quasi-functions o defines an 

order on supp(f ). Let OF denote the quasi-set formed by all the pairs o,f . OF is 

the quasi-set formed by all the quasi-functions of F with ordered support. 

Using a similar notation as before (and also repeating indexes according to the 

occupation number), fi(1)i(2)...i(m)
   OF  refers to a quasi-function f  F and a 

special ordering of {i(1)i(2)...i(m)}. But now, the order of the indicies must not be 
understood as a labeling of particles, because it can be shown that the 
permutation of particles does not give place to a new element of OF 
(DOMENECH et al., 2008). 

Consider next the collection of quasi-functions C which assign to every 

f  F (or f  OF) a complex number. A quasi-function c  C is a collection of 

ordered pairs f ;, where f  F (or f  OF) and  a complex number. Let C0 be 

the subset of C such that, if  c  C0, then  c(f ) = 0  for almost every  f  OF  

(i.e., c(f ) = 0  for every  f  OF  except for a finite number of quasi-functions). 

A sum and a product can be defined in C0 as follows. 
 

Definition 4.1. Given , ,   C,  and  c, c1, c2  C0, then  

                          (c(f )) := (c)(f )  and (c1 + c2)(f ) := c1(f ) + c2(f ). 
 

Using the above definitions, (C0,+, ) is endowed with a complex 

vector  space  structure.  Given  a  quasi-function  c  C0  such  that  c(fi)= i 
(i= 1,...,n) for some finite set of quasi-functions {fi} belonging to F or OF the 

following association is done: 
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(1 f1 + 2 f2 + ... + n fn)  :=  c .                            (4.2.1) 
 

Thus, a quasi-function c  C0 is interpreted as a linear combination of the 
quasi-functions fi (representing a quantum superposition). 

Scalar products must be introduced in order to reproduce the quantum 
mechanical machinery of computation of probabilities. It is possible to define 

two of them, one for bosons (“”) and one for fermions (“”). In this way (and 

using norm completion), two Hilbert spaces (VQ, ) and (VQ, ) are obtained. 

The scalar product for bosons is defined as follows. 
 

Definition 4.2. Let (n,m) be the Kronecker symbol and fi(1)i(2)...i(n)
 and 

fi'(1)i'(2)...i'(m)
  two basis vectors, then: 

 

          fi(1)i(2)...i(n)
    fi'(1)i'(2)...i'(m)

   :=  (n,m)               i(1)pi’(1) i(2)pi’(2) ... i(n)pi’(n)  . 

 
The    sum    is    extended   over    all   the   permutations  of   the   set   

i’ = (i’(1), i’(2)..., i’(n)) and for each permutation p, pi’=(pi’(1), pi’(2),..., pi’(n)). 
 
For fermions: 

 

Definition 4.3. Let (n,m) be the Kronecker symbol, fi(1)i(2)...i(n)
 and fi'(1)i'(2)...i'(m)

  

two basis vectors, then: 
 

           fi(1)i(2)...i(n)
    fi'(1)i'(2)...i'(m)

   :=  (n,m)   𝑠𝑝i(1)pi’(1) i(2)pi’(2) ... i(n)pi’(n)  , 

 
 

where: 𝑠𝑝= +1 if p is even, and  𝑠𝑝= –1 if p is odd. 
 

These products can be easily extended to all linear combinations. The 

second product  is an antisymmetric sum of the indexes which appear in the 
quasi-functions and the quasi-functions must belong to OF. If the occupation 

number of a product is greater or equal than two, then, it can be shown that the 
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vector has null norm, thus reproducing Pauli’s exclusion principle for fermions 
(DOMENECH et al., 2008). 

With these constructions within Q , the formalism of QM can be 

rewritten giving a positive answer to the problem of giving a formulation of 
QM in which intrinsic indistinguishability is taken into account from the 
beginning, without introducing artificial labels (DOMENECH et al., 2008; 
DOMENECH et al., 2009). 

 
 

5. Stating the problem in an adequate form 
 

Once the formal setting is determined, we are now ready to come back 
to the questions posed in section 2.3 in a more formal way. In this section we 
state the problem of identical particles from a new perspective. 

 
5.1 Metaphysical underdetermination 

 
As is well known, there are several interpretations of QM, the received 

view being only one among others (perhaps, the most popular one). The simple 
fact that there exists an interpretation such as Bohm’s – in which particles 
possess definite trajectories – represents a problem for someone who wants to 
extract metaphysical constructions out of physical theories: how to reconcile 
incompatible but plausible interpretations of a given formalism by means of 
which one calculates the measurement results obtained in the laboratory, such 
as the VON NEUMANN ([1932] 1996) formulation of QM? While in the 
Bohmian interpretation particles have definite trajectories, there are no 
trajectories at all in the standard interpretation. Particles are individuals for 
Bohm and non-individuals for the received view. This is the problem of 
metaphysical underdetermination, discussed in detail in FRENCH & KRAUSE 

(2006). We review this problem here. 
While Schrödinger used the BE and FD statistics as an argument to 

support the received view, other authors, interpreted these “strange” statistics 
as a new form of non-local correlation between particles (considered as 
individuals). MULLER & SAUNDERS (2008) use the labeled tensor product 
Hilbert space formalism to show that quanta are weakly discernible (see also 
MULLER & SEEVINCK, 2009). Then, there seem to be reasonable arguments for 
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different positions: while incompatible, these positions seem to be valid, in the 
sense that they do not contradict (up to now) empirical data. The received view 
has historical problems, such as stating clearly what a non-individual means. 
But there are concrete solutions to this problem, see for example FRENCH & 

KRAUSE (2006). 
In addition to this metaphysical underdetermination, in section 4.2 we 

showed that an alternative formulation of QM may be given, but with a 
different underlying logic, based on quasi-set theory. This implies that there 
also exists a kind of logical underdetermination, i.e., there is no preferred logic, if 
the aim is to formulate the theory in an axiomatic way. 

Regarding logical underdetermination it is important to specify what we 
mean by the word “logical”. As is well known, language has different layers. 
The axioms of a physical theory, stated in a mathematical form, have an 
underlying logic, which is usually first order predicate logic enriched with 
standard set theory, but it may be formulated in a different framework, such as 
category theory. But here we speak of ZFC set theory only. Then, the word 
“logic” means the axioms used in the mathematical formulation of the theory. 
ZFC set theory has a deeper logical level, which are the axioms of first order 
classical logic. 

But physics not only concerns mathematical formulation. Interpreta-
tion may be regarded as part of the theory or not; it is certain that it is 
unavoidable to have, at least, a minimal interpretational framework in order to 
connect theory with experience (and, eventually, to explain it). The language 
used for speaking (and thinking) about the concepts related to the word 
“experience”, as well as the theoretical terms representing the entities involved 
in a given interpretation, is not just mathematical, and it is also not an artificial 
language based on first order classical logic. This language has its own 
“underlying logic”, which may not necessarily be a formalized one. What 
Schrödinger meant by a non-individual entity, may be not clear or formal, but it 
is clear that the logic underlying such an interpretation seems to be not the 
classical one. Quasi-set theory would provide a formal framework in order to 
give us a formal logical basis for that notion. The logic at the level of the 
axioms of the theory and the underlying logic of the interpretation may 
coincide or not. The second one is the case of the received view, susceptible to 
all the criticisms mentioned above. QM formulated in the Q -space formalism 

seems to be in harmony with the underlying logic of the received view. 
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We are thus faced with incompatible alternatives to take, with different 
possibilities. How to make a choice? Which attitude is to be taken in view of 
this fact? 

 
5.2 Ockham’s razor revisited 

 
In order to answer the question posed in the previous section, let us 

review a traditional example of quantum theory. Bohm’s interpretation 
presupposes individual trajectories for quantum particles, guided by pilot 
waves. The latter are in configuration space (not in space-time, where the 
trajectories are). Quantum statistics would thus be ruled out by hidden 
variables: trajectories exist, but one is never able to predict them. The same 
interpretation comes endowed with a “concealment mechanism”, which forbids 
experimental control of the postulated hidden variables. Thus, these hidden 
variables, while compatible with predicted experience, play no role in any 
experiment, i.e., they are completely dispensable (for the received view). They 
play only an explanatory role in Bohm’s approach: fairies or elves may be 
responsible for the values that these hidden variables take. But the impossibility of 
settling this question experimentally is an a priori requirement for many advocates of the 
Bohmian interpretation of QM.13 

In view of the discussion of the previous section, the word 
“explanatory” should be understood as follows: to make experience compatible 
with an ontological (or metaphysical) “preference” (or “prejudice”). Any 
interpretation seems to have theoretical terms which may be suppressed in 
order to endorse a minimal interpretation. But this is not the point that we want 
to stress: dispensability is not our problem. What we want to remark is that hidden 
variables in Bohm’s theory cannot be measured, nor controlled in any 
laboratory experience. This is precisely an unavoidable requirement of the 
Bohmian interpretation, in order to be empirically equivalent to standard QM. 
Otherwise, if these variables could be controlled, or some crucial experiment 
based on them could be designed, standard QM would be wrong (and the 

                                                           
13 While many advocates of the Bohmian interpretation put emphasis on the 
equivalence of Bohmian mechanics and standard QM, Bohm had expectations in 
finding different empirical predictions. For more discussion about this, see for example 
GHOSE (2003). 
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supposed empirical equivalence between Bohm’s theory and the orthodox 
formulation of QM would no longer hold). Like a quantum state or the electron 
charge, or even a field – which are all theoretical terms –, hidden variables 
cannot be prepared nor measured, simply because this is what “hidden” is 
intended to mean. 

There are no limits, in principle, for adding hidden entities or 
properties. Given a metaphysical preference, we can always add as many 
“hidden” theoretical terms as we want, always taking care that they should not 
make predictions incompatible with experience (which is regulated by 
formalism plus a minimal interpretation). But it seems reasonable to assume 
that science should not be concerned with notions that are – as a matter of 
principle – impossible to control in any experiment, adding neither new 
predictions nor postulating states of affairs which are by definition impossible to 
regulate experimentally. It could be the case that a notion used to explain 
phenomena, such as Boltzmann’s particles, could not be observed or clearly 
studied in any experimental set up at a certain stage of a theory, but this 
impossibility cannot be part of the definition of this notion. 

As is well known, the existence of Bohm’s interpretation and the fact 
that its hidden variables are non-local, led John S. Bell to question himself 
whether there exists an interpretation based on local hidden variables. These 
questions led to the well known story about Bell’s inequalities and Bell’s 
theorem. Any interpretation based on hidden variables compatible with 
quantum predictions is attached to non-locality, i.e., hidden variables must be non-
local. And this was tested experimentally (in favor of QM). Thus, Bell’s theorem 
shows that the acceptance of hidden variables leads also to “hidden non-
locality”, which of course, cannot be used to send information instantaneously. 

One of the conclusions that we extract from the story of hidden 
variables and Bell’s theorem, is as follows. It is always possible to make 
different interpretations of a given theory, and they may be incompatible. 
Where does this metaphysical underdetermination come from? We will not 
discuss this in detail here, but we stress one point. It may be possible that 
metaphysical underdetermination of physical theories is a general characteristic 
that language itself manifests, even at the level of simple examples of logic: 
think about models built within set theory. There may be several models of the 
same axioms, and nothing determines a preferred one. Another example is one 
of the Gödel’s results, which asserts that any axiomatic system – with a certain 
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degree of complexity and formulated in a certain way – has true but 
undecidable propositions: there is always something beyond the scope of the 
axioms. And if this happens already at the logical level, nothing prevents this to 
happen in more complex languages, such as the one employed in the 
formulation and interpretation of a physical theory. The complete “language” 
of a theory involves a complex mixture of laboratory assertions, theoretical 
concepts (many of them not necessarily completely or rigourously defined), and 
if we wish, the formal language of the axiomatic level too. 

Thus, it may well be that, as it happens with Gödel’s theorem, there will always 
exist assertions which cannot be decided using the axioms of the theory plus the available 
experimental data at a given historical moment, and no one knows how to state the problem 
in order to design the adequate experiments to decide them. But as it happened with 
hidden variables and Bell’s theorem – by adding the adequate experimental 
evidence – further non-trivial information about hidden variables was extracted 
by stating the problem in an adequate form. Adequate formulation of the 
problem may involve introducing new axioms and definitions (as well as 
theoretical constructions), in order to distinguish between several alternatives. 
This is one of the great merits of Bell. 

A similar program may be delineated for similar particles. Even if we 
do not know how to make an experimental test in order to decide whether 
quanta are individuals or not, working on formal structures and considering 
ontological specification of the involved entities may serve to design new 
experiments. And even if these experiments don’t rule out a given possibility, 
they may impose restrictions on the validity of the assumption of quantum 
individuality. With Bohmian mechanics, hidden variables were shown to be 
non-local, and as this fact is in a certain sense incompatible with special theory 
of relativity, it gives us more elements to make a choice (although we are not 
required to consider it). A similar analysis can be made for the Kochen-Specker 
theorem. 

We now have at hand examples of how these ideas work for identical 
particles. In order to explain BE and FD statistics, one may assume non-
individuality, as usual. But other authors explain this phenomenon by 
postulating non-independent correlations (which are different for fermions and 
bosons) (VAN FRAASSEN, 1998). In spite of these small steps, we think that an 
analogue to Kochen-Specker or Bell’s theorems for non-individuality is in 
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order. This should be added to the program for the investigation of identical 
particles in another work. 

It is worth analyzing what happens with individuality in classical 
mechanics (CM). Trajectories can be measured in CM, and thus one may 
postulate that to any trajectory there corresponds one particle or one body. By 
means of this association, individuality plays a direct role in observation. Of 
course, nothing prohibits us to break the link between particles and trajectories 
and postulate that a strange (unobservable) particle permutation may happen 
between the trajectories, and then, individuality could be questioned. We could 
go further and presuppose that classical particles of the same mass and form, 
charge, etc., are completely indistinguishable, and that they do not have 
individuality at all, but their trajectories do. In this case, we force the 
interpretation in order to satisfy a certain metaphysical preference, but none of 
these extra assumptions can be manipulated experimentally. This example in 
CM is the reverse of that one in the quantum case: as in Bohmian hidden 
variables theory, individuality of quanta is not only dispensable, but it is also 
impossible to manipulate experimentally. 

A possible attitude towards this “metaphysical freedom” could be: use 
Ockham’s razor and discard individuality of quanta. But there exists an 
alternative and (we think) more fruitful possibility: given extra assumptions 
(such as the individuality of quanta), we must provide more precise definitions, 
add extra postulates and design adequate crucial experiments in order to 
discriminate and discard between possible metaphysical alternatives. 

Before entering into the general conclusions of this work, let us make 
an interesting remark. Bohm’s interpretation postulates trajectories, hidden 
variables, and pilot waves. At the end of the story, when these assumptions are 
fully analyzed, we find that hidden variables are related in a non-local way, and 
that the pilot waves suffer of similar problems as those of the traditional 
Schrödinger wave functions. It is as if the “problematic” aspects of the 
standard interpretation of quantum mechanics reemerge in the Bohmian 
interpretation in a new fashion, or as if there was a “principle of conservation 
of problematic aspects”. Again, this kind of analysis of the “failure” of the 
Bohmian program (i.e., the failure to recover a completely classical picture) 
does not suffice to discard the whole interpretation. But it sheds light on the 
consequences of our metaphysical preferences, and by studying these 
consequences, we gain a lot of information of how things really work. Perhaps 
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the interesting question is not “which is the true ontology or interpretation?”, 
but questions such as “which are the consequences of each of them?”, and 
“which of them are in conflict with the observed phenomena and which of 
them are compatible?”. This is perhaps the most interesting attitude towards 
the “metaphysical freedom” originated in metaphysical underdetermination. 
 
 
6. Final discussion 

 
As we have seen, non-classical logics and algebraic structures may arise 

also from insights taken from science. Non-reflexive logics, in the sense posed 
above, constitute a typical example. But, what can we say about ontology? 
Some philosophers may guess that this question is not well posed, for ontology 
is the study of the basic stuff of the world and it would be indifferent to the 
theory we are using in such an investigation. We may say that, in this old sense, 
a philosopher would say that ontology is the study of the basic furniture of the 
world, and in this sense all we need is to put some light on this world’s stuff. 
But, at least since QUINE (1953), we have become familiarized with the talk of 
an ontology associated to a theory, and in order to speak about ontology, we 
need to look at our best theories and consider what they say about the world. 
This naturalized ontology is today well accepted by most philosophers of science, 
and we believe that this way of speaking is not contrary to the usual 
assumptions made by the physicists. Thus, taking into account quantum theory 
(either relativistic or non-relativistic versions – quantum field theories), we can 
have some insight for instance about the very nature of the basic constituents 
of the world, the ‘elementary particles’. By ‘elementary particles’ we mean 
whatever entity postulated or assumed by the theory in its foundations. They 
can even be named: electrons, protons, neutrinos, quarks, and so on, and refer 
to them indiscriminately as quanta. 

Just as logical constructions may be inspired on physical theories, if we 
adopt the above point of view about a naturalized ontology, we may use these 
logical constructions to draw conclusions about the possible ontological 
commitments of physical theories. Let us discuss next the implications of the 
existence of the formal structures presented in this paper. 
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6.1. Q  and non-individuality 

 
Regarding the discussion we have made in this paper, we can make the 

following assertions: 
(1) Standard formulations and both non-relativistic and relativistic QM 

use both classical logic and standard mathematics (say, one built in 
ZFC). Hence, no theory founded on such a basis can contradict its 
theorems, unless particular assumptions are made. For example, for 
the case of similar particles, non-symmetric states must be 
disregarded as ‘surplus structure’. 

(2) The extracted conclusions depend also on the interpretation of the 
given mathematical formalism and on the specific features of this 
formalism itself. 

(3) If the formalism of the theory is changed using quasi-set theory, 
quanta of the same species may be (in certain situations) absolutely 
indiscernible by all means provided by the theory. 

(4) In this way, there is a specific sense in saying that, in certain 
situations, quanta cannot be said to have an identity, a permanent 
label that distinguishes each one of them from the others, even of 
the similar kind. 

 
From these four claims, we can draw some conclusions. From (1), the 

standard formalism of QM always distinguishes between two quanta, even if 
they are of the same kind and regarded as indistinguishable. If the distinction 
cannot be achieved in the physical theory proper (the specific postulates of QM 
we are using), they can be discerned by the underlying mathematics. Thus, even 
the atoms in a Bose-Einstein condensate, when represented in the mathematical 
model (QM) constructed this way, can be distinguished. From the logical point 
of view, we cannot agree in totum with the Nobel Prize winner Wolfgang 
Ketterle, when he says that: 

 
If we have a gas of ideal gas particles at high temperature, we may 
imagine those particles to be billiard balls [...]. They race around in the 
container and occasionally collide. This is a classical picture. However, if 
we use the hypothesis of de Broglie that particles are matter waves, then 
we have to think of particles as wave packets. The size of a wave packet 

is approximately given by the de Broglie wavelength dB, which is related 
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to the thermal velocity v of the particles as  dB = h/mv. Here m is the 
mass of the particles and h is Planck’s constant. Now, as long as the 
temperature is high, the wavepacket is very small and the concept of 
indistinguishability is irrelevant, because we can still follow the trajectory 
of each wavepacket and use classical concepts. However, a real crisis 
comes when the gas is cooled down: the colder the gas, the lower the 
velocity, and the longer the de Broglie wavelength. When individual 
wave packets overlap, then we have an identity crisis, because we can no 
longer follow trajectories and say which particle is which. At that point, 
quantum indistinguishability becomes important and we need quantum 

statistics. (KETTERLE, 2007, p. 159).  

 
In fact, within standard logic and mathematics, there is no identity 

crisis! This leads us to (3) and (4), which may be taken as emphasizing the same 
question, namely, the way to go around standard logic (and mathematics) in 
order to acknowledge that there is in fact an identity crisis involving quanta in 
certain situations. As we have said above, there are two options: to confine 
ourselves to a certain protected region within standard ZFC (say a mathematical 
structure) and speak of some properties and relations only. Thus the structure 
may be nonrigid14 and we can define indiscernible objects as those which are 
led to one another by one of the non-trivial automorphisms of the structure. 
This is the classical solution: symmetric and anti-symmetric vectors do the job, 
and assuming identity as defined a la Quine completes the crime (QUINE, 
1986).15 But, let us recall, any structure built in ZFC can be extended to a rigid 
structure. In this structure, the very nature of our alleged indiscernible quanta 
would be revealed, and in the background, we can see them as individuals, as 
entities having identity. 

Thus, we conclude that if we aim at to speak of an ontology of 
indiscernible quanta, we need to go out from the classical frameworks and 
adopt an alternative logic, and quasi-set theory is one of the options. And in 
fact, as we have shown in section 4.2, the construction presented can be used to 

                                                           
14 That is, a structure possessing automorphisms different than that of the identity 
function. 

15 Quine defines identity by the exhaustion of all predicates of the language, taken 
always in a finite number. In our opinion, this strategy defines only indiscernibility 
regarding the chosen predicates. 
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reformulate QM in a logical background different from that of ZFC (meaning 
standard mathematics and classical logic). An important consequence of the 
existence of such a reformulation is that the conclusions about the identity of 
quanta posed in (1) above are not a characteristic of any formulation of QM, 
but only of those formulations based on ZFC or similar “classical” theories. 
The construction sketched above shows us that the answer to the problem 
posed in REDHEAD & TELLER (1991, 1992) and recalled in section 1 is in the 
affirmative, and that our construction is more in accordance with the 
interpretations of QM which claim that particles are not individuals. The 
formulation of QM discussed in section 4.2 supports this “received view” (see 
FRENCH & KRAUSE, 2006). 

It is not our aim in this article to deny hidden variable theories (or 
haecceities), neither weak discernibility. We only stress the point that there are 
different interpretations of QM and according to this fact, different 
mathematical formulations, each of which is more or less compatible with a 
given interpretation. 

 
6.2. Quantum logic for compound systems of identical particles 

 
The quantum logical approach to physics does not restrict itself to QM. 

It is a general operational framework which allows one to include a huge family 
of physical theories. Using the method developed by PIRON (1976), it is 
possible to define questions on an arbitrary system, in such a way that these 
questions form propositions. It is possible to show that these propositions 
form a lattice. By imposing suitable axioms on this lattice, one may recover 
QM, CM, or, in principle, any arbitrary theory. This was called the Operational 
Quantum Logic approach to physics (OQL). This kind of approach allows us 
to study the structure of the propositional lattices of any given system; in 
particular, it allows us to study the structure formed by elementary tests in QM. 
As is well known since the work of BIRKHOFF & VON NEUMANN (1936), these 
tests are isomorphic to the projection lattice P(H). At the same time, this 

structural characterization allows for a comparison between theories: although 
classical mechanics and QM are very different theories, the OQL approach 
allows one to compare them in a same formal framework (that is, the lattice 
theoretical one) in order to look for analogies and differences. The most 
striking difference is perhaps that the propositional lattice of QM is not 
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distributive, but modular (finite dimensional H) or ortho-modular (infinite 

dimensional H). 

The difficulties appear when we realize that the OQL approach has 
problems when applied to compound systems. It is true that, from a 
foundational point of view, it gives useful information about the structure of 
compound systems, but it works in a negative way: this is the content of the 
results of Aerts and others (AERTS, 1984, 2000; AERTS & DAUBECHIES, 1978). 
The fact that no product of lattices exist, tell us a lot about the structure of 
compound quantum systems, but this is because of the incapability of the 
approach to describe them. This incapability comes from the fact that when we 
have an entangled state of the compound system, the reduced state of each 
subsystem will not be pure, and thus it will not be possible to link the state of 
the compound system to the states of the subsystems at the level of lattices. 
This happens simply because the (possibly) mixed states of the subsystems 
cannot be represented as elements of the corresponding lattices (DOMENECH 

et al., 2010; HOLIK et al., 2010; HOLIK et al., 2013). This is also the case for 
similar particles: if we depart from a pure symmetrized state of the bipartite 
system of fermions, we will always obtain mixed states for the subsystems. This 
is essentially the reason why the OQL approach presents some disadvantages 
for the study of entanglement and, even more, for the case of identical particles. 

The constructions presented in DOMENECH et al. (2010), HOLIK et al. 
(2010), and HOLIK et al. (2013) overcome this difficulty, by incorporating 
mixed states as atoms of a new lattice. This allows one to link states of the 
compound system to states of the subsystems, and shows us the structure of 
the propositions thus formed. Convex subsets of the convex set of states may 
be interpreted as probability spaces (HOLIK et al., 2013): our constructions 
allow us to look at the structure of these probability spaces. This was not 
possible using the traditional OQL approach. 

In this work (section 3.2), we have shown that a quantum logical 
structure for compound quantum systems of identical particles can be realized, 
something which was not present in the literature except for scarce examples 
(GRIGORE, 1993; AERTS, 1981). Our structure captures the maps which link the 
states of a compound system formed by two identical particles to the states of 
its subsystems, thus providing a formal framework in which we can study how 
compound quantum systems of identical particles behave. In particular, they 
allow us to see the divergences with classical structures. We hope that these 
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structures allow us to study the formal structure of compound quantum 
systems of identical particles in future work. 
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