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Abstract Traversability in relation with tides across thin-
shell wormholes is analyzed. Conditions for a safe travel
through a wormhole throat are established in terms of the
parameters characterizing the geometries and reasonable
assumptions regarding the travellers motion. Most conve-
nient geometries turn to include the physically interesting
example of wormholes connecting locally flat submanifolds
as those associated to gauge cosmic strings. A certain relax-
ation of the conditions imposed and the corresponding exten-
sion of the set of admissible configurations is also briefly
discussed.

1 Introduction

Thin-shell wormholes [1,2] connect two submanifolds
through a throat, where the matter supporting such space-
times is located. For compact configurations the throat is a
minimal area surface, while for cylindrical wormholes it is
infinite, and it admits two definitions: as a cylinder of min-
imal area per unit length or as a cylinder of minimal radius
(see [3] and also [4,5]). While all aspects of matter supporting
thin-shell wormhole geometries as well as mechanical stabil-
ity issues have deserved a considerable amount of research,
traversability in relation with tides is not a so popular subject
in most literature in the area. If high curvature regions and
singularities of the submanifolds joined at the throat have
been removed in the cut and paste mathematical construc-
tion, the problem of tides in such spacetimes presents no
novelties as long as a traveller does not reach the throat: We
could always suppose that the wormhole under study con-
nects regions of small spatial derivatives of the gravitational
field, thus ensuring acceptable tides at each side (this less
interesting aspect has been briefly discussed in, for example,
Ref. [6]). Therefore, in principle we would not be worried
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about what happens between two points of an object while
both of them are at the same side of a wormhole throat, but
by the possibility of great tensions (or pressures; see below)
acting on an object traveling across the throat, that is where
problems associated with curvature can manifest. We will
call traversable “in practice” a wormhole such that the rel-
ative acceleration �a (a precise definition is given below)
between two points of an object going through the throat is
physically bearable.

A reasonable condition to consider the latter would be
to have a finite quotient between the tidal acceleration and
the separation of the two points. At a first sight, this seems
to point out that whenever an infinitely thin matter layer is
present, traversability in this sense would be in trouble, as
a thin-shell is associated to a discontinuity in the extrinsic
curvature, which is the covariant form of the discontinuity
of the first derivatives of the metric; this seems to exclude a
finite limit for the quotient �a/�x for two infinitely close
points, one at each side of the shell. However, the problem
deserves a more detailed analysis. We will begin by study-
ing two close points of an object, one at each side of the
throat, and both in the same radial direction of the geome-
try considered. We will then analyze the behaviour of their
relative acceleration �a as the separation �x between them
becomes infinitely small. To get a first insight of the kind
of problems involved, we will first assume a rest object; we
will afterwards consider a radial motion, as it is natural in the
context of a traversability analysis. We can understand our
approach as the result of taking a shell of thickness δε and
two points at a distance �η/2 at each side from the shell,
so that �x = �η + δε, and then considering the limit in
which �η → 0 so that �x → δε, with δε the infinitely
small thickness of the thin-throat. Then we will treat the case
of two close points separated over a transverse direction par-
allel to the throat, focusing on the possible problems which
appear when the object crosses the throat surface. We will
find that the least problematic configurations include worm-
holes connecting gauge cosmic string submanifolds, as they
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present metric coefficients −g00 = gzz = 1 (see below)
and therefore tides in the radial direction and in the direction
parallel to the symmetry axis are not a problem; however
for points along the angular direction, even for such back-
grounds, the mere possibility of safe tides demands, in addi-
tion, a small speed. Finally, a further analysis will be briefly
performed about some possible relaxation of both the con-
ditions imposed on the geometries connected by the throat,
and on the idealized infinitely-thin layer model of the matter
on this surface.

2 Preliminary analysis

Two examples will serve to clarify the central aspects of
our approach. In the first place let us analyze a thin-shell
wormhole connecting two identical outer regions (i.e. outside
the horizon radius rh) of Schwarzschild geometries [2]. At
each side of the throat placed at a radial coordinate r = r0 >

rh , the geometry has the form1

ds2 = − f (r) dt2 + f −1(r) dr2 + r2(dθ2 + sin2 θ dφ2) (1)

in the spherical Schwarzschild coordinates with t ∈ R,
θ ∈ (0, π), ϕ ∈ [0, 2π), where r ≥ r0 at each side, and with
f (r) = 1 − 2M/r where M is the mass measured at each
asymptotic region. The radial acceleration of a rest particle
near the throat is ar = −M/r2 (the minus sign indicating an
acceleration towards the center). Given the wormhole sym-
metry, for a finite object slowly traversing across the throat
the relative acceleration between two points, one at each side
of the throat, must be twice the acceleration of one particle
near the throat, that is

|(�a)r | = 2M/r2. (2)

Remarkable aspects to be signaled are: (1) because at
each side the acceleration points towards the center, when
extended through the wormhole throat the object is not
stretched but it is compressed (a pressure force for an object).
(2) The relative acceleration for one point at each side of the
throat is greater by a factor r/�r when compared with the
acceleration (�a)r = −2M�r/r3 associated with the tidal
force for two nearby points at the same side of the throat
and separated by �r . (3) For two points, one immediately
at each side of the wormhole throat, it is clear that the rel-
ative acceleration is not zero but it stays finite. According
to our introductory discussion this analysis, though static,
would imply a wormhole geometry where traversability can
be jeopardized by strong tides.

The situation can be quite different in the case of a thin-
shell wormhole connecting two identical locally flat geome-
tries, as for example those associated to gauge cosmic strings

1 We assume the convention G = c = 1.

[7]. The spacetime geometry around such strings has the con-
ical form [8,9]

ds2 = −dt2 + dr2 + W 2r2 dϕ2 + dz2, (3)

with t ∈ R, ϕ ∈ [0, 2π) and z ∈ R, so that, in the associated
wormhole construction, the throat is at r = r0 and, at each
side, we have a locally flat submanifold given by a copy of
(3) with r ≥ r0, where the parameter W ∈ (0, 1] is related
to the angle deficit 2π(1 − W ) of the conical geometry.2

The local flatness implies a vanishing acceleration for rest
particles, then yielding a null relative acceleration between
two points of a finite object; and this is true for both points on
the same side of the wormhole throat as also for one point at
each side of the throat. Hence in such spacetime no problems
would appear with radial tides for objects crossing the throat.
For points along other directions, it must be noted that the
coordinates z and ϕ are very different, as two radial geodesics
with different z keep their separation constant when passing
through the throat, while two radial geodesics with different
ϕ open up at the throat. As a consequence, no problems with
tides along the z direction would be expected, but tides in the
angular direction are to be carefully studied (see below).

3 Tidal acceleration – Riemann tensor

To put these ideas in a more precise mathematical form let
us recall the definition of the covariant relative acceleration
[1,10] (�a)μ which is given in terms of the Riemann tensor,
the four-velocity Vμ and a vector (�x)μ which stands for
the small separation of two points in spacetime:

(�a)μ = −Rμ
ανβV

α(�x)νV β. (4)

In the following we will work with a static thin-shell worm-
hole space-time constructed by pasting together two copies
of the same geometry at the hypersurface of the throat at
r = r0, these are given by the line elements

ds2 = g±
00 dt

2 + g±
rr dr

2± + g±
ζ ζ dζ 2 + g±

ϕϕ dϕ2 , (5)

where± refers to the geometries at each side of the throat with
perpendicular radial coordinates r± � r0, respectively. The
non-null metric coefficients g±

μν depend at least on r± and,
despite we are considering symmetric wormholes in which
g−
μν = g+

μν , we emphasize the distinction between coeffi-
cients at each side with the ± index. The ζ coordinate rep-
resents the polar coordinate θ ∈ (0, π) in case of spherical
wormholes, or the axial coordinate z ∈ R in case of cylin-
drical geometries, while t ∈ R and ϕ ∈ [0, 2π). The unit
normal vector to the shell is defined as nμ = ∂μη , pointing

2 In a gauge cosmic string spacetime given by the line element in (3),
the angle deficit is equal to 8πμ, where μ is the mass per unit length of
the string centered at the symmetry axis [9].
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from − to +, with η the normal coordinate associated to the
radial direction such that

dη = ±
√
g±
rr dr± , (6)

i.e., (±)η measures the perpendicular proper distance at the
vicinities of the throat located at η = 0, for a static observer.
Considering these definitions we will generically express the
diagonal metric as

gαβ(η, x⊥) = �(η)g+
αβ(η, x⊥) + �(−η)g−

αβ(η, x⊥), (7)

where x⊥ are the coordinates on the codimension-one hyper-
surface perpendicular to nμ and �(.) is the Heaviside func-
tion. To begin, we study tides oven an object at rest with a
coordinate extension �r = �(η)�r+ + �(−η)�r− trans-
verse to the throat; we then have to compute the relative
acceleration between two points on the same radial direc-
tion with separation vector given by (�x)μ = �r δr

μ. This
separation will be written as

(�x)μ = �η nμ (8)

with the radial proper separation �η defined as

�η = √
(�x)μ(�x)μ = �r

√
grr . (9)

For a tidal acceleration in the radial direction we define, anal-
ogously, the proper tidal acceleration at the throat as �a, such
that3

(�a)μ = �a nμ . (10)

Then, the proper magnitude of the radial tidal acceleration
for a radially extended object is, in general,

�a = −Rμ
ανβ V α �η nν V β nμ , (11)

and for the object at rest we have

�a = Rr0
r0 �η. (12)

Note that the limit in which we are interested is proportional
to the local behaviour of one of the components of the Rie-
mann tensor. Any difficulty related with tides should come
from the behavior of this tensor at the shell; there are no
other possible problems because the wormhole construction
implies pasting submanifolds without singularities, and also
because the cut and paste procedure includes the condition
of the continuity of the metric at the joining surface defining
the wormhole throat. In order to evaluate this expression we

3 An inertial observer at rest located at the center of the symmetric
throat has null proper acceleration. The proper tidal acceleration can be
computed with the spatial components given in an orthonormal frame
defined by the static observer at the throat. In the case of radial tides,
this is the projection in the direction of nμ.

recall the definition [11]

Rr0r0 = −1

2
(grr,00 + g00,rr − gr0,0r − g0r,r0)

−gσρ(�σ
rr�

ρ
00 − �σ

r0�
ρ
0r ) , (13)

where the derivatives respect to the radial coordinate are
taken in the increasing direction of the η coordinate, from
− to +, i.e. ∂r r± = ±1. For metrics of diagonal form we
have gr0,0r = g0r,r0 = 0, and as we assume static geome-
tries we also have grr,00 = 0. The second radial derivative
of g00 is best expressed using (7). The definition of the �

distribution and the continuity of the metric lead to

d

dη
�(±η) = ±δ(η), g+

αβ |η=0 = g−
αβ |η=0 (14)

where δ(η) is a Dirac delta function centered at the throat,
which yields

g00,r = �(η)g+
00,r + �(−η)g−

00,r . (15)

Note that this vanishes for the particular case g00 = 1. For
non-homogeneous g00 at the vicinities of the shell we have

g00,rr = (�(η)g+
00,r + �(−η)g−

00,r ),r (16)

and applying once more the definition of the � distribution
we obtain

g00,rr = �(η)g+
00,rr + �(−η)g−

00,rr

+δ(η)

(
∂g+

00

∂η
− ∂g−

00

∂η

)
nr nr , (17)

where we have replaced g±
00,r = nr ∂ηg

±
00. We proceed in an

analogous way to obtain the connection components:

�σ
rr = �(η)�σ+

rr + �(−η)�σ−
rr

�
ρ
00 = �(η)�

ρ+
00 + �(−η)�

ρ−
00

�σ
r0 = �(η)�σ+

r0 + �(−η)�σ−
r0

�
ρ
0r = �(η)�

ρ+
0r + �(−η)�

ρ−
0r , (18)

where for static geometries

�σ±
rr = 1

2
gσμ±(g±

μr,r + g±
μr,r − g±

rr,μ)

= 1

2
gσμ±(2g±

μr,r − g±
rr,μ),

�
ρ±
00 = 1

2
gρμ±(g±

μ0,0 + g±
μ0,0 − g±

00,μ) = −1

2
gρμ±g±

00,μ,

�σ±
r0 = 1

2
gσμ±(g±

μr,0 + g±
μ0,r − g±

r0,μ) = 1

2
gσμ±g±

μ0,r ,

�
ρ±
0r = 1

2
gρμ±(g±

μ0,r + g±
μr,0 − g±

0r,μ) = 1

2
gρμ±g±

μ0,r . (19)
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For the class of metrics considered here, the only non van-
ishing components are

�r±
rr = 1

2
grr±g±

rr,r , �r±
00 = −1

2
grr±g±

00,r ,

�0±
r0 = �0±

0r = 1

2
g00±g±

00,r . (20)

The components of the Riemann tensor we are interested in
are written as

Rr0r0 = �(−η)R−
r0r0 + �(η)R+

r0r0 − δ(η)κ00 nrnr , (21)

with R∓
r0r0 the smooth tensor at each side of the shell and

κ00 = 1

2

(
∂g+

00

∂η
− ∂g−

00

∂η

) ∣∣∣
r0

(22)

the eigenvalue in the time-like direction of the jump in the
extrinsic curvature tensor at the shell. To express the relative
acceleration of an object extended in the radial direction at
the vicinities of the shell, and in the spirit of tidal calculations,
we take �η as an infinitesimal displacement, i.e. �η → dη,
so that the tidal acceleration is recovered as

�a =
∫ �a/2

−�a/2
da =

∫ �η/2

−�η/2
−Rα

βγ δ nα V β nγ V δ dη (23)

by preserving a first order expansion in �η centered at the
position of the shell. Specifically, to compute (12) for an objet
at rest we have

�a =
∫ �η/2

−�η/2
Rr0

r0 dη (24)

=
(∫ 0

−�η/2
Rr0

r0
−
dη +

∫ �η/2

0
Rr0

r0
+
dη

)

−
∫ �η/2

−�η/2
δ(η) κ0

0 dη (25)

=
[
Rr0

r0
− + Rr0

r0
+]

r0

�η

2
+ O(�η2) − κ0

0 (26)

where the expression between brackets is evaluated at the
position r = r0 of the shell. The part coming from the
smooth regions of the geometry is proportional to �η, while
the jump in the extrinsic curvature contributes with a fixed
finite value. The relative acceleration which results is in
agreement with our preliminary analysis. It reflects the dis-
continuous character of the gravitational field (i. e. of the
first derivatives of the metric) at r0, and according to the
discussion above it would indicate that such kind of quite
generic wormhole geometry, while in principle traversable, in
practice would present the problem of possibly unsurmount-
able tides acting on a body extended across the throat due
to the contribution of the extrinsic curvature jump. In the
particular case of the Schwarzschild wormhole, using that
−g±

00 = 1/g±
rr = f (r) = 1 − 2M/r at each side of the

throat, we have

Rr0
r0

± = − f ′′(r)
2

(27)

and

κ0
0 = f ′(r0)√

f (r0)
, (28)

so we obtain

�a = 2M

r3
0

�η − 2M

r2
0

1√
1 − 2M/r0

(29)

or, the tidal acceleration in Schwarzschild coordinate basis
(�a)r = �a nr is

(�a)r = −2M

r2
0

(
1 − �r

r0

)
. (30)

To first order in�we have two contributions: the term propor-
tional to �η in (29) accounts for separations extending away
from the shell into the bulk and reproduces the elongation
effect produced by each smooth geometry at both sides of the
shell; the other term represents a compression (negative sign)
exerted by the throat, accounting for the notional extension
of the object through the shell. The factor g−1

00 = 1/
√

f (r0)

in the second term of (29) reflects the strong gravitational
forces over static objects at small radii in the Schwarzschild
geometry. If we consider a throat located far from the center,
i.e. r0 	 2M , we see that the condition �η 
 r0 deter-
mines that the compression exerted by the wormhole throat
is always greater than the smooth tidal elongation produced
by the Schwarzschild geometry. We can not consider tides
for objets smaller than the thickness of a shell with this for-
malism; to do so a thick-shell model would be needed. The
case of vanishing tidal forces in this kind of geometry is
achieved only in the limiting case with M = 0, for which
g00 is homogeneous.

We can now consider the physically more interesting case
of an object moving radially across the throat with four-
velocity Vμ = (V 0, V r , 0, 0) and separation (�x)μ =
�η̃Nμ with �η̃ as the proper radial separation between
points of the moving object. The space-like vector Nμ =
(N 0, Nr , 0, 0) is such that Nμ Nμ = 1 and Vμ Nμ = 0.
From (4) we note that for a radially extended object there are
no tides in the perpendicular directions. Replacing as in (11),
we have the same result of (12),

�a = (�a)μ Nμ = Rr0
r0 �η̃ , (31)

and so the same proper radial tide of (29) is obtained for
two radially separated points of the object moving radially
through the throat of the wormhole constructed with the
Schwarzschild geometry. If, for example, we put M = 10M⊕
and r0 = R⊕, where M⊕ and R⊕ are the mass and radius of
the earth, a 1 meter object would experience a safe travel
near the vicinities of the throat with �a ∼ 10−6 g, but
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undergo �a ∼ 20 g while traveling across the throat, where
g = 9.8m/s2 (particularly, this tidal acceleration would com-
promise the safe travel of a human being).

As it was suggested by the preliminary analysis, the sit-
uation is different at the throat of wormholes where flat or
locally flat submanifolds are joined by a thin layer. Effec-
tively, in such a case (or more generally in any case in which
g00 is uniform at the bulk of each side) we start from an every-
where null radial derivative of g00, and no divergence appears
in the corresponding component of the Riemann tensor. At
most, we could have a finite contribution coming from the
radial derivative of grr if the geometry is not (locally) flat.
Hence in the limit �η → 0 the relative acceleration �a van-
ishes, which reflects that the acceleration of a point particle
is a continuous function across the throat, as it is null every-
where. Then such kind of wormhole would not present tidal
problems in the radial direction for objects going through its
throat.

The same procedure can be applied in the case of two
points separated along a direction parallel to the throat. If,
to begin the analysis, we place a rest object in an equatorial
plane (θ0 = π/2) of a spherically symmetric wormhole, or
z = z0 of a cylindrical wormhole, and extended along the
azimuthal angle, we have (�x)μ = �x⊥ eμ

⊥, with eμ
⊥ =

δ
μ
ϕ /

√
gϕϕ and �x⊥ = r0 �ϕ. The proper tidal acceleration

is in the same angular direction of the extended object and
defined as �a⊥ = (�a)μ eμ

⊥. If it is at rest at the shell’s
hypersurface we obtain

�a⊥ = Rϕ0
ϕ0 �x⊥. (32)

If we reproduce the calculations following Eq. (13), we obtain
no divergencies and the simple expression

Rϕ0ϕ0 = −gϕϕ,r g00,r

4 grr
(33)

where each metric derivative can be decomposed as in Eq.
(15). If the submanifolds connected at the throat have uni-
form g00, as in the case of the locally flat gauge cosmic
string metrics, we immediately have Rϕ0ϕ0 = 0 and there are
no angular tides at the throat; in the spherically symmetric
Schwarzschild wormhole we would obtain Rϕ0

ϕ0 = −M/r3
0

and the tidal force could be controlled by suitably choosing
the mass and the wormhole throat radius.

If, in the more general situation, an object is moving
radially across the throat with four-velocity dxμ/dτ =
(V 0, V r , 0, 0), the proper tidal acceleration is given by

�a⊥ = −(Rϕ
0ϕ0 V

0 V 0 + Rϕ
rϕr V

r V r )�x⊥ (34)

evaluated at the trajectory xμ(τ) of the object. As before,
there are no problems with divergencies coming from the

Rϕ0ϕ0 term. However, while in

Rϕrϕr = −1

2
(gϕϕ,rr + grr,ϕϕ − gϕr,rϕ − grϕ,ϕr )

−gσρ(�σ
ϕϕ�ρ

rr − �σ
ϕr�

ρ
rϕ) (35)

there are no difficulties associated to the Christoffel sym-
bols, the second radial derivative does provide a divergent
contribution, as

gϕϕ,rr = �(η)g+
ϕϕ,rr + �(−η)g−

ϕϕ,rr + 2 δ(η) κϕϕ nr nr

(36)

with

κϕϕ = 1

2

(
∂g+

ϕϕ

∂η
− ∂g−

ϕϕ

∂η

) ∣∣∣
r0

(37)

the eigenvalue in the angular direction of the jump in the
extrinsic curvature tensor at the shell. Now, differing from
the case of the radial tide where the central role was played
by the g00 component, the situation is dictated by gϕϕ . The
central difference is that the radial first derivative of the gϕϕ

component can not vanish, a second derivative including a
Dirac delta distribution appears, and a divergent angular tide
cannot be avoided. This divergence is present in general, even
in the particular case of a locally flat background. Replacing
in (34) for a static and symmetric wormhole with line element
as in (5), the tidal acceleration is given as

�a⊥ = �a f ini te
⊥ + �adiv⊥ (38)

where

�a f ini te
⊥ ≡ �a+

⊥ + �a−
⊥ (39)

with

�a±
⊥ = �x⊥

2

[
Rϕ0

ϕ0 + Vr V r grr
(
Rϕ0

ϕ0 − Rϕr
ϕr

)]±
xμ(τ)

(40)

= −�x⊥
8gϕϕ

[
g00,r gϕϕ,r

g00 grr
+ V r V r

×
(
gϕϕ,r

(
g00 grr gϕϕ

)
,r

g00 grr gϕϕ

− 2gϕϕ,rr

)]±

xμ(τ)

(41)

the smooth part, given by the metric coefficients g±
μν from

the geometries at each side of the throat and evaluated at the
position xμ(τ) of the object, and

�adiv⊥ ≡ �x⊥ δ(η) κϕ
ϕ grr V

r V r
∣∣
xμ(τ)

(42)

the divergent part. To interprete the result at the throat r = r0

avoiding the delta function which is centered at the position
of the infinitely-thin shell, we compute the proper tidal accel-
eration averaged over some notional proper time interval δτ
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elapsed across the trajectory through the throat, i.e.

�a⊥ = 1

δτ

∫ τ0+δτ/2

τ0−δτ/2
�a⊥ dτ . (43)

The first term in (38), corresponding to the finite contribution
from the smooth part of the geometry at each side, remains
unaltered working to first order in δτ : this is (39) evaluated
at r = r0. The divergent term, (42), can be integrated by
writing V r = dr/dτ = g−1/2

rr dη/dτ , to obtain

(�a⊥)div = κϕ
ϕ

δτ

√
grr V

r
∣∣
r0

�x⊥ . (44)

We got rid of the delta function but now this term appears reg-
ulated by the inverse of the infinitely-short traveling proper
time δτ of the object across the shell. Finally we can use the
velocity V μ̂ = dx μ̂/dτ = (γ, γβ, 0, 0) as measured in an
orthonormal frame {eμ̂} at rest at the vicinities of the throat

to express the result using the parameters γ = 1/
√

1 − β2

and radial speed β of the object as measured in the orthonor-
mal frame. The coordinate radial component of the velocity
is generically given by V r = V r̂ (er̂ )r = γβ/

√
grr , so at the

throat of the symmetric wormhole we have

�a f ini te
⊥ = �x⊥[Rϕ0

ϕ0 + γ 2β2(Rϕ0
ϕ0 − Rϕr

ϕr )]±r0
(45)

and

(�a⊥)div = �x⊥
γβ κϕ

ϕ

δτ
. (46)

Both contributions are proportional to the transverse exten-
sion �x⊥ of the object. The finite term is a compression
effect produced by the smooth part of the geometry, while
the divergent term represents a stretching exerted by the jump
in the extrinsic curvature components at the throat. Only for
negligible velocities, or null curvature jump at the throat, the
divergent term would be avoided.

For the case of the thin-shell Schwarzschild wormhole,
the explicit calculations yields

Rϕ0
0ϕ0

± = Rϕr
rϕr

± = − f ′(r)
2r

, (47)

κϕ
ϕ = 2

r0

√
f (r0) , (48)

and then the proper tidal acceleration for the two points on a
direction parallel to the throat and traversing radially is

�a⊥ = �x⊥

(
2 γβ

√
1 − 2M/r0

r0 δτ
− M

r3
0

)
. (49)

Being δτ infinitely-short, we can express the result in terms
of some infinitely-small size δε associated to the radial thick-
ness of the shell by identifying γβ = dxr̂/dτ → δε/δτ , i.e.

�a⊥ = �x⊥

(
2 γ 2β2√1 − 2M/r0

r0 δε
− M

r3
0

)
. (50)

We see that in the limits δτ → 0, or δε → 0, corresponding
to a negligible thickness of the throat, a huge transverse tide
is unavoidable for the case of a moving object with some
finite extent �x⊥. Nevertheless, if the object is allowed to
react, the duration of the tidal acceleration would produce a
finite relative velocity per unit length �v⊥/�x⊥ = γβ κϕ

ϕ

due to the passage through the throat or, alternatively, a finite
increase in the internal energy of the body. In any case, this
can be kept tolerable as long as the speed is small enough.

In the particular case of axisymmetric thin-shell worm-
holes, like those associated to cosmic strings, the two direc-
tions parallel to the wormhole throat are no more equivalent;
then the behavior of tides in each direction can in general
be quite different. The tide along the direction parallel to the
symmetry axis for a radially moving object is determined
by the Riemann tensor components Rz0z0 and Rzrzr . Within
this framework, wormholes connecting gauge cosmic string
submanifolds turn to be, once again, of particular interest
because besides a uniform g00 component they also have
gzz = 1. Then the same steps followed above for the angular
direction but substituting ϕ by z straightforwardly show that
no divergences appear, and for such backgrounds there are
no problems associated with tides along the symmetry axis.

4 Discussion

The present discussion seems to indicate that, under the prac-
tical approach adopted here, traversability problems given by
strong radial tides at the throat of thin-shell wormholes could
be safely avoided for rest or radially moving objects only
in those configurations connecting submanifolds with uni-
form g00. Besides, in the case of axisymmetric wormholes,
tides along the longitudinal direction are not a problem for
geometries with uniform gzz . This includes the physically
interesting case of gauge cosmic string thin-shell wormholes,
which satisfy both conditions. For rest objects, also angular
tides vanish in such configurations, and could be controlled in
other backgrounds; instead, there is no way to avoid angular
tides on moving objects across the thin-shell, for any back-
ground. In short, for finite objects in radial motion across the
thin-shell, traversability in practice demands: null or small
extrinsic curvature jump in the case of radially extended
objects, in order to have a tolerable tidal acceleration; and
null or controlable product of the speed and the transverse
extrinsic curvature jump in the case of objects extended par-
allel to the throat, in order to produce a small enough relative
velocity per unit length during the passage through the throat.

More general configurations associated to a certain relax-
ation of the conditions imposed on the geometries connected
and also on the character of the matter layers at the throat
could be considered to be admissible, but a fine tuning of the
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parameters or the shape of the thin-shell throat,4 would be
required. We can adopt the less restrictive requirement of a
sufficiently small accelerationa at each side of a shell of finite
though little thickness ε, so that the quotient �a/ε is bear-
able (in this picture the physics within the matter layer are
not considered in detail, so then only what happens immedi-
ately outside is relevant in the analysis). This approximation
would be in the line of the “traversability in practice” condi-
tion adopted in, for instance, Ref. [1] for wormholes which
are not of the thin-shell class, where a maximum quotient
�a/� is admitted if an object can withstand a maximum tidal
acceleration �a between two points separated by a distance
�. The condition of a little but not vanishing acceleration at
each side could be achieved, for example, in the case of the
spherically symmetric thin-shell wormhole connecting two
Schwarzschild geometries. One should play with the mass
M , the throat radius r0 and the thickness ε in order to render
the quotient �a/ε ∼ 2M/(ε r2

0 ) acceptable. We can agree
that to assume a shell to be “thin” we should at least demand
that ε 
 r0; thus the condition �a/ε = 2M/r3

0 for accept-
able radial tides in a motion restricted to one side of the
wormhole is not enough to ensure a safe passage to the other
side, because within our assumptions that quotient is much
smaller than 2M/(ε r2

0 ). Then we should add the requirement
of a small enough mass M . This is in agreement with the limit
M → 0 found in the infinitely thin layer framework of the
preceding section.

This kind of approach could also be adapted to address
the problem of the transverse tides at the throat in the case
of a speed that can not be neglected, which appears to be
the most difficult situation (except in the particular case of
the longitudinal direction in gauge cosmic string wormholes
and other possible backgrounds with constant gzz). If a finite
thickness ε is assumed, then a specific relation between the
speed β and ε (see Eq. (50)), or between β and a finite proper
time of traveling across the shell (see Eq. (49)), can be estab-
lished in order to render admissible the relative acceleration
between two points along a transverse direction.

As a final note, we should stress that the traversability
analysis of the present work can also be carried out for topo-
logically trivial configurations with shells separating inner
from outer regions (see for instance [12–15]), as well as for
multi-layer distributions in cylindrical spacetimes (see for
example Refs. [16–18]).

4 This refers to a class of non-symmetric solutions as, for example,
wormholes with a cubic thin-shell throat composed of flat planes (the
faces) where the extrinsic curvature jump vanishes, see Ref. [1].
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