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Abstract Relational mechanics is a gauge theory of classical mechanics whose laws
do not govern the motion of individual particles but the evolution of the distances
between particles. Its formulation gives a satisfactory answer to Leibniz’s and Mach’s
criticisms of Newton’s mechanics: relational mechanics does not rely on the idea of
an absolute space. When describing the behavior of small subsystems with respect
to the so called “fixed stars”, relational mechanics basically agrees with Newtonian
mechanics. However, those subsystems having huge angular momentum will deviate
from the Newtonian behavior if they are described in the frame of fixed stars. Such
subsystems naturally belong to the field of astronomy; they can be used to test the
relational theory.

Keywords Classical mechanics · Mach’s principle · Relational mechanics

1 Introduction

Relational mechanics is a reformulation of classical mechanics leading to dynamical
equations which are valid in any frame. By extending the laws of mechanics to any
frame, relational mechanics abolishes Newton’s absolute space. So, no privileged
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(inertial) frames exist in relationalmechanics because its dynamical equations obey an
extended symmetry: instead of being invariant just under the Galilean group (uniform
translations of frames and rigid rotations of axes) they are invariant under arbitrary
time-dependent changes of orthonormal frames. In the language of field theory, the
changes of orthonormal frames constitute the gauge symmetry of relationalmechanics.
Notoriously, there are frames (particular gauge choices) where relational mechanics
makes contact with Newton’s laws: in any frame where the angular momentum of
the universe vanishes and the center of mass of the universe moves at a constant
velocity, the dynamical equations become the Newton’s laws. Nonetheless, this kind
of privileged frames (we call themNewtonian frames) is determined not by an abstract
entity like the absolute space but by the set of particles constituting the entire universe.
Thismeans that relationalmechanics gives an answer toMach’s criticismofNewtonian
mechanics; relational mechanics is aMachian theory [1].

In spite that Newton’s laws can be retrieved in relational mechanics, the solutions
to such equations deserves a careful understanding. In a Newtonian frame we do
obtain the Keplerian orbits for the motion of planets; however, an individual evolution
means nothing in relational mechanics. An individual evolution can be completely
distorted by a change of frame (change of gauge). The individual positions and veloc-
ities are not observables but gauge dependent variables. In relational mechanics the
observables (i.e., physically meaningful gauge invariant magnitudes) are the distances
between particles and the angles between the straight lines joining pairs of particles.
Indeed, relational equations govern just the evolution of observablesmagnitudes, since
such evolutions are independent of the frame choice. Nevertheless, a given evolu-
tion of distances can be described through different individual evolutions in different
frames (analogously, in electromagnetism one can describe a given field configura-
tion through different gauge-related potentials). This means that the gauge symmetry
endows mechanics with the essential relational feature claimed by Leibniz in his
correspondence with Clarke [2].

So, going back to theKeplerian orbit of a planet, the statement that the planet returns
to the original position in a period is not physical, unless it can be restated in terms
of distances or angles. The planet position means nothing in relational mechanics.
Particle positions are mere gauge-dependent mathematical tools to understand the
relations between particles. Instead, a physical statement should tell about the time
elapsed between successive alignments of the Sun-planet direction and some “fixed
star”. Notice that, since the Newtonian solution under consideration possesses non-
null angular momentum, the rest of the universe would have an opposite angular
momentum to cancel out the total angular momentum (as required in a Newtonian
frame). Therefore the time elapsed between successive alignments of the Sun-planet
direction and some “fixed star” is actually smaller than the Keplerian period, since
the rest of the universe is counter-rotating in a Newtonian frame. Therefore, in a
frame of fixed stars the planet go faster than expected; its velocity involves a non-
Keplerian contribution that is proportional to the orbital radius. Of course, this effect is
completely negligible in the case of a planetary system. In fact, the angular momentum
of a planetary system is compensated by an unnoticeable rotation of the rest of the
universe. Because of this reason, the “fixed stars” are really adequate to establish
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an external Newtonian frame for studying a planetary system. But, what if we are
studying a galaxy or a cluster of galaxies?

The rest of the article is organized as follows. In Sect. 2 we give a brief account
of the history of relational mechanics. Besides we summarize the basics of relational
mechanics as they are developed in Ref. [3]. In Sect. 3 we show the dragging that
affects the rotation curves of subsystems displaying a huge angular momentum, when
seen in the frameoffixed stars. InSect. 4wederive the relational virial theorem. InSect.
5 we study the relational two-bodies problem. In Sect. 6 we display the conclusions.

2 Relational Mechanics in Brief

The idea of absolute space, as a way of designating the privileged inertial frames
where Newton’s laws are valid, was criticized from the very beginning of the science
of mechanics. In Leibniz’s opinion, mechanics should describe relations among bod-
ies, rather than individual evolutions relative to metaphysically defined frames [2].
Even though Newton was aware of this weakness of his formulation—in the sense
that the absolute motion cannot be evidenced—, instead he thought that the absolute
acceleration was a valid concept. According to Newton, the absolute acceleration is
evidenced by the parabolic shape of water surface in a (absolutely) rotating bulk. How-
ever, Mach objected this idea by stating that the shape of the water only proves the
rotation with respect to the rest of the universe [1], since nobody knows what would
happen if the water and the bulk were the only bodies in the universe. Mach’s criticism
was a trigger in Einstein’s route towards general relativity. Einstein baptized “Mach’s
principle” the idea that inertia is determined by the interaction with the rest of the
universe [4–7].

The 20th century is rich in proposals to reformulate the mechanics starting from
relational principles. The lawsofmechanics combinepotentials,whichdescribe forces,
and kinetic variables describing motion. The potentials are already relational, since
they just contain the distances ri j between particles:

V =
∑

i< j

Vi j (ri j ) = 1

2

∑

i �= j

Vi j (ri j ) , (1)

(Vi j = Vji ). Instead, the Newtonian kinetic energy is made of individual velocities;
so it should be reformulated in terms of relative velocities and, possibly, distances.
Early attempts of this sort can be found in References [8–11] (for a comprehensive
account of these early tries see Ref. [12]). However these attempts led to anisotropies
of the inertia that are not observationally supported [13,14]. After this setback it was
realized that the basic structure of the Newtonian kinetic energy should be preserved in
some sense in order to keep essential features of the successful Newtonian mechanics.
Noticeably, the form of the Newtonian kinetic energy is strongly linked to the Galilean
transformations, the transformations between inertial frames. However, the aim of
relational mechanics is putting all the frames on an equal footing, with the consequent
abolition of the absolute space. For this, the Galilean rigid symmetry of Newton’s
theory should be extended to encompass any time-depending translation and rotation,
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ri −→ ri + ξ(t) , (2)

ri −→ ri + α(t) × ri , (3)

what in field theory is called gauging the symmetry.1 In a gauge theory each physical
state is described by a set of equivalent configurations, all of them connected by
gauge transformations. In our case a physical state is determined for the distances
between particles,which can be read in terms of equivalent configurations of individual
positions in different frames. In the language of gauge theory each set of equivalent
configurations is called orbit, which represents a physical state. While the Newtonian
kinetic energy is related to ameasure

∑
mi dri ·dri between near configurations {ri }

and {ri + dri }, what is needed to build a relational kinetic energy is ameasure between
near orbits. Such a measure will be automatically gauge invariant. Not surprisingly,
the measure between orbits can be obtained from the (Newtonian) measure between
configurations. This idea was developed in Ref. [15], where the measure between
near orbits was defined as the lower bound of the (Newtonian) measures between
configurations representative of each orbit. The measure between near orbits leads to
a gauge invariant kinetic energy, as is needed to formulate the relational mechanics.
This procedure is called best matching [16–19].

Another way to build a gauge invariant kinetic energy involves the concept of
covariant derivative, as is typical in gauge theory. When a rigid symmetry is gauged,
the behavior of the ordinary derivative under the so extended symmetry becomes inap-
propriate (in a sense that will be explained below). The covariant derivative includes a
term to heal this undesirable behavior. These strategy was followed in Ref. [3], whose
results can be summarized as follows:

� The relational kinetic energy is built of relative positions ri j
.= ri − r j and their

derivatives vi j
.= ṙi j = vi − v j . Both of them are invariant under time dependent

translations (2). However, even though ri j behaves as a vector under time dependent
rotations (3), vi j does not. In fact, fromEq. (3) it follows that ri j −→ ri j +α(t)×ri j
but

ṙi j −→ ṙi j + α × ṙi j + α̇ × ri j . (4)

So, the ordinary derivative of a vector does not behave as a vector under time-depending
rotations; the last term in Eq. (4) must be healed by means of the compensating
mechanism of a covariant derivative.

� For an isolated system of particles representing the entire universe, which is
governed by classical interactions at a distance that are described by a potential V
depending on the distances ri j = |ri j |, the compensating term in the covariant deriv-
ative (the connection) is built of the intrinsic angular momentum J and inertia tensor
I:2

J .=
∑

i< j

mi m j

M
ri j × vi j , (5)

1 α(t) is an infinitesimal vector directed along the axis of rotation (finite rotations require orthonormal
matrices). Galileo transformations are included in the gauge group (2), (3); they are the elements having
ξ̇ = V = constant, and α̇ = 0.
2 We call intrinsic those quantities of the form

∑
i< j

mim j
2M fi j (ri j , vi j ) where fi j = f j i .
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I .=
∑

i< j

mi m j

M
[r2i j 1 − ri j ⊗ ri j ] . (6)

In fact, since J contains relative velocities, then it behaves as a vector just under rigid
rotations. But under time-dependent rotations δJ gets a term proportional to α̇:

δJ =
∑

i< j

mi m j

M
ri j × δvi j + · · · = · · · +

∑

i< j

mi m j

M
ri j × ( α̇ × ri j ) + · · ·

= · · · +
∑

i< j

mi m j

M

[
α̇ r2i j − ri j ri j · α̇

]
+ · · · = · · · + I · α̇ + · · · . (7)

So I−1 · J is what is needed for canceling out the last term in Eq. (4). The vectorial
relative velocity is defined as the covariant derivative of the relative position,

Dri j
Dt

.= dri j
dt

− (I−1 · J) × ri j , (8)

and the gauge invariant kinetic energy has the intrinsic form

T
.=

∑

i< j

mi m j

2M

Dri j
Dt

· Dri j
Dt

. (9)

� The gauge invariant kinetic energy (9) can be rephrased in several ways:

T =
∑

i< j

mi m j

2M
vi j · vi j − 1

2
J · I−1 · J , (10a)

=
∑

k

mk

2

∣∣∣∣vk − P
M

− (I−1 · J) × (rk − R)

∣∣∣∣
2

, (10b)

=
∑

k

mk

2

∣∣∣∣
D

Dt
(rk − R)

∣∣∣∣
2

, (10c)

where R is the center-of-mass position, and P .= ∑
mk vk is the total momentum (R

and P are gauge dependent magnitudes). Equation (10c) shows that the Newtonian
structure of the kinetic energy, as a sum of individual particle contributions, has been
preserved. However, rk −R replaces rk to fulfill the invariance under time-dependent
translations, and the covariant derivative takes the role of the ordinary derivative to
fulfill the invariance under time-dependent rotations.

The kinetic energy (10a) originally appeared in References [20–22] where, instead
of gauging the symmetry, the authors obtained T by means of the minimization of the
Newtonian kinetic energy with respect to translations and rotations, so making contact
with the best matching ansatz of Ref. [15].

� The relational dynamical equations coming from the Lagrangian L(rk, vk) =
T − V are
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mk
d

dt

[
vk − P

M
− (I−1 · J) × (rk − R)

]
= −∇k

(
V + 1

2
J · I−1 · J

)
. (11)

On the l.h.s. the expression inside brackets is D(rk − R)/Dt . Since d/dt is not a
covariant derivative, then the l.h.s. is not a vector under gauge transformations; its bad
behavior is compensated by the (centrifugal) gauge-dependent term on the r.h.s.

In spite of appearances, the Eq. (11) do not govern the dynamics of N individual
particles. In fact, the number of degrees of freedom is not 3N but 3N − 6 because the
freedom to choose the frame involves six parameters.3 In other words, the evolutions
are determined modulo arbitrary time-dependent translations and rotations, because
of the gauge invariance displayed by the Lagrangian and the dynamical equations. For
instance, a configuration where the system rigidly rotates (i.e., the distances between
particles remain unchanged) is equivalent to the configuration of rest. The 3N − 6
degrees of freedom can be associated with the minimum number of distances that are
needed to describe a state. For N = 2 particles, just one distance is involved (since
the rotation around the axis of symmetry is meaningless, the system has 3N − 5 = 1
degrees of freedom). For N = 3 the particles form a triangle described by 3 distances
or degrees of freedom. For N > 3, each added particle must come at least with a
“tripod” of 3 distances to determine its position with respect to the other particles.
Thus, the minimum number of distances to describe a state is 3+3(N −3) = 3N −6,
(N > 2). Therefore, the equations (11) govern a dynamics of distances instead of
individual evolutions. As a consequence, the equations (11) remain strongly coupled
even in the absence of interaction. In fact, all the particles of the system are contained
in R, P, J and I. Nevertheless, the gauge dependent magnitudes P, J can be fixed by
choosing an appropriate frame where P is constant and J vanishes. In such Newtonian
frames, that are determined by the entire distribution of mass in the universe, the
equations of motion become

mk
dvk
dt

= −∇kV . (12)

These gauge-fixed dynamical equations could create the illusion thatNewton’s dynam-
ics is got at the end of the day, since a set of individual evolutions fulfilling theNewton’s
laws has been obtained. However, we must keep in mind that the individual evolutions
means nothing in relational mechanics. They are not observables at all but gauge-
dependent magnitudes. The observables are the distances between particles. So, even
if we solve the Eq. (12), we must analyze the meaning of such Newtonian solutions in
terms of relative distances (or angles). Actually the Eq. (12) must be solved together
with the gauge conditions P = constant and J = 0. Any Newtonian evolution (of the
entire universe) makes sense if and only if the gauge conditions are fulfilled as well.

3 Interpretation of Newtonian Solutions

Let us consider the idealized situation of a subsystem gravitationally isolated from the
rest of the island universe. Figure 1 shows a self-gravitating subsystem composed by

3 See Ref. [3] for the structure of constraints in the Hamiltonian formulation of the theory.
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Fig. 1 Two stars orbiting a galaxy. The counter-rotating shell represents the rest of the universe in the
Newtonian frame where the total intrinsic angular momentum vanishes

two equal point-like objects of mass m (the stars �) sharing a circular orbit of radius a
around a central object (the galaxy �), surrounded by a rigid isotropic spherical shell
(representing the rest of the universe �). The shell has not gravitational influence on
the subsystem inside it. According to Newton’s second law (12), the time the stars
complete their circular orbit is the Keplerian period

τKepler = 2π

√
a3

G (M� + m�

4 )
(13)

(the contribution m�/4 comes from the gravitational interaction between the stars).
Furthermore, in Newtonian mechanics the orbital solution exists irrespective of the
presence of the central object and the shell. Instead, in relational mechanics any New-
tonian solution comes together with the gauge condition J = 0. Since we have split
the universe into three parts sharing their centers-of-mass, then the vanishing of the
total intrinsic angular momentum reads4

4 It is easy to verify that the intrinsic magnitudes J and I are the usual angular momentum and tensor of
inertia with respect to the center of mass: J = ∑

mk (rk − R) × vk , I = ∑
mk [|rk − R|2 1 − (rk −

R) ⊗ (rk − R)]. In general, the intrinsic magnitudes are not additive; the intrinsic angular momentum
of the universe is not the sum of the intrinsic angular momentum (spin) of its parts because of orbital
contributions. However, if the system is split into several parts whose centers-of-mass are coincident, as
in the case of Fig. 1, then J and I can be decomposed as the sum of the intrinsic quantities belonging to
each part, as done in Eq. ( 14). In general, if the system is split into two parts A and B, then it follows that
J = JA + JB + (RA − RB ) × (MB PA − MA PB )/M .
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J� + J� + J� = 0 , (14)

where J�, J�, and J� are the intrinsic angular momentum of each part (the rigid shell
rotates at a constant velocity, as required by the Eq. (12)). Thus the presences of the
central body or the shell are essential to accomplish the requirement (14), so making
sense to a Newtonian solution that displays a non-null angular momentum J�.5

Let us now focus on the meaning of τKepler in relational mechanics. While τKepler

in Newtonian mechanics is the period of the circular motion in the privileged inertial
frames, τKepler in relational mechanics is the period between equal positions on the
circle, as seen in a particular gauge fixed frame. However positions are not observ-
ables but gauge dependent magnitudes. The circular motion would look completely
distorted in an (equally allowed) arbitrarily rotating frame. A physical (gauge indepen-
dent) interval of time should allude only to observables. The obervables in relational
mechanics are the distances between particles and the angles between lines joining
particles. The statement that the orbit is circular is gauge invariant, because is based
on the constancy of a distance. Instead, the time elapsed between successive passes
through the same position of a circular orbit is a gauge dependent concept. So, to intro-
duce a period τ defined in terms of observables, we should resort to the successive
passes of the stars through the line joining the center of the circular orbit to some “fixed
star” in the shell. According to Eq. (14), the shell is counter-rotating with respect to
the stars-galaxy subsystem. If the stars co-rotate with the galaxy, then the interval τ

between successive passes through the line is lower than τKepler :

ω� τ = ω� τ + 2π ẑ , (15)

where ω� = (2π/τKepler ) ẑ and ω� = J�/I� = −(2 J� + J�)/I� � −J�/I� ẑ.
Then, it follows that the time τ is6

τ � τKepler

1 + τKepler J�

2π I�

. (16)

So, the speed v′ = 2π a/τ contains a non-Keplerian contribution:

v′ = 2π a

τ
= 2π a

τKepler
+ a J�

I�
= vKepler + a J�

I�
. (17)

The last term is a typical Coriolis effect. In fact, v′ in Eq. ( 17) is the velocity in the
frame of “fixed stars”, which is a non-Newtonian frame. In a non-Newtonian frame,

5 A system of just N = 2 particles has only one degree of freedom (the distance between the particles). The
circular motion would imply that the distance is constant. But this would only be possible in the absence of
interaction. The role played by the rest of the universe as responsible of the centrifugal effect that is needed
to sustain the orbital motion (and the shape of the water in the Newton’s bucket as well) is analyzed in
Ref. [3].
6 In an elliptic orbit, however, τKepler is the time elapsed between successive passes through the periastron.
This is an observable, since the periastron is defined by the minimization of a distance. Notoriously the
periastron suffers a cumulative shift in the frame of fixed stars because τKepler > τ .
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the Eq. (11) contains not only the interaction forces deriving from V but contributions
associated with the mean rotation of the universe I−1 · J and the acceleration Ṗ/M .
These extra contributions have the form of the inertial forces of Newtonian mechanics
[3], although they are not determined by the absolute space but by the distribution of
matter in the universe. Then, there exists a Coriolis effect on the velocities measured
in the frame of fixed stars.7

As a part of our Newtonian prejudices, we are used to accept that the axes of an
“inertial” frame are pointed to “fixed stars”. This misconception seems to be justified
by experimental evidence at the scale of the solar system, where Newton’s laws work
very well in the frame of fixed stars. However, a frame of fixed stars could be a good
approximation to a Newtonian frame only to study subsystems of negligible angular
momentum; this approximation would fail when huge structures are considered.

We remark that J� in Eqs. (14), (16) and ( 17) is the angular momentum of the
galaxy in the Newtonian frame, which transforms to the frame of fixed stars as

J′
�

= J� − I� ω� �
(
1 + I�

I�

)
J� . (18)

4 The Relational Virial Theorem

By combining the equations of motion (11) we obtain equations for ri j :

mi m j
d

dt

[
Dri j
Dt

]
= −(m j ∇i − mi ∇ j )

(
V + 1

2
J · I−1 · J

)
. (19)

The intrinsic virial is a gauge invariant magnitude which can be defined for any sub-

system S:

G
.=

NS∑

i< j

mi m j

2MS
d

dt
(r2i j ) =

NS∑

i< j

mi m j

MS
ri j · vi j =

NS∑

i< j

mi m j

MS
ri j · Dri j

Dt
. (20)

Its temporal derivative is

dG

dt
=

NS∑

i< j

mi m j

MS

(
vi j · Dri j

Dt
+ ri j · d

dt

[
Dri j
Dt

])

=
NS∑

i< j

mi m j

MS

(
vi j · vi j − vi j · [(I−1 · J) × ri j ] + ri j · d

dt

[
Dri j
Dt

])

7 Themeasurement of velocities in the universe involves theDoppler shift. Ignoring general relativity effects
that are beyond this framework, the Doppler shift depends on the relative radial velocity source-observer,
which is a gauge invariant magnitude (it is the change of a distance per unit of time).
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=
NS∑

k=1

mk

(
vk − PS

MS

)
·
(
vk − PS

MS

)
− JS · I−1 · J

−
NS∑

i< j

1

MS
ri j · (m j ∇i − mi ∇ j )

(
V + 1

2
J · I−1 · J

)
(21)

(to get the first term, replace
∑

i< j with (1/2)
∑

i �= j and perform one of the involved
sums; the second term results from the circular shift property of the mixed product).
We will separately analyze the contributions of V and J to the last term of Eq. (21).

4.1 The Potential V

The role of the potential in dG/dt does not differ from the respective one in Newton’s
theory. In fact, by replacing

∑
i< j with (1/2)

∑
i �= j we notice that both terms m j∇i

and−mi∇ j will make the same contribution to the sum (to prove it, change i ←→ j).
So it follows that

1

2

NS∑

i �= j

ri j ·
(
m j

MS
∇i − mi

MS
∇ j

)
V =

NS∑

i �= j

m j

MS
ri j ·∇i V =

NS∑

i=1

(ri−RS)·∇i V . (22)

If the subsystem is isolated (only internal forces act on its particles) then the total force
is zero:

∑NS
i=1 ∇i V = 0. Therefore, the Newtonian result is obtained:

1

2

NS∑

i �= j

ri j ·
(
m j

MS
∇i − mi

MS
∇ j

)
V =

NS∑

i=1

ri · ∇i V . (23)

Since V = ∑NS
i< j Vi j (ri j ), it follows that

NS∑

i=1

ri · ∇i V =
NS∑

i=1

ri ·
NS∑

j=1

∂Vi j
∂ri j

ri j
ri j

= 1

2

NS∑

i �= j

ri j · ∂Vi j
∂ri j

ri j
ri j

= 1

2

NS∑

i �= j

ri j
∂Vi j
∂ri j

=
NS∑

i< j

ri j
∂Vi j
∂ri j

. (24)

If Vi j ∝ rα
i j , then we obtain

1

2

NS∑

i �= j

ri j ·
(
m j

MS
∇i − mi

MS
∇ j

)
V = α VS , (25)

where VS is the internal potential energy of the isolated subsystem.
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4.2 The Total Angular Momentum J

It is fulfilled that [3]

∇i

(
1

2
J · I−1 · J

)
= −mi (I−1 ·J)×

[(
vi − P

M

)
− (I−1 · J) × (ri − R)

]
; (26)

then, the last term in Eq. (21) is

ri j ·
(
m j

MS
∇i − mi

MS
∇ j

) (
1

2
J · I−1 · J

)

= −mi m j

MS
ri j ·

[
(I−1 · J) ×

[
vi j − (I−1 · J) × ri j

]]

= mi m j

MS

{
(I−1 · J) · [

ri j × vi j
] − (I−1 · J) ·

[
ri j ×

[
(I−1 · J) × ri j

]]}

= mi m j

MS

{
(I−1 · J) · [

ri j × vi j
] − (I−1 · J) ·

[
r2i j (I

−1 · J) − ri j [ri j · (I−1 · J)]
]}

,

(27)

which adds to

NS∑

i< j

ri j ·
(
m j

MS
∇i − mi

MS
∇ j

)(
1

2
J · I−1 · J

)
= JS · I−1 ·J − (I−1 ·J) ·IS ·(I−1 ·J).

(28)

4.3 Summary and Results

In sum, the result is

dG

dt
=

NS∑

k=1

mk

(
vk − PS

MS

)
·
(
vk − PS

MS

)
−2JS · I−1·J+(I−1·J)·IS ·(I−1·J)−α VS ,

(29)
where the first term is twice the Newtonian kinetic energy T Newton

S in a frame where
the subsystem-center-of-mass is at rest. The virial theorem is based on the assumption
that

1

τ

∫ τ

0

dG

dt
dt = G(τ ) − G(0)

τ
(30)

is a vanishing quantity. This can happens both if the subsystem is periodic of period
τ (the distances ri j and their derivatives periodically repeat themselves) or if the
subsystem remains bounded for a (going to infinity) very large time τ . In such cases
it follows that

< 2 T Newton
S − 2 JS · I−1 · J + (I−1 · J) · IS · (I−1 · J) >= α < VS > . (31)
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It is easy to check that the quantity inside the l.h.s. brackets is twice the gauge invariant
kinetic energy of the subsystem (replace

∑
i< j with

∑NS
i< j in Eq. (9)). The result

(31) shows the influence of the rest of the universe on the evolution of an “isolated”
subsystem in an arbitrary frame. In a Newtonian frame it is J = 0, so the Newtonian
form of the virial theorem is recovered. In the simple model where the rest of the
universe is represented by a rigid isotropic spherical shell, the frame of fixed stars
(i.e., fixed shell) is not strictly Newtonian because a non-vanishing angular momentum
still remains: the angular momentum of the considered subsystem. In such a case it is
J′ = J′

S ; then, by replacing IS = I− I� (see Footnote 4) we obtain the virial theorem
in the frame of fixed stars:

< 2 T ′ Newton
S −2 J′

S · I−1 ·J′
S+ (I−1 ·J′

S)·(I−I�)·(I−1 ·J′
S) >= α < VS >, (32)

i.e.,

< 2 T ′ Newton
S − J

′
S · I−1 · J′

S − (I−1 · J′
S) · I� · (I−1 · J′

S) >= α < VS > . (33)

At the lowest level of approximation it is I ∼ I�; thus

< T ′ Newton
S > − < J′

S · I−1
� · J′

S > � α

2
< VS > . (34)

The relational virial theorem in a frame of fixed stars departs from its Newtonian
version depending on how large the subsystem intrinsic angular momentum is.

If the subsystem S decomposes into two parts � and � with coincident centers-of-
mass, then it follows that JS = J� + J� and IS = I� + I� (see Footnote 4 ); besides
it is VS = V� + V� + V��. To exemplify, we will apply the virial theorem to the
case studied in the previous Section. Since the galaxy can be considered itself as an
isolated subsystem –the interaction with the stars is not relevant to its evolution– then
an equation like (31) is separately valid for the galaxy as well. Thus we are left with
the following relation for the stars:

< 2 T Newton
� −2 J� · I−1 ·J+ (I−1 ·J) · I� · (I−1 ·J) >= α < V� +V�� > . (35)

In the frame of fixed stars it is J′ = J′
S = J′

�
+ J′

� � J ′
�
ẑ. Therefore, it results

2 m v′2 − 2 (2 m v′ a) I−1 J ′ + (2 m a2)(I−1 J ′)2 � 2
G M� m

a
, (36)

where V� has been neglected. Thus

(v′ − a I−1 J ′)2 � G M�

a
= v2Kepler , (37)
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i.e.,

v′ � vKepler + a I−1 J ′ � vKepler + a J�
I�

(38)

in agreement with the result (17).

5 The Relational Two-Body Problem

As shown in Sect. 3, the dynamics of an “isolated” two-body system in the frame of
fixed stars involves the constant I�, which appears as a sort of universal constant. Let
us consider two bodies m1 and m2 interacting through a potential V (r12) much larger
than the interactions with the other particles of the universe. Like in Figure 1, we will
idealize the rest of the universe as a spherical shell centered at the center-of-mass of
the two-body system. Thus, no gravitational field remains inside the shell apart from
the interaction V (r12). As explained in Footnote 4, such configuration of subsystems
with a common center-of-mass implies additivity: J = J� + J12, where J� stands for
the intrinsic angular momentum of the rest of the universe (for J12, see Eq. (5)).

By properly combining the Eq. (11) for k = 1, 2 one is led to the equation of motion

m1 m2
d

dt

[
v12 − (I−1 · J) × r12

]
= (−m2 ∇1 + m1 ∇2)

(
V (r12) + 1

2
J · I−1 · J

)
,

(39)
where

(−m2 ∇1+m1 ∇2)V (r12) =
(

−m2
r12
r12

+ m1
r21
r12

)
dV

dr12
= −(m1+m2)

dV

dr12

r12
r12

.

(40)
The gradient of the centrifugal term has been computed in Ref. [3]. The result is

μ
dv12
dt

= − dV

dr12

r12
r12

+ 2 μ (I−1 · J) × v12 − μ (I−1 · J) ×
[
(I−1 · J) × r12

]

+μ

[
d

dt
(I−1 · J)

]
× r12 (41)

(μ
.= m1m2/(m1 + m2) is the reduced mass), where one recognizes the Coriolis,

centrifugal and Euler terms associated not with some “absolute” rotation but with the
intrinsic magnitude I−1 ·J defined by the entire universe. Tensor I is additive when the
centers-of-mass coincide; so it is I = I�+ I12. I� is an isotropic tensor; besides, one
is free of choosing the z−axis along the direction of J12 = μ r12 × v12. Therefore,
the tensor I and its inverse I−1 have the form

I =
⎛

⎝
· · · · · · 0
· · · · · · 0
0 0 I� + μ r212

⎞

⎠ , I−1 =
⎛

⎝
· · · · · · 0
· · · · · · 0
0 0 (I� + μ r212)

−1

⎞

⎠ . (42)
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If one chooses the frame of fixed stars, then it is J′
� = 0; thus, it follows that

I−1 · J′ = I−1 · J′
12 = J′

12

I� + μ r212

.= I−1 J′
12, (43)

which is independent of the choice of the z−axis. This result is substituted in Eq. (41)
to get

μ

[
dv′

12

dt

]′
= − dV

dr12

r′
12

r12
+ 2 μ I−1 J′

12 × v′
12 + μ I−2 J ′

12
2 r′

12

+μ

[
d

dt
(I−1 J′

12)

]′
× r′

12, (44)

where we used that J′
12 and r′

12 are mutually perpendicular.

5.1 Conservation of I−1 J12 in the Frame of Fixed Stars

Let us shows that the Eq. (44) leads to the conservation of I−1 · J12 in the frame of
fixed stars:

[
d

dt
(I−1 J′

12)

]′

= −I−2 2 μ r′
12 · v′

12 J
′
12 + I−1 μ r′

12 ×
[
dv′

12

dt

]′

= −I−2 2 μ r′
12 · v′

12 J
′
12 + I−1 r′

12

×
(
2 μ I−1 J′

12 × v′
12 + μ

[
d

dt
(I−1 J′

12)

]′
× r′

12

)

= I−1 μ r′
12 ×

([
d

dt
(I−1 J′

12)

]′
× r′

12

)
(45)

Therefore one obtains [
d

dt
(I−1 J′

12)

]′
= 0 . (46)

The conservation of I−1 J′
12 reduces the equations of motion to the form

μ

[
dv′

12

dt

]′
= − dV

dr12

r′
12

r12
+ 2 μ I−1 J′

12 × v′
12 + μ I−2 J ′

12
2 r′

12 . (47)

These equations are formally identical to those of Newton’s dynamics, as regarded
from a (non-inertial) frame that rotates with (absolute) constant velocity 
 =
− I−1 J′

12. Although the frame of fixed stars is non-Newtonian, the relational dynam-
ics of the studied subsystem can be easily recovered from Newtonian dynamics by
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means of a simple correction involving 
. However, 
 is not an absolute magnitude
but it is directly related to the initial conditions characterizing the solution.8

5.2 Energy Conservation in the Frame of Fixed Stars

To study the energy conservation we will integrate the scalar multiplication of Eq. (47)
with v

′
12 dt = dr′

12. Thus, it follows that

1

2
μ |v′

12|2 + V (r12) − 1

2
μ I−2 J ′

12
2 r212 = constant . (48)

We normally use this equation to describe the radial motion, by using the decomposi-
tion

|v′
12|2 = v2radial + v′ 2

tangential = v2radial + J ′
12

2

μ2 r212
. (49)

Thus, the effective potential for the radial motion is

Vef f = V (r12) + (I−1 J ′
12)

2

2 μ r212

(
I 2 − μ2 r412

)

= V (r12) + (I−1 J ′
12)

2 I 2�
2 μ r212

+ (I−1 J ′
12)

2 I� . (50)

The radial motion is gauge invariant, since the distance between particles is an observ-
able. This fact reflects in the effective potential (50), which keeps the form of its
Newtonian version (notice that, according to Footnote 8, the conserved quantity
I� I−1 J ′

12 is equal to the value of J12 in the Newtonian frame).

6 Conclusions

Newton’s mechanics governs the evolutions of individual particles in the absolute
space. Particle positions express themselves in Newton’s laws bymeans of coordinates
referred to a frame at rest or in uniform translation with respect to the absolute space
(Galileo’s symmetry). Although Galileo’s symmetry implies that absolute motion is
undetectable, it confers the acceleration the status of an absolute property (independent
of the chosen inertial frame). Instead, relational mechanics is a theory that governs the
dynamics of the distances between particles. Distances do not require a frame to man-
ifest themselves. For practical reasons, we still use a frame to write distances in terms
of particle coordinates. But the description of a configuration in terms of distances and
their derivatives is completely frame-independent. Thus the (time-dependent) changes
of frames constitute a gauge symmetry in relational mechanics. Therefore, the idea of

8 The conservation of I−1 J′
12 can be regarded as a consequence of the conservation of J12 in theNewtonian

frame and the way J12 transforms under change of frame (cf. Eq. (18)).
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absolute space as an entity that selects the allowed frames is vain in relational mechan-
ics, since frames are reduced to the role of useful accessories. These two approaches
to the laws of mechanics are conceptually very different. If a subsystem is isolated, in
the sense that its interaction with particles outside the subsystem is negligible, New-
ton’s laws describe its evolution just in terms of the (absolute) initial conditions of its
own particles. Instead, relational mechanics always describes a subsystem in terms of
internal and external distances; so, even if the subsystem is “isolated”, its evolution
will anyway depend on the relation between the subsystem and the rest of the uni-
verse. This is so because I−1 · J takes part in all the equations of motion; I−1 · J is the
essential piece to guarantee the gauge invariance of the relational dynamics. However,
we can exploit the gauge invariance by choosing a frame where the intrinsic angular
momentum of the universe vanishes at each instant. In such frames, which are defined
by the entire universe, the equations of motion become the Newton’s laws (Newtonian
frames). Newton’s laws reappear as gauge-fixed equations of motion because the rela-
tional Lagrangian was defined by gauging the Newtonian Lagrangian. This way of
recovering the Newtonian dynamics implies that a Newtonian solution for an isolated
subsystem is valid if and only if it is part of a Newtonian solution with J = 0 for the
entire universe. In particular, a spinning Newtonian solution for an isolated subsystem
can only work if there exists a rest of universe to make feasible the condition J = 0.
With the aim of analyzing the consequences of this statement, we have proposed a very
simplified—non realistic—model where the rest of the universe is represented by a
rigid isotropic shell centered at the center-of-mass of the subsystem under considera-
tion. Thus, the subsystem remains gravitationally isolated, and J can be decomposed as
the sum of the intrinsic angular momenta of the shell and the subsystem (see Footnote
4). This simple arrangement facilitates the building of Newtonian solutions for the
entire universe; in fact, the (conserved) angular momentum of the Newtonian solution
for the isolated subsystem is trivially compensated by the shell (Newtonianly) rotating
at a constant velocity. In this crude model, the frame of fixed stars is the frame where
the shell is at rest;9 this is not a Newtonian frame since J is not null but is equal to
the subsystem intrinsic angular momentum J′

S . Then, we cannot expect to observe the
Newtonian solution in the frame where the shell is at rest; instead we will observe
that the Newtonian solution is dragged by a rotation 
 = − I−1 J′

S � − I−1
� J′

S . As
seen, the larger is J′

S , the greater is the dragging effect (with I� playing the role of a
universal constant). As we have shown, the dragging effect alters the galactic rotation
curves and the two-body dynamics when observed from the frame where the shell is
at rest. Consequently, the virial theorem also gets terms associated with J′

S (see the
Eq. (34) for the simpler approximate result). Notoriously, these effects of relational
mechanics take part in the phenomena that led to the hypothesis of darkmatter: the dis-
crepancy between luminous masses in galaxies and clusters of galaxies and the masses
inferred from the virial theorem [23,24], and the dynamics in galactic halos [25,26].
Even so, it should be noticed that we have not estimated their contributions to such
phenomena, which depend on the intrinsic angular momenta of galaxies or clusters of
galaxies, and the unknown “universal constant” I�. Anyway, it is worth mentioning

9 The International Celestial Reference Frame (ICRF2) is defined by the positions of about 300 extragalactic
sources.
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that the relational dragging effect can be separated from dark matter effects: while
dark matter acts in the same way whatever the direction of the rotation is, the dragging
effect increases the velocities of co-rotating objects but decreases the velocities of the
counter-rotating ones, since it depends on the sign of J� in Eq. (17).
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