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The role of local higher-twist (τ > 3) spin-1=2 fermionic operators of the strongly coupled N ¼ 4

supersymmetric Yang-Mills theory on the symmetric and antisymmetric deep inelastic scattering structure
functions is investigated. The calculations are carried out in terms of the duality between N ¼ 4 SYM
theory and type IIB supergravity on AdS5 × S5. Particularly, we explicitly obtain the structure functions for
single-trace spin-1=2 fermionic operators in the 20� and 60� irreducible representations of SUð4ÞR,
corresponding to twists 4 and 5, respectively. We also calculate the contributions of other single-trace
spin-1=2 fermionic operators in the 4, 20 and 60 irreducible representations of SUð4ÞR. New important
effects are found in comparison with the minimal twist (τ ¼ 3) case, and they are studied thoroughly.
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I. INTRODUCTION

Deep inelastic scattering (DIS) cross sections of charged
leptons by hadrons are expressed as the contraction of a
leptonic tensor with a hadronic one. The leptonic tensor is
easily obtained from QED. The problem lies within the
calculation of the hadronic tensor, which is given in terms
of the two-point function of electromagnetic currents
within the hadron, where strong coupling effects become
important. In the operator product expansion (OPE) of two
electromagnetic currents inside a hadron there are several
kinds of contributions from different SYM theory oper-
ators, which in certain parametric domains can be relevant
depending on the virtual-photon momentum q, the cou-
pling gSYM, the Bjorken parameter x, and the number of
color degrees of freedom N. Certain properties of the
hadronic tensor as well as relations among different
structure functions, such as the Callan-Gross relation and
generalizations of it, are valid for different gauge field
theories, at least within the same parametric regimes of q,
gSYM, x, and N. In particular, this behavior has been found
in the framework of the gauge/string theory duality [1–3]
in diverse situations for the strongly coupled regime of

different gauge theories, starting from the pioneering work
by Polchinski and Strassler [4]. Structure functions of
spin-1=2 hadrons have been investigated in this context in
[4–10]. These techniques have been also applied to the
study of the structure functions of scalar and vector mesons
from Dp-brane systems with flavor branes preserving some
supersymmetries as in the D3D7-brane model [11], or
breaking supersymmetry completely as in the Sakai-
Sugimoto model [12] and in the D4D6 anti-D6-brane
model [13], which have been considered in [14–20].
Also, 1=N corrections have been investigated in this
context [21–23]. In addition, very important holographic
Pomeron techniques have been developed and applied to
different models derived from both type IIA and type IIB
superstring theories [24–31]. Another interesting related
aspect is the DIS off a strongly coupled N ¼ 4 SYM
plasma [32], as well as its corrections within the strong
coupling expansion which have been obtained in [33] from
α03 string theory corrections to the type IIB supergravity
action [34].
For the electromagnetic DIS let us consider an incident

polarized spin-1=2 hadron, with four-momentum Pμ, mass
M, and a spin vector Sμ. The corresponding hadronic tensor
can be written as

Wμν ¼ WðSÞ
μν ðq; PÞ þ iWðAÞ

μν ðq; P; sÞ; ð1:1Þ

which is expressed in terms of the Bjorken variable defined
as x ¼ −q2=ð2P · qÞ. The DIS limit corresponds to q → ∞,
while x is kept fixed. The hadronic tensor can be written in
terms of the structure functions as follows [35,36]:
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WðSÞ
μν ¼

�
ημν −

qμqν
q2

��
F1ðx; q2Þ þ

MS · q
2P · q

g5ðx; q2Þ
�

−
1

P · q

�
Pμ −

P · q
q2

qμ

��
Pν −

P · q
q2

qν

��
F2ðx; q2Þ þ

MS · q
P · q

g4ðx; q2Þ
�

−
M

2P · q

��
Pμ −

P · q
q2

qμ

��
Sν −

S · q
P · q

Pν

�
þ
�
Pν −

P · q
q2

qν

��
Sμ −

S · q
P · q

Pμ

��
g3ðx; q2Þ; ð1:2Þ

WðAÞ
μν ¼ −

Mϵμνρσqρ

P · q

�
Sσg1ðx; q2Þ þ

�
Sσ −

S · q
P · q

Pσ

�
g2ðx; q2Þ

�
−
ϵμνρσqρPσ

2P · q
F3ðx; q2Þ; ð1:3Þ

where we have separated the hadronic tensor into its
symmetric and antisymmetric parts, and also we have used
the metric defined as ημν ¼ diagð−1; 1; 1; 1Þ. In addition,
one can define another tensor Tμν, related to the forward
Compton scattering, as the expectation value of the time-
ordered product of two electromagnetic currents inside the
hadron,

Tμν ≡ i
Z

d4ξ eiq·ξhP;Q; SjT̂fJμðξÞJνð0ÞgjP;Q; Si: ð1:4Þ

Its imaginary part can be expressed as a sum over
intermediate states that we call X ,

ImðTμνÞ ¼ 2π2
X
X

δðM2
X þ ðPþ qÞ2Þ

× hP;Q; SjJνð0ÞjPX ;Q; Si
× hPX ;Q; SjJμð0ÞjP;Q; Si: ð1:5Þ

In terms of the optical theorem we have

WðSÞ
μν ¼ 2π ImðTðSÞ

μν Þ; WðAÞ
μν ¼ 2π ImðTðAÞ

μν Þ: ð1:6Þ

In the case of the planar limit of the strongly coupled
N ¼ 4 SYM theory with gauge group SUðNÞ, when
1 ≪ λSYM ≪ N one can explicitly calculate the hadronic
tensor from its string theory dual description, given in terms
of type IIB superstring theory on AdS5 × S5 in the α0 → 0
limit, i.e., type IIB supergravity, including an IR cutoff Λ in
order to account for color confinement [4]. In particular,
when the Bjorken variable is in the λ−1=2SYM ≪ x < 1 regime
(where the ’t Hooft coupling is λSYM ≡ g2SYMN), only
type IIB supergravity fields are relevant for the holographic
dual calculation of properties related to the DIS. In that
parametric region the OPE of the two electromagnetic
currents inside the hadron is dominated by double-trace
operators obtained as the product of two protected single-
trace operators. There is a factorization in terms of
ðΛ2=q2Þτ−1. The twist is defined as τ ¼ Δ − s, for an
operator with scaling dimension Δ and spin s. In a previous

paper [10] we have considered single-trace spin-1=2
fermionic operators with τ ¼ 3 which belong to the 4�
irreducible representation of SUð4ÞR. For that purpose first
we have derived the corresponding terms in the effective
five-dimensional supergravity action containing the cou-
pling of two dilatino modes with a massless vector field.
We have done it from the dimensional reduction of type IIB
supergravity on S5. Those terms in the five-dimensional
action, which we briefly discuss in Sec. III of the present
work, are the minimal coupling and two Pauli terms, one of
which connects the same incoming and intermediate states
(in the forward Compton scattering related to the DIS
process via the optical theorem) and a second one which
allows for certain different intermediate states that we study
in detail. In [10] we have shown that for τ ¼ 3 spin-1=2
fermionic operators the effects due to Pauli terms account
for about 90% of each structure function, thus they play a
very important role in the DIS process of SUðNÞ N ¼ 4
SYM theory at strong coupling in the planar limit.
In the present work we investigate the contributions

given by local single-trace higher-twist (τ > 3) spin-1=2
fermionic operators of the strongly coupled SUðNÞ N ¼ 4
SYM theory on both the symmetric and the antisymmetric
structure functions of a polarized spin-1=2 hadron. We
consider the large N limit. We work within the supergravity
parametric domain, thus we consider the spontaneous
compactification of type IIB supergravity on S5. We focus
on the structure functions related to twist τ ¼ kþ 3

spin-1=2 fermionic operators of the type OIk;ð6Þ
k defined

in Sec. II. Our special interest is in the cases of twists 4
and 5, corresponding to k ¼ 1 and 2, respectively. In the

calculation we also discuss the effect of the OIk;ð13Þ
k single-

trace spin-1=2 fermionic operators which, by virtue of
the selection rules we found, also appear as possible final
states in the DIS process we consider. It is interesting to
emphasize that for single-trace higher-twist spin-1=2 oper-
ators there are important new effects that we investigate in
this work. One of such effects comes from the fact that as k
increases the dimension of the irreducible representation of
SUð4ÞR increases substantially leading to a large number
of Kaluza-Klein dilatino modes contributing from the
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supergravity side. For instance, for τ ¼ 4 there are 20
Kaluza-Klein modes related to the type IIB supergravity
dilatino modes on AdS5 × S5 which contribute to the
calculation. Things become even much more complicated
for τ ¼ 5 where there are 60 spinors contributing to the
calculation of the structure functions. In Sec. II we discuss
the relation between SYM operators and Kaluza-Klein
dilatino modes in each case. On the other hand, there are
new additional terms providing relevant contributions
coming from the fact that for τ > 3 the selection rule
λk → λk−1 with k > 0 now plays a significant role. These
contributions are not subleading in comparison with the
contributions that appear for τ ¼ 3 spin-1=2 fermionic
operators. Therefore, it is worth investigating the effect
of all these new contributions altogether on the hadronic
tensor of spin-1=2 fermions. We will carry out a detailed
calculation of the referred effects. This is very interesting
because it allows us to understand better how the super-
gravity dual description accounts for the way the momen-
tum fragmentation and evolution occur in the planar limit
of the strongly coupled quantum field theory within the
λ−1=2SYM ≪ x < 1 range for spin-1=2 fermionic operators of
N ¼ 4 SYM theory.
The structure of this work is as follows. In Sec. II we

describe the relation between single-trace spin-1=2 fer-
mionic SYM theory operators and the Kaluza-Klein field
modes obtained by considering the dimensional reduction
of type IIB supergravity on S5. In Sec. III we develop the
dual type IIB supergravity calculation of the structure
functions for the mentioned operators for twist 4 in
Sec. III A and for twist 5 in Sec. III B. In Sec. IV we
analyze our results and present the conclusions. There are
in addition several Appendixes containing certain impor-
tant details of the calculations.

II. SPIN-1=2 FERMIONIC OPERATORS OF N = 4
SYM AND TYPE IIB SUPERGRAVITY FIELDS

The N ¼ 4 SYM gauge supermultiplet contains four
left Weyl fermions which we label as λN¼4 (we use this
notation to distinguish it from λ̂ which represents the ten-
dimensional dilatino field of type IIB supergravity). There
are also Xj real scalars with j ¼ 1;…; 6, and Fþ labels the
self-dual two-form field strength associated with the
SUðNÞ gauge field. All these fields transform in the adjoint
representation of the gauge group SUðNÞ.
We focus on the structure functions corresponding to

local twist τ ¼ kþ 3 spin-1=2 fermionic operators of the

form OIk;ð6Þ
k ðxÞ ¼ CIk;ð6Þ

i1���ikTrðFþλN¼4Xi1…XikÞðxÞ where ij
are indices corresponding to the six real scalars of the
N ¼ 4 SYM gauge supermultiplet. In addition, the integer
Ik runs from 1 to the dimension of the irreducible
representation of SUð4ÞR. These operators transform in
the ½1; k; 0� irreducible representation of the R-symmetry
group of the N ¼ 4 SYM theory, being k ≥ 0 (see for

instance [37,38] and references therein). The case for
k ¼ 0 has been investigated in detail in [10]. In that
situation there are just four operators of the form

OI0;ð6Þ
k¼0 ðxÞ¼CI0;ð6ÞTrðFþλN¼4ÞðxÞ, corresponding to τ¼3,

which are in the 4� irreducible representation of SUð4ÞR.
As the number of scalar fields becomes larger the complex-
ity of the calculation increases dramatically since the
dimension of the corresponding irreducible representation
grows with k ¼ 0; 1; 2; 3; 4;… as 4; 20; 60; 140; 280;….
This means that in terms of the AdS=CFT duality one has to
deal with an increasing number of operators on the gauge
theory side, and also with the same number of Kaluza-Klein
dilatino modes on the type IIB supergravity side. For this
reason, and in order to show explicitly the new effects we
find for higher-twist operators we only carry out the explicit
calculations of the hadronic tensor in the cases of twist-4
and twist-5 spin-1=2 fermionic operators. For higher-twist

operators OIk;ð6Þ
k ðxÞ the same method can be applied.

In order to calculate the dimension of an irreducible
representation of SUð4ÞR it is useful to consider in general
the irreducible representations of the suðnÞ algebra of the
SUðnÞ Lie group. Recall that a simple Lie algebra has a
Cartan subalgebra of rank r and an associated root
space spanned in a basis given by the corresponding simple
roots, αi, with i ¼ 1;…; r. There is also a reciprocal
basis of vectors βj, j ¼ 1;…; r. An irreducible representa-
tion of the Lie algebra can be described in terms of its
highest weight vector V ¼ P

r
j¼1mjβ

j, where mj are the
Dynkin integers labeling the different irreducible repre-
sentations ½m1; m2;…; mr� of suðnÞ. The dimension of
½m1; m2;…; mr� can be calculated very easily by associat-
ing a Young diagram with that representation as follows.
One must construct a Young diagram with mj columns of
length j (the length is given by the number of single boxes
in that column). The relation between n and r is n ¼ rþ 1,
thus for the Lie group SUð4ÞR the rank of its Cartan
subalgebra is r ¼ 3, i.e., there are only three simple roots,
therefore the irreducible representations of SUð4ÞR can be
labeled by three Dynkin integers ½r1; r2; r3�.1 In particular,

for the single-trace spin-1=2 fermionic operators OIk;ð6Þ
k ðxÞ

the irreducible representations of SUð4ÞR are ½1; k; 0� with
k ≥ 0. Also, these operators transform in the ð1=2; 0Þ
representation of the algebra of SUð2Þ × SUð2Þ which is
isomorphic to the complexified algebra of the Lorentz
group SOð3; 1Þ, while their conformal dimensions are
Δ ¼ kþ 7

2
.

On the other hand, let us recall that the type IIB
supergravity spontaneous compactification on AdS5 × S5

for the ten-dimensional dilatino leads to two towers of
five-dimensional Kaluza-Klein dilatino modes, λ�k , whose

1Notice that we have now switched to the standard notation by
calling rj to the Dynkin labels of the irreducible representation of
the SUð4ÞR Lie group, i.e., ½m1; m2; m3�≡ ½r1; r2; r3�.
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five-dimensional masses aremþ
k ¼ kþ 7

2
andm−

k ¼ −k − 3
2
,

respectively [39–41]. These spinor spherical harmonics
on S5 are labeled by a set of five positive integers
ðl1; l2; l3; l4; l5Þ, which fulfill the relations l5 ≥ l4 ≥ l3 ≥
l2 ≥ l1 ≥ 0. Also, notice that there is the identification
l≡ l5 ≡ k. Recall that the second Dynkin integer r2 is now
k. The degeneracies of the above five-dimensional dilatino
modes are given by

dspinorð5; kÞ ¼ 4

��
5þ k

k

�
−
�
5þ k − 1

k − 1

��
; ð2:1Þ

always for k ≥ 0.
Now, let us work out some relevant examples for us.

Consider first the case k ¼ 0. The dimension of the ½1; 0; 0�
representation is given by the ratio between the values of
the following Young tableaux: 4 and 1 , whose values are 4
and 1, respectively. This corresponds to the degeneracy of
the mass m−

0 ¼ −3=2 given by Eq. (2.1), i.e., there are four
dilatino modes corresponding to the ð0; 0; 0; 0; 0Þa spinor
spherical harmonics of S5. The subindex a ¼ 1;…; 4 labels
each of these spinor spherical harmonics.

For k ¼ 1we haveOI1;ð6Þ
k¼1 ðxÞ¼CI1;ð6Þ

i1
TrðFþλN¼4Xi1ÞðxÞ,

corresponding to τ ¼ 4, and these operators are in
the 20� irreducible representation of SUð4ÞR, which is

labeled as ½1; 1; 0�. Its dimension is given by the ratio
between the values of the following Young tableaux:

ð2:2Þ

whose values are 4 · 5 · 3 and 3 · 1 · 1, respectively, thus
obtaining 20 as the dimension of this representation.
This number is the same as the number of the mass
degeneracy of the corresponding five-dimensional
dilatino modes given by ð1; 1; 1; 1; 1Þa, ð1; 1; 1; 1; 0Þa,ð1; 1; 1; 0; 0Þa, ð1; 1; 0; 0; 0Þa and ð1; 0; 0; 0; 0Þa, each of
which has four spinors associated.
When k ¼ 2 the operators are OI2;ð6Þ

k¼2 ðxÞ¼
CI2;ð6Þ
i1i2

TrðFþλN¼4Xi1Xi2ÞðxÞ, which correspond to τ ¼ 5,
being operators in the 60� irreducible representation of
SUð4ÞR. In this case this is the ½1; 2; 0� representation. Now,
the dimension is given by the ratio between the values of
the following Young tableaux:

ð2:3Þ

whose values are 4 · 5 · 6 · 3 · 4 and 4 · 3 · 1 · 2 · 1, respec-
tively, which gives 60. This number corresponds to the
mass degeneracy of the corresponding five-dimensional
dilatino modes:

ð2; 2; 2; 2; 2Þa; ð2; 2; 2; 2; 1Þa; ð2; 2; 2; 2; 0Þa; ð2; 2; 2; 1; 1Þa; ð2; 2; 2; 1; 0Þa;
ð2; 2; 2; 0; 0Þa; ð2; 2; 1; 1; 1Þa; ð2; 2; 1; 1; 0Þa; ð2; 2; 1; 0; 0Þa; ð2; 2; 0; 0; 0Þa;
ð2; 1; 1; 1; 1Þa; ð2; 1; 1; 1; 0Þa; ð2; 1; 1; 0; 0Þa; ð2; 1; 0; 0; 0Þa; ð2; 0; 0; 0; 0Þa:

As before each of them has four spinors associated.
In the next section we will show that the Pauli terms in

the five-dimensional supergravity action allow for mixing
of Kaluza-Klein dilatino modes which belong to different
mass towers. Thus, also local operators of the form

OIk;ð13Þ
k ðxÞ ¼ CIk;ð13Þ

i1���ik TrðF2þλ̄N¼4Xi1…XikÞðxÞ give relevant
contributions to the structure functions we are interested in.
The corresponding irreducible representations of SUð4ÞR
are ½0; k; 1�. These operators transform in the ð0; 1=2Þ
representation of SOð3; 1Þ and their conformal dimensions
are Δ ¼ kþ 11=2. An important point to keep in mind is

that for OIk;ð13Þ
k ðxÞ operators the relation between the

twist and k is now τ ¼ kþ 5, which is different from

the OIk;ð6Þ
k ðxÞ operators. Therefore, for k ¼ 0 which cor-

responds to twist-5 spin-1=2 operatorsOI0;ð13Þ
k¼0 ðxÞ, there are

four of such operators which transform in the 4 irreducible
representation, being this number obtained from the ratio of
the values of the Young tableaux:

ð2:4Þ

Next, let us consider the case k ¼ 1, then OI1;ð13Þ
k¼1 ðxÞ ¼

CI1;ð13Þ
i1

TrðF2þλ̄N¼4Xi1ÞðxÞ, corresponding to τ ¼ 6, and
these operators transform in the 20 irreducible representa-
tion of SUð4ÞR, which is labeled as ½0; 1; 1�. The dimension
is given by the ratio between the values of these two Young
tableaux:

ð2:5Þ

Whenk¼2, thenOI2;ð13Þ
k¼2 ðxÞ¼CI2;ð13Þ

i1i2
TrðF2þλ̄N¼4Xi1Xi2ÞðxÞ,

corresponding to τ ¼ 7, and these operators are in the 60
irreducible representation of SUð4ÞR, which is labeled as
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½0; 2; 1�. The dimension is given by the ratio between the
values of the following tableaux:

ð2:6Þ

Thus, we have discussed the identification of the
second Dynkin label k of each irreducible representation
of SUð4ÞR with the number l5 of the spinor spherical
harmonic on S5. Another important point that will be
specified later is the relation between l1 and the charge Q
given in Eq. (3.5).

III. THE DUAL TYPE IIB SUPERGRAVITY
CALCULATION OF THE
STRUCTURE FUNCTIONS

In this section we carry out the holographic dual
calculation of the contributions from the single-trace
higher-twist spin-1=2 operators to the structure functions.
The holographic dual of the large-N limit of SUðNÞN ¼ 4
SYM theory is given in terms of type IIB supergravity on
AdS5 × S5. The metric can be written as

ds2 ¼ dz2 þ ημνdxμdxν

z2
þ dΩ2

5; ð3:1Þ

where we set to one radius of S5 as well as the scale of the
AdS5. The AdS5 indices are m; n;… ¼ 0;…; 4, the boun-
dary four-dimensional indices are μ; ν;… ¼ 0;…; 3, while
the S5 indices are α; β;… ¼ 1;…; 5. The bulk coordinate
z → 0 in the UV and we consider a cutoff z0 ¼ 1=Λ in the
IR to induce confinement. This is the so-called hard-
wall model.
The hadronic tensor can be calculated from the matrix

elements of two electromagnetic currents inside the hadron
by using the optical theorem. Thus, we have to calculate
the imaginary part of the tensor Tμν given in Eq. (1.5)
corresponding to the forward Compton scattering. The
Gubser-Klebanov-Polyakov-Witten’s Ansatz allows us to
calculate the above matrix elements by evaluating the on-
shell supergravity action and taking the sum over all
possible intermediate states. Using the covariant type IIB
supergravity equations of motion, in [10] we have obtained
the effective five-dimensional supergravity action involving
two dilatino fields and a massless vector field. We have
done it from first principles and therefore we have obtained
all the constants from the corresponding angular integrals,
which in addition have lead to certain selection rules for the
Kaluza-Klein states involved in the fermion interactions.
The dilatino field is a right-handed spinor,

λ̂ðx; yÞ ¼
�

0

λðx; yÞ

�
; ð3:2Þ

which can be written as a linear combination of the spinor
spherical harmonics on S5 as

λðx; yÞ ¼
X
k

ðλþk ðxÞΘþ
k ðyÞ þ λ−k ðxÞΘ−

k ðyÞÞ; ð3:3Þ

where Θþ
k ðyÞ and Θ−

k ðyÞ satisfy the Dirac equations on the
5-sphere

ταDαΘ�
k ¼ ∓i

�
kþ 5

2

�
Θ�

k with k ≥ 0: ð3:4Þ

Also, the spinor spherical harmonics turn out to be charge
eigenstates satisfying

�
vαDα −

1

4
τατγ∇γvα

�
Θ�

k ¼ −iQΘ�
k : ð3:5Þ

λ�k are Kaluza-Klein fields with masses given by m�
k

defined on the AdS5, while the superscripts � indicate
the two towers of masses associated with the irreducible
representations 4�; 20�; 60�;… (−), or 4, 20, 60, … (þ) of
the SOð6Þ ∼ SUð4Þ isometry group. Coordinates x and y
are on AdS5 and on S5, respectively. Gamma matrices in
AdS5 and S5 are denoted by γm and τα, respectively. They
satisfy the Clifford algebra

fγâ; γb̂g ¼ 2ηâ b̂; fτα̂; τβ̂g ¼ 2δα̂ β̂; ð3:6Þ

where indices â; b̂; ĉ;… and α̂; β̂; γ̂;… correspond to flat
space-time. The vielbein field eb̂a is used to relate the AdS

indices to flat-space indices. Analogously, eβ̂α is associated
with the S5.
The structure functions of polarized spin-1=2 hadrons

related to operators of the type OIk;ð6Þ
k in the N ¼ 4 SYM

theory can be calculated by using the effective action at
leading order obtained in [10]. The following interaction
terms have been derived from first principles, i.e., from
direct dimensional reduction on S5 for the dilatino terms at
leading order in type IIB supergravity,

Sint ¼ K
Z

dzd4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gAdS5

p

×

�
i
Q
3
λ̄−k γ

aB1
aλ

−
k þ i

b−;−1kj

12
λ̄−j F

abΣabλ
−
k

þ i
bþ;−
1kj

12
λ̄þj F

abΣabλ
−
k

�
; ð3:7Þ

where
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b�;−
1kj ¼

�
1þ 2

�
k ∓ jþ 5

2
∓ 5

2

��Z
dΩ5ðΘ�

j Þ†ταvαΘk

þ 4Q
Z

dΩ5ðΘ�
j Þ†Θ−

k : ð3:8Þ

K is a normalization constant that can be calculated
by comparison with the type IIB supergravity action of
Ref. [42]. In addition, B1

a is the massless Maxwell-Einstein
field in AdS5 defined in Eq. (3.9), while Fab ¼ ∇aB1

b −∇bB1
a and Σab ¼ 1

4
ðγaγb − γbγaÞ. Early references for the

covariant equations of motions of type IIB supergravity
fields are [43–45].
The first term in the action (3.7) corresponds to the

minimal-coupling interaction used to calculate the structure
functions of a DIS process in [4,5] and the vector-spinor-
spinor three-point function in Ref. [46]. This coupling only
connects states in the same irreducible representation
(which have the same twist). The other interactions are
Pauli terms whose strengths are given by the coefficients
b1kj calculated from the angular integrals of spinor spheri-
cal harmonics. We can separate contributions having states
in the same irreducible representation, and mixing of states
from different irreducible representations of SUð4Þ, which
are given by the second and the third terms, respectively.
Before studying the selection rules for higher-twist

operators, we briefly review the solutions in AdS5 of
non-normalizable modes of the vector field and the normal-
izable modes of dilatini, which correspond to the holo-
graphic dual fields of the electromagnetic current and the
hadronic states, respectively. These solutions will be
inserted in the effective five-dimensional action (3.7) to
calculate the matrix elements of the electromagnetic
currents.
The massless vector fields B1

a come from a certain linear
combination of off-diagonal fluctuations of the metric
tensor and vector fluctuations of the Ramond-Ramond
four-field potential in the following way:

B1
aðxÞ≡ A1

aðxÞ − 16Φ1
aðxÞ; ð3:9Þ

where A1
aðxÞ is defined by the metric fluctuation as

haα ¼
X
I5

AI5
a ðxÞYI5

α ðyÞ; ð3:10Þ

and Φ1
aðxÞ is given in terms of the mode expansion of the

Ramond-Ramond field as

aaαβγ ¼
X
I5

ΦI5
a ðxÞϵαβγδϵ∇δYI5ϵðyÞ: ð3:11Þ

In particular, the index I5 denotes the set of numbers
ðl5; l4; l3; l2; l1Þ for the vector spherical harmonics on S5,
YI5ϵðyÞ. The corresponding masses of these vector fields are

given by M2
B;l ¼ l2 − 1 with l ≥ 1, therefore they only

depend on l≡ l5 and, in terms of the irreducible repre-
sentations of SUð4Þ they transform in the 15; 64; 175;…,
for l ¼ 1; 2; 3;…. For the holographic DIS calculation we
only need to consider the massless vector fields, i.e., B1

aðxÞ,
which are the 15 Yang-Mills fields of SUð4Þ ∼ SOð6Þ. In
addition, in this case the vector spherical harmonics are
Killing vectors of S5. The gauge fields satisfy the following
Einstein-Maxwell equation of motions in AdS5:

∇aFab ¼ 0; ð3:12Þ

∂μB1
μ þ z∂z

�
B1
z

z

�
¼ 0: ð3:13Þ

The second equation gives a Lorentz-type gauge fixing
condition. Then, the non-normalizable modes which are
dual to the hadronic current on the boundary satisfy the
following boundary condition:

B1
μðxν; z → 0Þ ¼ nμeiq·x: ð3:14Þ

Thus, the solutions of Eqs. (3.12) and (3.13) with the
boundary condition (3.14) read

B1
μðxν; zÞ ¼ nμeiq·xqzK1ðqzÞ;

B1
zðxν; zÞ ¼ in · qeiq·xzK0ðqzÞ: ð3:15Þ

On the other hand, the dilatini satisfy the Dirac equation in
AdS5 with the hard-wall boundary condition at the IR,
needed in order to break the conformal symmetry and
induce color confinement. Thus, we impose Dirichlet
boundary conditions at the IR cutoff z0 ¼ 1=Λ. In addition,
in the ultraviolet region (z → 0) the boundary condition is
fixed by choosing the normalizable mode for the initial and
final hadronic states. The Dirac equation in AdS5 reads

�
zγm∂m − 2γ5 − k −

3

2

�
λ−k ¼ 0; ð3:16Þ

being the normalizable solution

λ−k ðxν; zÞ
¼ CeiP·xz

5
2ðJτ−2ðMzÞPþ þ Jτ−1ðMzÞP−Þuσ; ð3:17Þ

where the projectors are

P� ¼ ðI � γ5Þ
2

; ð3:18Þ

while Pμ is the four-momentum of the hadron, and the
solution has been expressed in terms of Bessel functions of
the first kind and four-dimensional Dirac spinors uσ. These
spinors satisfy γμPμuσ ¼ iMuσ with P2 ¼ −M2. The twist
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τ ¼ Δ − 1
2
¼ mk þ 3=2 corresponds to the N ¼ 4 SYM

operator OIk;ð6Þ
k . The constant C ¼ c0XM

1=2
X =z1=20 can be

expressed in terms of another dimensionless constant c0X ,
following the normalization used in Ref. [4]. The identity
matrix is indicated as I. In addition, the bulk solutions for

the fields λþ dual to OIk;ð13Þ
k operators are calculated in the

same way.
The coefficients in the effective action (3.7) are given in

terms of integrals of spinor spherical harmonics on S5,
and they lead to the selection rules for the intermediate
states in the forward Compton scattering. Recall that
the spinor spherical harmonics have five quantum
numbers ðl5; l4; l3; l2; l1Þa, which satisfy the conditions
l5 ≥ l4 ≥ l3 ≥ l2 ≥ l1 ≥ 0. We also use the subscripts
a ¼ 1, 2, 3, 4. In particular, l5 ¼ k is related to the twist,
while the l1 index is associated with the charge
Q ¼ �ðl1 þ 1

2
Þ. For k ¼ 0, from the dual SYM theory

point of view, the operators OI0;ð6Þ
k¼0 belong to the 4�

irreducible representation of SUð4ÞR. Thus, there are four
of these type of operators, and we have explicitly verified
that the final result for the structure functions is the same
for all these operators belonging to the 4� representation.
Similarly, for k ¼ 1 there are 20 Kaluza-Klein states (and
operators) which can be separated in five sets, leading to the
same structure functions within each set. An analogous
situation occurs for k ¼ 2 where from the 60 Kaluza-Klein
states (and operators) there are 15 different sets with the
same structure functions for the four states within the same
set. We have checked these results.
The minimal coupling only connects states with the same

quantum numbers ðl5; l4; l3; l2; l1Þa on S5 and belong to the
same irreducible representation of SUð4Þ ∼ SOð6Þ. The
contributions to the structure functions associated with the
minimal coupling are denoted by Fm

i and gmi . They have
been calculated in [10] and their explicit dependence in q
and x is detailed in Appendix A. The other terms of the
effective action (3.7) are Pauli interactions with coefficients
b1kj. In the second term we can identify the interaction
between the gauge field and two dilatini of the same
Kaluza-Klein mass tower. Therefore, they correspond to
operators in the same irreducible representation of SUð4ÞR.
The angular integrals only connect states with equal twist.
The matrix elements can be calculated by solving the
z-integrals on AdS5. In Appendix A these functions are also
written in detail, and we denote them by a superscript P,
namely: FP

i and gPi . These interactions can be separated
into two sets. The first set is constituted by diagrams which
have intermediate states with the same quantum numbers
ðl5; l4; l3; l2; l1Þa as the incident dilatino. Thus, we can
calculate their coefficients by the following integral:

b−;−1kk ¼ ð11þ 4kÞ
Z

dΩ5ðΘ−
k Þ†ταvαΘ−

k þ 4Q: ð3:19Þ

We define the constant

βP ¼ b−;−1kk

12
: ð3:20Þ

This Pauli interaction term is particularly important since
when we calculate the product of the one-point function of
the electromagnetic current and its complex conjugate in
Eq. (1.5), there is a cross contribution corresponding to a
Feynman-Witten diagram which also includes the minimal
coupling. This leads to matrix elements of the hadronic
tensor of the form

nμnνWcμν¼nμnν2π2
X
X

δðM2
X þðPþqÞ2ÞðhJμmð0ÞihJ�νP ð0Þi

þhJμPð0ÞihJ�νm ð0ÞiÞ: ð3:21Þ

The structure functions from cross terms are indicated with
the superscript c: Fc

i and g
c
i and they are explicitly shown in

Appendix A.
In Fig. 1 we illustrate the Feynman-Witten diagrams

needed to calculate the matrix elements of the electromag-
netic currents inside the hadron. The first matrix elements
correspond to the same incoming and outgoing state, with
the minimal coupling and the Pauli term (dotted vertex)
discussed above. On the other hand, as already mentioned
the Pauli diagrams with final states belonging to same
irreducible representations of SUð4Þ (i.e., equal k ¼ l5), but
different l4, l3, l2, l1 numbers, give the same contributions
to the structure functions. However, they do not lead to
cross terms involving the minimal coupling. Now, we
define the following constant:

β2Pm ¼
X
I5

�
b−;−1kk

12

�
2

¼
X
I5

�ð11þ 4kÞ R dΩ5ðΘþ
k Þ†ταvαΘ−

k

12

�
2

; ð3:22Þ

where I5 indicates the quantum numbers ðl5; l4; l3; l2; l1Þa
of the possible intermediate states.
The last term of Eq. (3.7) couples fermionic modes of

different Kaluza-Klein towers of type IIB supergravity
compactified on S5. Considering Feynman-Witten dia-

grams with incoming states dual to the operators OIk;ð6Þ
k ,

the intermediate states will be dual to OIk0 ;ð13Þ
k0 with

k0 ¼ kþ 1 or k0 ¼ k − 1. The selection rule k0 ¼ k� 1
is obtained from the angular integral of the spinor spherical
harmonics,2 being the matrix elements calculated using the
Feynman-Witten diagrams of the second and third lines
in Fig. 1.

2These selection rules relate the conformal dimensions of the
incident and intermediate states through ΔX ¼ Δi þ 2� 1.

HIGHER-TWIST FERMIONIC OPERATORS AND DIS … PHYS. REV. D 103, 106012 (2021)

106012-7



The constant β2− for the case k0 ¼ k − 1 is calculated in terms of the coefficients bþ;−
1kj of the effective action as follows:

β2− ¼
X
I5

�
bþ;−
1 k k−1
12

�
2

¼
X
I5

�R
dΩ5ðΘþ

k−1Þ†ταvαΘ−
k

4

�
2

: ð3:23Þ

The corresponding contributions to the structure functions are given by

FP−
1 ¼ FP−

3

2
¼ gP−1 ¼ gP−5

2
¼ 1

2
ja0j2

�
Λ2

q2

�
τ−1

ð1 − xÞτ−2xτþ1ΓðτÞ2; ð3:24Þ

FP−
2 ¼ gP−4 ¼ ja0j2

�
Λ2

q2

�
τ−1

ð1 − xÞτ−3xτþ1ΓðτÞ2ð1þ xð3þ τð−2þ xðτ − 2ÞÞÞÞ; ð3:25Þ

gP−2 ¼ −
1

4
ja0j2

�
Λ2

q2

�
τ−1 ΓðτÞ2

τ − 1
xτþ1ð1 − xÞτ−3½−τ − 1þ xðx5ðτ þ 1Þτðτ − 2Þ þ ð1þ τÞ2

−x4ðτ − 2Þτð7þ 3τÞ þ 6x2ð2þ ð3 − 2τÞτÞ
−xð12þ ðτ − 5ÞτÞ þ x3ðτ − 3Þð2þ 3τð5þ τÞÞÞ�; ð3:26Þ

gP−3 ¼ja0j2
�
Λ2

q2

�
τ−1 ΓðτÞ2

τ − 1
xτþ1ð1 − xÞτ−3

× ð3 − τ þ xð−15 − 4ðx − 3Þx − 2τ þ xð33 − 2xð18þ ðx − 8ÞxÞÞτ
þð1þ xð−1þ ðx − 6Þxð3þ xðx − 3ÞÞÞÞτ2 þ x3ð3þ xðx − 3Þτ3ÞÞÞ; ð3:27Þ

where the constant a0 ¼ 2πc0ic
0
X2

τK is written in terms of the factors c0i and c0X corresponding to the normalization
constants of the incident and the intermediate hadronic wave functions, respectively. We would like to emphasize that this
interaction is not allowed for the case of τ ¼ 3 studied in [10]. For this reason it is interesting to study its role for higher-
twist operators. Finally, we consider the case k0 ¼ kþ 1, with a constant given by

FIG. 1. Matrix elements of the electromagnetic current inside the hadron are written on the left. The minimal coupling is represented
by the first diagram. The diagrams with dotted vertices correspond to different Pauli terms. Selection rules allow for these three Pauli
diagrams.
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β2þ ¼
X
I5

�
bþ;−
1 k kþ1

12

�2

¼
X
I5

�
−
R
dΩ5ðΘþ

kþ1Þ†ταvαΘ−
k

12

�
2

: ð3:28Þ

The structure functions associated with these interactions have different dependence on the Bjorken parameter,

FPþ
1 ¼ FPþ

3

2
¼ gPþ1 ¼ gPþ5

2

¼ 1

2
ja0j2

�
Λ2

q2

�
τ−1

x−τ−3ð1 − xÞτþ2Γð1þ τÞ2

×

�
xτþ1 − ð1þ τÞ2F1

�
τ þ 2; τ þ 2; τ þ 3;

x − 1

x

��
2

; ð3:29Þ

FPþ
2 ¼ gPþ4

¼ ja0j2
�
Λ2

q2

�
τ−1

x−τð1 − xÞτþ1Γð1þ τÞ2

×

�
x2τ þ 1 − x

x3
ð1þ τÞ22F1

�
τ þ 2; τ þ 2; τ þ 3;

x − 1

x

�
2
�
; ð3:30Þ

gPþ2 ¼ −
1

4
ja0j2

�
Λ2

q2

�
τ−1

ð1 − xÞτxτΓð1þ τÞ2

×
�
2
1 − x
1 − τ

þ ð1 − xÞ−2τð1þ τÞ2ð2þ τÞB
�
x − 1

x
; τ þ 2;−ðτ þ 1Þ

�

×

�ðx − 1Þτ
1 − τ

þ xðτ þ 2ÞBðx−1x ; τ þ 2;−ðτ þ 1ÞÞ
ð1 − xÞ2

��
; ð3:31Þ

gPþ3 ¼ ja0j2
�
Λ2

q2

�
τ−1 1

τ − 1
8ð1 − xÞτþ1x−τ−3Γð1þ τÞ2

×

�
2x2τþ3 þ ð1þ τÞ2ðx − 1Þ 2F1

�
τ þ 2; τ þ 2; τ þ 3;

x − 1

x

�

×

�
−xτþ1 þ ðτ − 1Þ 2F1

�
τ þ 2; τ þ 2; τ þ 3;

x − 1

x

���
; ð3:32Þ

which are expressed in terms of the incomplete Beta
function, Bðx; a; bÞ, and the hypergeometric function,

2Fða; b; c; xÞ.
The general form of the structure functions which

contain all the contributions for higher-twist operators is
given by

Fi ¼ β2mFm
i þ β2PF

P
i þ βmβPFc

i þ β2PmF
P
i

þ β2þF
Pþ
i þ β2−FP−

i ; ð3:33Þ

and we have a similar expression for the gi structure
functions. For the complete structure functions, i.e., by
adding all the contributions from all allowed interactions

from action (3.7), for any twist, there are the following
relations:

F1 ¼
F3

2
¼ g1 ¼

g5
2
; and F2 ¼ g4: ð3:34Þ

Thus, in what follows we will show explicitly F1, F2, g2
and g3, which are independent.
For τ ¼ 3 analyzed in [10], the constants β2− and β2Pm

vanish since the incident hadron has k ¼ l5 ¼ 0 and,
consequently all the remaining li’s are zero. However,
for higher-twist operators these contributions are nonzero.
In the following subsection we will analyze how each
interaction contributes to the structure functions for τ ¼ 4
and τ ¼ 5.
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A. The case of twist-4 OI1;ð6Þ
k= 1 =CI1;ð6Þ

i1
TrðF+ λN = 4Xi1Þ

operators

In this case the incident hadrons correspond to operators
of the form OI1;ð6Þ

k¼1 which belong to the 20� irreducible
representation of SUð4ÞR. They have twist τ ¼ 4. The
holographic dual fields are represented by dilatino modes
with l5 ¼ k ¼ 1 and their respective quantum numbers
are I5 ¼ ð1; l4; l3; l2; l1Þa.
There are 20 independent spinor spherical harmonics

with the same Kaluza-Klein mass. This degeneration comes
from the possibility of having I5 ¼ ð1; l4; l3; l2; l1Þa values

satisfying l5 ¼ 1 ≥ l4 ≥ l3 ≥ l2 ≥ l1 ≥ 0 (in fact there are
five combinations) times the 4 degrees of freedom of
each spinor, which are parametrized by the subscripts
a ¼ 1;…; 4. The final result only depends on the choice
of the li’s, thus we can separate the 20 initial possibilities
in five sets as commented before. Once we choose
a certain set of li ’s, the four possible states lead to the
same structure functions. Therefore, without loss of gen-
erality we choose a ¼ 1 for the incident hadron. For
instance, the spinor spherical harmonic normalized with
I5¼ð1;0;0;0;0Þa¼1 is

Θ−
ð1;0;0;0;0Þa¼1

¼ e−iQθ1ffiffiffi
5

p
π3=2

2
666666664

e−i
1
2
ðθ3−θ5Þ cos

�
θ2
2

�
cos

�
θ4
2

�
ð5i cosðθ5Þ − sinðθ5ÞÞ

−ei12ðθ3þθ5Þ sin
�
θ2
2

�
cos

�
θ4
2

�
ð5i cosðθ5Þ − sinðθ5ÞÞ

−e−i12ðθ3þθ5Þ cos
�
θ2
2

�
sin

�
θ4
2

�
ð5i cosðθ5Þ þ sinðθ5ÞÞ

e−i
1
2
ð−θ3þθ5Þ sin

�
θ2
2

�
sin

�
θ4
2

�
ð5i cosðθ5Þ þ sinðθ5ÞÞ

3
777777775
: ð3:35Þ

As mentioned, the angular integrals of the spinor spherical
harmonics allow us to obtain the selection rules and the
relative coefficients among the contributions given by
different terms in the action (3.7). There is only one state
with l1 ¼ 1, i.e., with Q ¼ � 3

2
, while the other four have

l1 ¼ 0, i.e., with Q ¼ � 1
2
. This is important because the

charge is a conserved quantity and the integrals are equal to
zero if we mix states with different l1. Since we have
considered an incident state with a ¼ 1, the only possibility
is the coupling with states with a ¼ 1 and 3, because they
have the same charge. Spinors with a ¼ 2, 4 have charge
with a different sign. Tables collecting the details of
intermediate states and their coefficients obtained from
the angular integrals of the spinor spherical harmonics are
displayed in Appendix B. There we note that the selection
rules for li, with i ¼ 2, 3, 4, are given by l0i ¼ li � 1 as long
as they satisfy l5 ≥ l4 ≥ l3 ≥ l2 ≥ l1.
The twists of the incident and the intermediate states,

related to the values of l5 ¼ l ¼ k, set the dependence on
the Bjorken variable as well as on the virtual-photon
momentum transfer. Then, the degeneracy given by the
rest of numbers l4, l3, l2 and l1 can enhance the relative
coefficient of a given contribution. In Figs. 2 and 3 we draw
the structure functions F1, F2 and g2 for the five possible
incident hadrons with ð1; l4; l3; l2; l1Þa numbers and τ ¼ 4.
We have set ja0j ¼ 1 which is the only free constant for all
the structure functions. In addition we have factorized out
ðΛ2=q2Þτ−1. In each subfigure the different contributions of
Eq. (3.33) are displayed with different colors (see figure
captions), while blue lines indicate the full structure
functions (including all possible contributions). The cor-
responding curves for g3 are displayed in Appendix C.

First, we note that for almost all the structure functions,
the minimal coupling contributions (orange line) are very
small in comparison with the rest of the contributions.
This effect has been observed in [10] for τ ¼ 3. However,
in the case with maximum charge Q ¼ 3=2 (l1 ¼ 1) they
have a similar magnitude in comparison with the other
terms as shown in Fig. 3. Second, with respect to the Pauli
terms, let us consider the coupling which connects states
belonging to the same 20� irreducible representation of
SUð4Þ (green and violet lines). They show a bell-shaped
form with maximum near x ∼ 0.75, and also they fall
off as ð1 − xÞτ−2 as x → 1. These terms are very important
for the structure functions with Q ¼ 1=2, even taking into
account the suppression of the red line given by the cross
terms. The behavior of the violet line is controlled by the set
of states ð1; l4; l3; l2; 0Þ (see Fig. 2), and they do not
contribute if the incident hadron has charge Q ¼ 3=2
(Fig. 3).
On the other hand, there are also contributions from the

diagrams with intermediate states associated with operators

OI0;ð13Þ
k¼0 which belong to the 4 irreducible representation of

SUð4ÞR. The case corresponding to the selection rule
k0 ¼ kþ 1 (indicated in the figures with brown lines) is
interesting since it is relevant for all the structure functions.
Particularly, for Q ¼ 3=2, this represents the main con-
tribution at relatively low x. The corresponding curves
have maxima around x ∼ 0.35 and fall off rapidly for
higher values of the Bjorken parameter. Finally, the
light-blue curves correspond to the case when k0 ¼k−1,
and they display their maxima around x ∼ 0.9. For
Q ¼ 3=2 charge conservation does not allow for this
type of coupling, thus the coefficients obtained from the
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spinor-spherical-harmonics angular integrals vanish in this
case. For Q ¼ 1=2 these couplings become negligible for
F1, being only relevant for incident hadrons with quantum
numbers (1,1,1,0,0) and (1,1,1,1,0) for F2 and g2.

Figure 4 shows the full structure functions for each
possible initial state with τ ¼ 4. The curves with the same
charge (Q ¼ 1=2) have similar bell-shaped curves. The
region of 0.6 ≤ x < 1 is dominated by contributions

FIG. 2. Full structure functions F1, F2 and g2 (blue line) as functions of the Bjorken parameter x, obtained from twist-4 spin-1=2

fermionic operators OI1;ð6Þ
k¼1 with l5 ¼ 1 ≥ l4 ≥ l3 ≥ l2 ≥ l1 ¼ 0 (Q ¼ 1=2). We also display all the contributions coming from different

terms, namely: from the minimal coupling β2mFm
1 (orange line); the Pauli interaction where the intermediate state λX ≡ λ−k¼1 is the same

as the incident state β2PF
P
1 (green line), and where the intermediate state is different β2PmF

P
1 (violet line), both belonging to the 20�; the

contribution from cross terms βmβPFc
1 (red line); and the contributions from the Pauli interactions with intermediate states in the 60:

β2þF
Pþ
1 , where λX ≡ λþkþ1 (brown line); and in the 4: β2−FP−

1 , where λX ≡ λþk−1 (light blue line).
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associated with the operators OI1;ð6Þ
k¼1 as intermediate

hadrons. In contrast, for 0.2 ≤ x ≤ 0.6 the leading diagram
comes from intermediate states associated with the oper-

ators OI2;ð13Þ
k0¼2

which belong to the 60 irreducible represen-
tation of SUð4ÞR. The structure functions for states with
charge Q ¼ 3=2 have a different behavior, showing a
significant suppression of the contribution of intermediate

states associated to OI1;ð6Þ
k¼1 above x ∼ 0.6 for F1 and F2.

Note that for g1 and g2 the behavior is different.

B. The case of twist-5 OI2;ð6Þ
k= 2 =CI2;ð6Þ

i1i2
TrðF+ λN = 4Xi1Xi2Þ

operators

In this subsection we calculate the structure functions for
incident hadrons represented by twist τ ¼ 5 spin-1=2

fermionic operators OI2;ð6Þ
k¼2 ¼ CI2;ð6Þ

i1i2
TrðFþλN¼4Xi1Xi2Þ of

the N ¼ 4 SYM theory in the planar limit and at
strong coupling, for the Bjorken variable within the
λ−1=2SYM ≪ x < 1 range. The behavior of the different inter-
action terms in the action (3.7) is very similar to the case
τ ¼ 4. However, now the number intermediate of hadronic
states is much larger. In Fig. 5 we show the structure
functions F1, F2 and g2 for the 15 independent incoming
states which can be separated in terms of their chargesQ ¼
1=2; 3=2; 5=2 given by l1 ¼ 0, 1, 2, respectively. There is
only one state ð2; 2; 2; 2; 2Þa with chargeQ ¼ 5=2. Each of
these states has associated four spinors, a ¼ 1, 2, 3, 4. They
transform in the 60� irreducible representation of SUð4ÞR.
As the value of the charge becomes larger, the

Pauli contribution with a maximum in x ∼ 0.7 decreases.

FIG. 3. Full structure functions F1, F2 and g2 (blue line) as functions of the Bjorken parameter x and the detail of each contributions,

obtained from the twist-4 spin-1=2 fermionic operatorsOI1;ð6Þ
k¼1 with l5 ¼ l4 ¼ l3 ¼ l2 ¼ l1 ¼ 1 (Q ¼ 3=2). The meaning of the curves is

analogous as described in Fig. 2.

FIG. 4. Full structure functions F1, F2 and g2 as functions of the Bjorken parameter x obtained from the twist-4 spin-1=2 fermionic

operators OI1;ð6Þ
k¼1 with ð1; l4; l3; l2; l1Þa¼1.

DAVID JORRIN and MARTIN SCHVELLINGER PHYS. REV. D 103, 106012 (2021)

106012-12



This effect occurs mainly due to two reasons, which are
related to the previous case for τ ¼ 4. First, the states which
have the biggest Q couple to a smaller number of
intermediate states due to charge conservation. They do
not even have interactions forQ ¼ 5=2. The second reason
is related to the charge appearing in the coefficient of the
minimal coupling and the cross terms. The last contribution
suppresses the Pauli term contributions in F1 and F2 and
changes the curve of the g2 function for the state (2,2,2,2,2).
It is interesting to analyze the characteristic scale

corresponding to the structure functions associated with
operators with different twists. Figures have been norma-
lized using the same prescription proposed in Ref. [10] for
the minimal τ ¼ 3. In this case we have set

ja0j2
�
Λ2

q2

�
τ−1

¼ π2K24τ−1c2χc2i

�
Λ2

q2

�
τ−1

¼ 1: ð3:36Þ

The idea is to study all the contributions from different
couplings corresponding to an operator of a given twist.
However, using this normalization the maximum values of
the structure functions increase for higher-twist operators
due to the factor ðΓðτÞÞ2. For instance, the Pauli contribu-
tion FP

2 (see Appendix A) takes the form

FP
2 ðx; q; τÞ ∼ π2K24τ−1c2χc2i

�
Λ2

q2

�
τ−1

ðΓðτÞÞ2

× xτþ1ð1 − xÞτ−2½1þ τðτ − 2Þx�; ð3:37Þ

where the factor ðΓðτÞÞ2 scales the contributions, and it
increases for higher twists, considering Eq. (3.36).

In order to clarify this behavior, let us recall that the
normalization of the structure functions depends on τ and
the calculation has been carried out in the DIS limit
(q ∼Mχ ≫ Mi ∼ ΛQCD). The standard normalization used
in [4,47] implies that the constant C in Eq. (3.17) is written
in terms of the twist τ and the hadronic mass Mτ;i as
follows:

C ¼
ffiffiffi
2

p

z0 Jτ−1ðMz0Þ
: ð3:38Þ

Thus, the normalization constant of the incident hadrons is

ci ¼
ffiffi
2

p ðMiz0Þτ−2
Jτ−1ðMiz0Þ2τ−2Γðτ−1Þ, while for the intermediate state, by

using the asymptotic expansion of the Bessel function
around Mχz0 ≫ 1, we obtain cχ ∼ π. Finally, we can
calculate the structure function FP

2 evaluated in the maxi-
mum xmax ¼ 1þτ

2τ−1 with the full τ dependence of the
normalization constants, obtaining

FP
2 ðxmax; q; τÞ ∼

K2τ2

ðMiz0Þ2ðJτ−1ðMiz0ÞÞ2
�
M2

i

q2

�
τ−1

× xτþ1
maxð1 − xmaxÞτ−2ð1þ xmaxτðτ − 2ÞÞ;

ð3:39Þ
whereMi is the mass of the incident hadron and it depends
on the jth zero of the Bessel function.3 The maximum
value of the contribution scales with ðM2

i =q
2Þτ−1. Thus, it

becomes evident how the falloff is accentuated for

FIG. 5. Full structure functions F1, F2 and g2 as functions of the Bjorken parameter x obtained from the twist-5 spin-1=2 fermionic

operators OI2;ð6Þ
k¼2 with ð2; l4; l3; l2; l1Þa¼1.

3For each τ, there is a mass tower of hadrons Mτ;j which is
given by the jth zero of the Bessel functions Jτ−2ðRτ;jÞ ¼ 0

(hard-wall model), where Rτ;j ¼ Mτ;jz0.
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higher-twist operators. For example, phenomenologically
we can consider the kinematic variables taking the
values q2 ∼ 15 GeV2, Mi ∼ 1 GeV and ΛQCD ∼ 0.2 GeV.
Therefore, if we consider the lower hadronic mass for each
τ, the maximum value for τ ¼ 3 is approximately 8.6 times
greater than the case τ ¼ 4, and 47 times greater than the
case τ ¼ 5. These results may be important to compare with
the QCD phenomenology [48].

IV. COMMENTS ON THE RESULTS
AND CONCLUSIONS

We have done an exhaustive study of different contri-
butions to the structure functions of electromagnetic DIS
off polarized spin-1=2 hadrons using the AdS=CFT duality.
Particularly, we have focused on local single-trace higher-
twist spin-1=2 fermionic operators of the strongly coupled
SUðNÞN ¼ 4 SYM theory in the planar limit. Specifically,
we have worked out in full detail the cases with τ ¼ 4 and
5. It is worth mentioning that we have carried out all our
calculations from first principles, i.e., considering the
background AdS5 × S5 from type IIB supergravity. In
the effective five-dimensional action (3.7) there are several
contributions. The first one comes from the minimal-
coupling term. In addition, there are very important con-
tributions from the second and third terms which are Pauli
interactions. For all structure functions the contributions
obtained from the minimal-coupling term turn out to be
smaller in comparison with those emerging from the
different Pauli terms. This effect is manifested on both
the symmetric as well as the antisymmetric structure
functions, as shown in all the figures displayed in this

work. In comparison with the case of OI0;ð6Þ
0 operators in

the 4� irreducible representation of SUð4ÞR, which are only
four different operators, and consequently there are only
four different dual Kaluza-Klein dilatino modes, in this
work for τ ¼ 4, the operators are in the 20� irreducible
representation of SUð4ÞR and the dual corresponding
fermionic type IIB supergravity modes are also 20. For
τ ¼ 5 these figures become 60 SYM operators and their
corresponding 60 Kaluza-Klein states, respectively. On the
other hand, calculations become much more complicated
for twists 4 and 5 in comparison with 3. In addition, there
are new relevant terms from the selection rule λk → λk−1
with k > 0. All this has been discussed in detail in the
previous sections.
Another interesting point to mention concerns the OPE

of two electromagnetic currents inside the hadron. Its
matrix elements define the tensor (1.4), which can be
expanded in terms of the generic structure functions
F̃iðx; q2=Λ2Þ. The optical theorem leads to Eq. (1.6), thus
the relation with the usual structure functions defining the
hadronic tensor Wμν is Fiðx; q2=Λ2Þ≡ 2πImF̃iðx; q2=Λ2Þ.
Then, we can obtain the moments of the structure functions
Mi

nðq2Þ, which can be schematically written as the sum of

three kinds of contributions [4]. The leading contribution at
weak coupling comes from twist-2 operators. In Ref. [49]
the DGLAP and BFKL evolution equations in the N ¼ 4

SYM theory at the next-to-leading approximation have
been derived. Also, the evaluation of Wilson coefficients
for DIS has been done in the next-to-leading approximation
in [50]. There are other contributions to the moments of the
structure functions Mi

nðq2Þ from the nonperturbative
domain, which are the ones we have considered in the
present work. These contributions come from double-trace
operators constructed from protected single-trace operators.
In the present case these are the protected single-trace twist-
τ (for τ ≥ 3) spin-1=2 operators of N ¼ 4 SYM theory at

strong coupling of the form OIk;ð6Þ
k which belong to the

4�; 20�; 60�;… irreducible representations of SUð4ÞR,
labeled as ½1; k; 0�. As we have seen in previous sections
there are also contributions from operators of the form

OIk;ð13Þ
k in the 4; 20; 60;… irreducible representations of

SUð4ÞR, labeled as ½0; k; 1�. These contributions to the OPE
are the leading ones in the large-N limit and correspond to
final single-particle states in DIS or the exchange of single-
particle intermediate states in the forward Compton scatter-
ing. In terms of the type IIB supergravity dual description
these processes only involve a single intermediate dilatino
mode exchange. This is what we have developed in this
work.
There is a third kind of contributions which are relevant

for finite N, and they correspond to the exchange of two or
more particle intermediate states in the forward Compton
scattering. They correspond to multitrace operators in the
SYM theory. In the present case we have not considered
1=N corrections since here we focus on the large-N limit of
the SUðNÞ N ¼ 4 SYM theory. We have obtained the
structure functions for exchange of two-particle intermedi-
ate states for glueballs in [21] for N ¼ 4 SYM theory in
terms of type IIB supergravity on AdS5 × S5, scalar mesons
in [22] and vector mesons in [23] both in the context of the
D3D7-brane model [11].
An important point is related to the constituent counting

rules. For instance, in Ref. [51] it has been proposed a
phenomenological light-front quark model consistent with
the Drell-Yan-West duality [52,53] and quark counting
rules [54,55]. They have obtained the correct scaling
behavior of parton distributions and form factors for pions
and nucleons. Moreover in [56], using global fits for
valence light-quark parton distributions and data on quark
and nucleon form factors in the Euclidean region, a light-
front quark model for the nucleon structure has been
developed. More recently in Ref. [57], using light-front
holographic QCD, generalized parton distributions have
been investigated. It has been included a certain repar-
ametrization function to account for Regge behavior at
small x and inclusive counting rules at x near 1.
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At this point we should emphasize that a property
derived from the type IIB supergravity dual description
which we consider in the present work is the fact that for
fermions the structure function F2 scales as ð1 − xÞτ−2 for
x → 1. In that parametric regime this is related to the fact
that the OPE of two electromagnetic currents inside a
baryon is dominated by double-trace operators of N ¼ 4
SYM theory in the planar limit. It is understood as if the
charged lepton is scattered from a single entire baryon
rather than its partonic constituents [4]. Recall that this
top-down approach holds within the range λ−1=2SYM ≪ x < 1,
where the ’t Hooft coupling satisfies the condition
N ≫ λSYM ≫ 1. A similar behavior takes place for glue-
balls for the structure function F2 as x → 1. On the other
hand, in the case of the low-lying holographic dual mesons
the structure function F2 scales as ð1 − xÞγ for x → 1, being
the exponent γ dependent on the particular flavor Dp-brane
model one considers. In Ref. [20] it has been obtained
F2 ∝ ð1 − xÞ2 in that limit for the D3D7-brane model,
which is consistent with the constituent counting rules for
the pion commented before. For the Sakai-Sugimoto model
based on D4D8 anti-D8-brane system the exponent is
γ ≈ 4.59, while the D4D6 anti-D6-brane model leads to
γ ≈ 3.33. Thus, it allows to distinguish the D3D7-brane
model as the one which reproduces correctly the constituent
counting rule for the pion. The reason for that is that even in
the large-N limit mesons have only a quark-antiquark pair,
and in the dual holographic representation there is a
fundamental string connecting them. On the other hand,
fundamental strings connectingN quarks to a baryon vertex
lead to a nondynamical baryon in the large-N limit, whose
mass is proportional toN. Thus, in the range λ−1=2SYM ≪ x < 1

a holographic dynamical baryon is usually represented in
terms of a totally different construction, given by the
dilatino of type IIB supergravity. The dilatino is decom-
posed in terms of its Kaluza-Klein modes upon the
compactification on S5. Beyond this parametric domain,
for instance when expð−λ1=2SYMÞ ≪ x ≪ λ−1=2SYM, the holo-
graphic description is given by an ultralocal approximation
of the type IIB superstring theory four-point scattering
amplitude of two graviphotons and two fermions [9].
In addition, for exponentially small values of the
Bjorken parameter the holographic description is carried
out in terms of the Brower-Polchinski-Strassler-Tan
(BPST) Pomeron [58].
Another important point concerns the study of the

Callan-Gross relation F2 ¼ 2xF1 within this holographic
dual approach. Figure 6 displays F2=ð2xF1Þ as a function
of x by considering different twists: τ ¼ 3 indicated with a
blue line; τ ¼ 4 for an incoming state (1,1,1,1,1) (orange
curve); and for τ ¼ 5 setting (2,2,2,2,2) as the incoming
state (green line). For τ ¼ 3 there is a clear trend towards
the Callan-Gross relation as the Bjorken variable increases.
In the case with τ ¼ 4 there are some deviations due to

additional contributions coming from terms which mix the
incoming and intermediate states in the forward Compton
scattering, however we still can observe a general trend as
x → 1. The odd behavior for τ ¼ 5 is due to the term
resulting from the supergravity Feynman diagram for the
forward Compton scattering which mixes one vertex
bearing the minimal coupling and the other one with the
Pauli interaction. The general increase shown for small
values of x should not be considered as the correct dual
description, since the supergravity approach should be
replaced by the string theory/BPST Pomeron description
in the range 0 < x < 0.1, where the upper limit is a typical
value. It is interesting to recall that if we only turn on the
minimal interaction the Callan-Gross relation becomes
F2 ¼ 2F1, i.e., x is not present [4].
Now, we can carry out a comparison with experimental

data for the proton structure function F2. Blue dots
correspond to data from the SLAC collaboration [59] for
x ¼ 0.85. Yellow and light-blue dots for q2 < 30 GeV2

also correspond to the same experiment. The rest of the
points belong to the BCDMS collaboration [60].
It is interesting to also comment about previous results

[61] where unpolarized spin-1=2 baryonic structure func-
tions have been investigated in the regime of large Bjorken
parameter x, by using an exponential deformation of the
AdS5 spacetime within the bottom-up AdS/QCD approach.
This is related to an anomalous dimension introduced in
that model. For the values of x ¼ 0.65, 0.75 and 0.85 their
results are consistent with experimental data [59,60] as
shown in Fig. 5 of Ref. [61]. This model includes a set of
three parameters for each value of x, therefore, they have a
total of nine parameters to fit the experimental data
mentioned above.
In order to make some comparison with the results of

Ref. [61] we draw Fig. 7, which displays the experimental
data of the structure function F2 for the proton, including
the corresponding error bars. Colors correspond to different
values of the Bjorken parameter for the same three values
considered in that paper: x ¼ 0.65, 0.75 and 0.85. The
horizontal axis labels the logarithm of q2. The long-dashed

FIG. 6. F2=ð2xF1Þ as a function of the Bjorken parameter x for
different values of the operator twist. The horizontal red line
indicates the Callan-Gross relation, i.e., F2=ð2xF1Þ ¼ 1.
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lines correspond to the best fit for τ ¼ 3, obtaining the
overall normalization constant Aτ¼3 ¼ 160� 12. On the
other hand, the continuous lines correspond to the best fit
for τ ¼ 5, where for the overall normalization constant we
obtain Aτ¼5 ¼ 179� 43. This fit certainly is not good, as
expected if one tries to describe in this parametric regime
the proton structure function F2 in terms of twist-5
operators, omitting the leading contribution from twist-3
operators. The case for twist-4 operators lies in between,
and we do not display the corresponding curves to make
Fig. 7 visually clearer.
At this point we may ask how the combined contribu-

tions of twist 3, 4 and 5 single-trace operators of N ¼ 4
SYM theory can describe the proton structure function F2,
by considering the following expression:

F2ðx; q2Þ ¼ Aτ¼3Fτ¼3
2 ðx; q2Þ þ Aτ¼4Fτ¼4

2 ðx; q2Þ
þ Aτ¼5Fτ¼5

2 ðx; q2Þ; ð4:1Þ

where for τ ¼ 4 we have considered the Kaluza-Klein
supergravity state labeled as (1,1,1,1,1), while for τ ¼ 5 we
set (2,2,2,2,2). The best fit parameters we obtain are

Aτ¼3 ¼ 156� 38; Aτ¼4 ¼ 10� 237;

Aτ¼5 ¼ 0� 136: ð4:2Þ

Notice that the fit has been restricted to positive values of
the coefficients Aτ. The results are shown using dotted lines
which are very close to the long-dashed lines corresponding
to the twist 3. The large errors for Aτ¼4 and Aτ¼5 indicate
that the combined fit worsens in comparison to the case
considering only the leading-twist operator τ ¼ 3. This
suggests that this particular top-down holographic dual

model is not able to capture the behavior of the proton
structure function F2 for large values of the Bjorken
parameter, and that this situation does not improve by
considering the next subleading higher-twist contributions,
at least in the planar limit. Let us emphasize that we are
comparing a holographic dual model of a confining IR
deformation ofN ¼ 4 SYM theory, which is not QCD, and
moreover their differences (at least at the level of their
structure functions) become more evident within the para-
metric domain we consider in this work. It may be possible
that nonplanar contributions, whose holographic dual
description corresponds to one-loop Feynman diagrams
from the supergravity side, could improve the situation, as
it occurs for the pion [22] and the rho meson [23]. However,
a first principles calculation of this kind for spin-1=2
fermions is far beyond the results presented in this work.
In addition, when comparing Fig. 7 with the results of
Ref. [61] we should keep in mind that the AdS/QCD model
of that paper uses nine free parameters to fit data from
[59,60]. On the other hand, the top-down type IIB super-
gravity dual description we consider has only one free
parameter for each twist. In the combined situation there
are only three free parameters Aτ¼3; Aτ¼4; Aτ¼5, while for
our long-dashed curves there is only one free parameter
Aτ¼3 related to the fit of all data. The reason for having only
a few parameters is inherent to the nature of the top-down
holographic dual description, ultimately derived from
superstring theory.
It is very interesting to make some comparison with

previous calculations carried out with soft-wall approaches
as in Refs. [62,63]. First let us recall that we have explicitly
obtained all the structure functions, considering all possible
contributions from the hard-wall model description based
on type IIB supergravity on AdS5 × S5, by matching
the corresponding Kaluza-Klein fermionic modes from
the dilatino to certain specific single-trace operators of
N ¼ 4 SYM theory. Thus, as explained before, the OPE of
two electromagnetic currents inside the hadron is domi-
nated by terms with double-trace operators. These double-
trace operators are constructed from the above-mentioned
protected single-trace operator with a given twist, and we
explicitly calculate their contributions to all the structure
functions. Finally, we have associated the obtained struc-
ture functions with the ones of the proton, for large x and
strong ’t Hooft coupling within the planar limit. The
relation we have considered between the structure functions
which we have derived from single-trace operators of
N ¼ 4 SYM theory and those of the proton has a number
of important limitations, coming from the fact that N ¼ 4
SYM theory is not QCD. Still, it is very interesting to make
a comparison between them as we have done.
Now, let us comment on other calculations previously

done in terms of soft-wall approaches. In Ref. [62] it has
been proposed an identification of the higher spin hadrons
with the fluctuations around the spin 0, 1=2, 1 and 3=2

FIG. 7. Data of the structure function F2 for the proton
extracted from Refs. [59,60], as a function of log q2. Long-
dashed lines represent the best fit for τ ¼ 3. Continuous lines
correspond to the best fit for twist-5 operator corresponding to the
Kaluza-Klein state (2,2,2,2,2). Dotted lines (very close to the
long-dashed lines) correspond to a fit with a linear combination of
twist 3, 4 and 5 operators as explained in the main text. Note that
in this figure F2 has been multiplied by 2ix, where ix is the
number of the x bin, ranging from 1 (x ¼ 0.85) to 3 (x ¼ 0.65).

DAVID JORRIN and MARTIN SCHVELLINGER PHYS. REV. D 103, 106012 (2021)

106012-16



string solutions on AdS5 × S5. They have obtained the
hadronic spectrum. For that, they identify hadrons by the
correspondence of string modes with the dimension of
the interpolating operator of the hadrons valence Fock state.
Another very interesting investigation of nucleon electro-
magnetic and axial form factors which has been carried out
using the soft-wall model is presented in [63]. In that paper,
by setting to 3 the number of colors the nucleon structure is
described in a superposition of a 3 valence quark state with
high Fock states including an adjustable number of partons.
This has been done by considering five-dimensional
fermions bearing different scaling dimension in AdS5.
The scaling dimension is associated with the Fock state
components with a specific number of partons, and
particularly they considered the contribution of three, four
and five parton components in the nucleon Fock state. They
found a reasonable level of agreement in comparison with
data for the nucleon form factors. The ideas of Refs. [62,63]
are conceptually different from what we have developed in
the present work.
The techniques presented in this work can be used to

study other single-trace operators of the SUðNÞ N ¼ 4
SYM theory. Also, it would be very interesting to extend it
to study cases with less supersymmetries such as N ¼ 1
SYM theory developed by Klebanov and Witten [64],
considering the spectrum of type IIB supergravity on
AdS5 × T1;1 [65,66]. In this case the angular integrals on
T1;1 would set different selection rules which likely induce
new interesting effects. In similar lines it would be
interesting to investigate the case of type I’ string theory
associated with five-dimensional supersymmetric fixed
points with ENfþ1

global symmetry. This includes many
different theories with ENfþ1

¼ E8; E7, E6, E5 ¼ Spinð10Þ,

E4 ¼ SUð5Þ, E3 ¼ SUð3Þ × SUð2Þ, E2 ¼ SUð2Þ ×Uð1Þ,
E1 ¼ SUð2Þ global symmetry groups [67]. The gravity
duals of these theories were constructed in [68], and are
related to the near horizon limit of the D4D8-brane system
in massive type IIA supergravity [69] compactified on
the AdS6 ⊗ S4 fibration [70]. Interesting related gauge/
supergravity duals have been obtained in [71]. Also, using
the ideas discussed above, it would be interesting to
investigate eleven-dimensional supergravity on AdS4×S7

and AdS7 × S4 [72–74] as well as deformations leading to
SYM theories preserving less supersymmetries [75].
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APPENDIX A: MINIMAL COUPLING
AND PAULI TERMS CONTRIBUTIONS
TO THE STRUCTURE FUNCTIONS

In this Appendix we introduce the structure functions
associated with each interaction term which are used to
draw the figures for higher-twist spin-1=2 operators. For
the minimal coupling the structure functions of a incident
polarized spin-1=2 hadron with twist τ are given by

Fm
1 ¼ Fm

2

2
¼ Fm

3

2
¼ gm1 ¼ gm3

2
¼ gm4

2
¼ gm5

2
¼ ja0j2

8
Γ2ðτÞ

�
Λ2

q2

�
τ−1

xτþ1ð1 − xÞτ−2; ðA1Þ

gm2 ¼
�
1

2

τ þ 1

τ − 1
−

xτ
τ − 1

� ja0j2
8

Γ2ðτÞ
�
Λ2

q2

�
τ−1

xτð1 − xÞτ−2; ðA2Þ

where ΓðxÞ is the Gamma function and ja0j ¼ 2πc0ic
0
X2

τK is a constant.
For the Pauli interactions between states in the same representation the structure functions are

FP
1 ¼ FP

3

2
¼ gP1 ¼ gP5

2
¼ 1

2
ja0j2Γ2ðτÞ

�
Λ2

q2

�
τ−1

xτþ1ð1 − xÞτ−2ð1 − τÞ2; ðA3Þ

FP
2 ¼ gp4 ¼ ja0j2Γ2ðτÞ

�
Λ2

q2

�
τ−1

xτþ1ð1 − xÞτ−2ð1þ xτðτ − 2ÞÞ; ðA4Þ

gP2 ¼ −
1

4
ja0j2Γ2ðτÞ

�
Λ2

q2

�
τ−1

ð1 − xÞτ−2xτþ1ðτð1 − τ þ xð3þ 2ðτ − 2ÞτÞÞ − 1Þ=ðτ − 1Þ; ðA5Þ
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gP3 ¼ −ja0j2Γ2ðτÞ
�
Λ2

q2

�
τ−1

ð1 − xÞτ−2xτþ1ð1þ τð1 − 3xÞ þ ð2x − 1Þτ2Þ=ðτ − 1Þ: ðA6Þ

Finally, the structure functions from the cross-terms contribution having both the minimal coupling and the Pauli
interactions are

Fc
1 ¼

Fc
3

2
¼ gc1 ¼

gc5
2
¼ 1

2
ja0j2

�
Λ2

q2

�
τ−1

ð1 − xÞτ−2xτþ1ðτ − 1ÞΓðτÞ2; ðA7Þ

Fc
2 ¼ gc4 ¼ ja0j2

�
Λ2

q2

�
τ−1

ð1 − xÞτ−2xτþ1ð−1þ xτÞΓðτÞ2; ðA8Þ

gc2 ¼ −
1

4
ja0j2

�
Λ2

q2

�
τ−1 ΓðτÞ2

τ − 1
ð1 − xÞτ−2xτþ2ð2 − τ2 þ xτð4τ − 5ÞÞ; ðA9Þ

gc3 ¼
1

2

ΓðτÞ2
τ − 1

ja0j2
�
Λ2

q2

�
τ−1

ð1 − xÞτ−2xτþ1ð2 − ð4þ xÞτ þ ð−1þ 4xÞτ4Þ: ðA10Þ

APPENDIX B: TABLES OF ANGULAR INTEGRALS

The coefficients corresponding to the terms in the action (3.7) are calculated from the angular integrals of the spinor
spherical harmonics and the Killing vectors vα. The results of the following integrals are shown in Table I,

Z
dΩ5ðΘ−

ð1;l0
4
;l0
3
;l0
2
;l0
1
ÞaÞ�viτiΘ−

ð1;l4;l3;l2;l1Þa¼1
; ðB1Þ

where the incoming spinor spherical harmonics isΘ−
ð1;l4;l3;l2;l1Þa¼1

while the outgoing one is given byΘ−
ð1;l0

4
;l0
3
;l0
2
;l0
1
Þa. In this case

both of them belong to the same Kaluza-Klein mass tower.
Then, in Tables II and III are listed the results of the following integrals between states belonging to different Kaluza-

Klein mass towers:

Z
dΩ5ðΘþ

ð1�1;l0
4
;l0
3
;l0
2
;l0
1
ÞaÞ�viτiΘ−

ð1;l4;l3;l2;l1Þa¼1
: ðB2Þ

In this case the outgoing spinors have superscript ðþÞ and l5 can only take the values 1� 1.

TABLE I. Results of the angular integrals between states belonging to the same Kaluza-Klein mass tower. The spinor spherical
harmonics corresponding to the incoming states are indicated in the first row. The outgoing states are listed in the first column.

ð1; 0; 0; 0; 0Þ−1 ð1; 1; 0; 0; 0Þ−1 ð1; 1; 1; 0; 0Þ−1 ð1; 1; 1; 1; 0Þ−1 ð1; 1; 1; 1; 1Þ−1
ð1; 0; 0; 0; 0Þ−1 − 7

30
− 1

20
ffiffi
6

p 0 0 0

ð1; 0; 0; 0; 0Þ−3 0 0 1

12
ffiffiffiffi
10

p 1

12
ffiffi
5

p 0

ð1; 1; 0; 0; 0Þ−1 − 1

20
ffiffi
6

p −ð9=40Þ 0 0 0

ð1; 1; 0; 0; 0Þ−3 0 0 1

8
ffiffiffiffi
15

p 1

4
ffiffiffiffi
30

p 0

ð1; 1; 1; 0; 0Þ−1 0 0 − 5
24

1

12
ffiffi
2

p 0

ð1; 1; 1; 0; 0Þ−3 − 1

12
ffiffiffiffi
10

p − 1

8
ffiffiffiffi
15

p 0 0 0

ð1; 1; 1; 1; 0Þ−1 0 0 1

12
ffiffi
2

p − 1
6

0

ð1; 1; 1; 1; 0Þ−3 1

12
ffiffi
5

p − 1

4
ffiffiffiffi
30

p 0 0 0

ð1; 1; 1; 1; 1Þ−1 0 0 0 0 − 1
2

ð1; 1; 1; 1; 1Þ−3 0 0 0 0 0
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TABLE II. Results of the angular integrals between states belonging to different Kaluza-Klein mass towers. In the first row there are
the incoming spinor spherical harmonics while the outgoing states are listed in the first column.

ð1; 0; 0; 0; 0Þ−1 ð1; 1; 0; 0; 0Þ−1 ð1; 1; 1; 0; 0Þ−1 ð1; 1; 1; 1; 0Þ−1 ð1; 1; 1; 1; 1Þ−1
ð0; 0; 0; 0; 0Þþ1 − 1

3
ffiffi
5

p 1ffiffiffiffi
30

p 0 0 0

ð0; 0; 0; 0; 0Þþ3 0 0 − 1

3
ffiffi
2

p − 1
3

0

ð2; 0; 0; 0; 0Þþ1
ffiffi
3

p
10

− 1

20
ffiffi
2

p 0 0 0

ð2; 0; 0; 0; 0Þþ3 0 0 1
4
ffiffiffiffi
30

p 1

4
ffiffiffiffi
15

p 0

ð2; 1; 0; 0; 0Þþ1
ffiffiffiffi
21

pffiffi
2

p
20

9
40

ffiffi
7

p 0 0 0

ð2; 1; 0; 0; 0Þþ3 0 0 − 1

8
ffiffiffiffiffiffi
105

p − 1

4
ffiffiffiffiffiffi
210

p 0

ð2; 1; 1; 0; 0Þþ1 0 0 5

24
ffiffi
7

p − 1

12
ffiffiffiffi
14

p 0

ð2; 1; 1; 0; 0Þþ3
ffiffi
7

p
4
ffiffiffiffi
10

p − 1

8
ffiffiffiffiffiffi
105

p 0 0 0

ð2; 1; 1; 1; 0Þþ1 0 0 − 1

12
ffiffiffiffi
14

p 1
6
ffiffi
7

p 0

ð2; 1; 1; 1; 0Þþ3 −
ffiffi
7

p
4
ffiffi
5

p 1
4
ffiffiffiffiffiffi
210

p 0 0 0

ð2; 1; 1; 1; 1Þþ1 0 0 0 0 1

2
ffiffi
7

p

ð2; 1; 1; 1; 1Þþ3 0 0 0 0 0
ð2; 2; 0; 0; 0Þþ1 0 −

ffiffi
5

p
4
ffiffi
7

p 0 0 0

ð2; 2; 0; 0; 0Þþ3 0 0 1

4
ffiffiffiffi
21

p 1

2
ffiffiffiffi
42

p 0

ð2; 2; 1; 0; 0Þþ1 0 0 5

12
ffiffiffiffi
21

p − 1

6
ffiffiffiffi
42

p 0

ð2; 2; 1; 0; 0Þþ3 0
ffiffi
5

p
4
ffiffi
7

p 0 0 0

ð2; 2; 1; 1; 0Þþ1 0 0 1

6
ffiffiffiffi
42

p − 1

3
ffiffiffiffi
21

p 0

ð2; 2; 1; 1; 0Þþ3 0
ffiffi
5

p
2
ffiffiffiffi
14

p 0 0 0

ð2; 2; 1; 1; 1Þþ1 0 0 0 0 1ffiffiffiffi
21

p

ð2; 2; 1; 1; 1Þþ3 0 0 0 0 0
ð2; 2; 2; 0; 0Þþ1 0 0 0 0 0
ð2; 2; 2; 0; 0Þþ3 0 0

ffiffi
2

p
3
ffiffi
3

p 1
6
ffiffi
3

p 0

TABLE III. Results of the angular integrals between states belonging to different Kaluza-Klein mass towers. In the first row there are
the incoming spinor spherical harmonics while the outgoing states are listed in the first column.

ð1; 0; 0; 0; 0Þ−1 ð1; 1; 0; 0; 0Þ−1 ð1; 1; 1; 0; 0Þ−1 ð1; 1; 1; 1; 0Þ−1 ð1; 1; 1; 1; 1Þ−1
ð2; 2; 2; 1; 0Þþ1 0 0 0 0 0
ð2; 2; 2; 1; 0Þþ3 0 0 −

ffiffi
5

p
3
ffiffi
6

p 1

3
ffiffiffiffi
15

p 0

ð2; 2; 2; 1; 1Þþ1 0 0 0 0 0
ð2; 2; 2; 1; 1Þþ3 0 0 0 0 1ffiffiffiffi

15
p

ð2; 2; 2; 2; 0Þþ1 0 0 0 0 0
ð2; 2; 2; 2; 0Þþ3 0 0 0

ffiffi
3

p
2
ffiffi
5

p 0

ð2; 2; 2; 2; 1Þþ1 0 0 0 0 0
ð2; 2; 2; 2; 1Þþ3 0 0 0 0 − 1ffiffiffiffi

10
p

ð2; 2; 2; 2; 2Þþ1 0 0 0 0 0
ð2; 2; 2; 2; 2Þþ3 0 0 0 0 0
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APPENDIX C: RESULTS OF THE STRUCTURE FUNCTION g3

In this Appendix we show the structure function g3 for τ ¼ 4 (Figs. 8 and 9) and τ ¼ 5 (Fig. 9).

FIG. 8. Full structure function g3 (blue line) as a function of the Bjorken parameter x, obtained from the contribution of the twist-4

spin-1=2 fermionic operatorsOI1;ð6Þ
k¼1 with l5 ¼ 1 ≥ l4 ≥ l3 ≥ l2 ≥ l1. We distinguish the contributions from the minimal coupling β2mFm

1

(orange line); the Pauli interaction between states which belong to the same Kaluza-Klein tower: where the intermediate state λX ≡ λ−k¼1

is the same as the incident state β2PF
P
1 (green line) and where the intermediate state is different β2PmF

P
1 (violet line); the contribution from

crossed terms βmβPFc
1 (red line); and the contributions from the Pauli interaction involving states which are dual to operators belonging

to the 60 irreducible representation of SUð4ÞR: β2þFPþ
1 , where λX ≡ λþkþ1 (brown line), and also the 4 irreducible representation of

SUð4ÞR: β2−FP−
1 , where λX ≡ λþk−1 (light blue line).

DAVID JORRIN and MARTIN SCHVELLINGER PHYS. REV. D 103, 106012 (2021)

106012-20



APPENDIX D: SPHERICAL HARMONICS

In this Appendix some of the spinor spherical harmonics used to calculate the structure functions are explicitly written. In
order to build them we have employed the formalism proposed in Ref. [76].

1. The case with τ = 4 (l5 = 1)

We first list the spinor spherical harmonics with Q ¼ 1=2. Notice that Θ−
ð1;0;0;0;0Þa¼1

is given in Sec. III A in Eq. (3.35):

Θ−
ð1;1;0;0;0Þa¼1

¼
ffiffiffi
3

p
e−iQθ1ffiffiffiffiffi
10

p
π3=2

2
666666664

e−i
1
2
ðθ3−θ5Þ cos

�
θ2
2

�
cos

�
θ4
2

�
sinðθ5Þð1 − 5 cosðθ4ÞÞ

ei
1
2
ðθ3þθ5Þ sin

�
θ2
2

�
cos

�
θ4
2

�
sinðθ5Þð−1þ 5 cosðθ4ÞÞ

e−i
1
2
ðθ3þθ5Þ cos

�
θ2
2

�
sin

�
θ4
2

�
sinðθ5Þð1þ 5 cosðθ4ÞÞ

e−i
1
2
ð−θ3þθ5Þ sin

�
θ2
2

�
sin

�
θ4
2

�
sinðθ5Þð1þ 5 cosðθ4ÞÞ

3
777777775
; ðD1Þ

Θ−
ð1;1;1;0;0Þa¼1

¼
ffiffiffi
2

p
e−iQθ1

π3=2

2
666666664

e−i
1
2
ðθ3−θ5Þ cos

�
θ2
2

�
cos2

�
θ4
2

�
sin

�
θ4
2

�
sinðθ5Þð−3i cosðθ3Þ − sinðθ3ÞÞ

ei
1
2
ðθ3þθ5Þ sin

�
θ2
2

�
cos2

�
θ4
2

�
sin

�
θ4
2

�
sinðθ5Þð3i cosðθ3Þ þ sinðθ3ÞÞ

e−i
1
2
ðθ3þθ5Þ cos

�
θ2
2

�
sin2

�
θ4
2

�
cos

�
θ4
2

�
sinðθ5Þð−3i cosðθ3Þ − sinðθ3ÞÞ

e−i
1
2
ð−θ3þθ5Þ sin

�
θ2
2

�
sin2

�
θ4
2

�
cos

�
θ4
2

�
sinðθ5Þð3i cosðθ3Þ − sinðθ3ÞÞ

3
777777775
; ðD2Þ

Θ−
ð1;1;1;1;0Þa¼1

e−iQθ1

π3=2

¼

2
666666664

sinðθ2Þð1−3cosðθ2ÞÞcsc
�
θ2
2

�
sin

�
θ3
2

�
sinðθ3Þ

�
cot

�
θ3
2

�
− i

�
sin2ðθ4Þcsc

�
θ4
2

�
sin

�
θ5
2

�
sinðθ5Þ

�
cot

�
θ5
2

�
þ i

�

2sin
�
θ2
2

�
ð3cosðθ2Þþ1Þsin

�
θ3
2

�
sinðθ3Þ

�
cot

�
θ3
2

�
þ i

�
sin2ðθ4Þcsc

�
θ4
2

�
sin

�
θ5
2

�
sinðθ5Þ

�
cot

�
θ5
2

�
þ i

�

2sinðθ2Þð3cosðθ2Þ−1Þcsc
�
θ2
2

�
sin

�
θ3
2

�
sinðθ3Þ

�
cot

�
θ3
2

�
− i

�
sin

�
θ4
2

�
sinðθ4Þsin

�
θ5
2

�
sinðθ5Þ

�
cot

�
θ5
2

�
− i

�

−4sin
�
θ2
2

�
ð3cosðθ2Þþ1Þsin

�
θ3
2

�
sinðθ3Þ

�
cot

�
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2

�
þ i

�
sin

�
θ4
2

�
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�
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2

�
sinðθ5Þ

�
cot
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3
777777775
:

ðD3Þ

FIG. 9. Full structure function g3 as a function of the Bjorken parameter x obtained from the twist-4 spin-1=2 fermionic operators

OI1;ð6Þ
k¼1 with ð1; l4; l3; l2; l1Þa¼1 (a) and in (b) from the twist-5 spin-1=2 fermionic operators OI2;ð6Þ

k¼2 with ð2; l4; l3; l2; l1Þa¼1.
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Next, for Q ¼ 3=2 we have

Θ−
ð1;1;1;1;1Þa¼1

¼
ffiffiffi
3

p
e−iQθ1

4π3=2

2
666666664

ie−
1
2
iðθ3−θ5Þsin2ðθ2Þ csc

�
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2
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�
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�
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�
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�
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2
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�
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2
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2
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�
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2

�
sinðθ4Þ sinðθ5Þ

3
777777775
:

ðD4Þ

2. The case with τ = 5 (l5 = 2)

There are ten spinor spherical harmonics withQ ¼ 1=2, four withQ ¼ 3=2 and only one withQ ¼ 5=2. We only show a
few examples for each charge.
For Q ¼ 1=2 we display the spinor spherical harmonic ð2; 0; 0; 0; 0Þa¼1 as follows:

Θ−
ð2;0;0;0;0Þa¼1

¼
ffiffiffi
3

p
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5

p
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2
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For charge Q ¼ 3=2 we write the example:
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Finally, for Q ¼ 5=2 we have

Θ−
ð2;2;2;2;2Þa¼1

¼
ffiffiffi
3

p
e−iQθ1ffiffiffi
2

p
π3=2

2
666666664

ie
−1
2
iðθ3Þ
2

sin3ðθ2Þcsc
�
θ2
2

�
sin2ðθ3Þsin3ðθ4Þcsc

�
θ4
2

�
sin

�
θ5
2

�
sin2ðθ5Þ

�
cot

�
θ5
2

�
þi

�

−ie1
2
iðθ3þθ5Þ

ffiffi
3
2

q
sin

�
θ2
2

�
sin2ðθ2Þsin2ðθ3Þsin3ðθ4Þcsc

�
θ4
2

�
sin2ðθ5Þ

sin3ðθ2Þcsc
�
θ2
2

�
sin

�
θ3
2

�
sin2ðθ3Þ

�
−1−icot

�
θ3
2

��
sin

�
θ4
2

�
sin2ðθ4Þsin

�
θ5
2

�
sin2ðθ5Þ

�
cot

�
θ5
2

�
−i

�

2ie
1
2
iðθ3−θ5Þ

ffiffiffi
6

p
sin

�
θ2
2

�
sin2ðθ2Þsin2ðθ3Þsin

�
θ4
2

�
sin2ðθ4Þsin2ðθ5Þ

3
777777775
:

ðD8Þ

[1] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Int. J. Theor. Phys. 38, 1113
(1999).

[2] S. S. Gubser, I. R. Klebanov, and A.M. Polyakov, Gauge
theory correlators from noncritical string theory, Phys. Lett.
B 428, 105 (1998).

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor.
Math. Phys. 2, 253 (1998).

[4] J. Polchinski and M. J. Strassler, Deep inelastic scattering
and gauge/string duality, J. High Energy Phys. 05 (2003)
012.

[5] J. Gao and B. Xiao, Polarized deep inelastic and elastic
scattering from gauge/string duality, Phys. Rev. D 80,
015025 (2009).

[6] J. H. Gao and Z. G. Mou, Polarized deep inelastic scattering
off the neutron from gauge/string duality, Phys. Rev. D 81,
096006 (2010).

[7] C. A. Ballon Bayona, H. Boschi-Filho, and N. R. F. Braga,
Deep inelastic scattering from gauge string duality in the
soft wall model, J. High Energy Phys. 03 (2008) 064.

[8] C. A. Ballon Bayona, H. Boschi-Filho, and N. R. F. Braga,
Deep inelastic scattering in holographic AdS/QCD models,
Nucl. Phys. B, Proc. Suppl. 199, 97 (2010).

[9] N. Kovensky, G. Michalski, and M. Schvellinger, Deep
inelastic scattering from polarized spin-1=2 hadrons at low x
from string theory, J. High Energy Phys. 10 (2018) 084.

[10] D. Jorrin, G. Michalski, and M. Schvellinger, Spin-1=2
fermionic operators of N ¼ 4 SYM theory and DIS from
type IIB supergravity, J. High Energy Phys. 06 (2020) 063.

[11] M. Kruczenski, D. Mateos, R. C. Myers, and D. J. Winters,
Meson spectroscopy in AdS=CFT with flavor, J. High
Energy Phys. 07 (2003) 049.

[12] T. Sakai and S. Sugimoto, Low energy hadron physics in
holographic QCD, Prog. Theor. Phys. 113, 843 (2005).

[13] M. Kruczenski, D. Mateos, R. C. Myers, and D. J. Winters,
Towards a holographic dual of large N(c) QCD, J. High
Energy Phys. 05 (2004) 041.

[14] C. A. Ballon Bayona, H. Boschi-Filho, and N. R. F. Braga,
Deep inelastic scattering from gauge string duality in D3-D7
brane model, J. High Energy Phys. 09 (2008) 114.

[15] C. A. Ballon Bayona, H. Boschi-Filho, N. R. F. Braga, and
M. A. C. Torres, Deep inelastic scattering for vector mesons
in holographic D4-D8 model, J. High Energy Phys. 10
(2010) 055.

[16] C. A. B. Bayona, H. Boschi-Filho, N. R. F. Braga, M. Ihl,
and M. A. C. Torres, Generalized baryon form factors and
proton structure functions in the Sakai-Sugimoto model,
Nucl. Phys. B866, 124 (2013).

[17] E. Koile, S. Macaluso, and M. Schvellinger, Deep inelastic
scattering from holographic spin-one hadrons, J. High
Energy Phys. 02 (2012) 103.

[18] E. Koile, S. Macaluso, and M. Schvellinger, Deep inelastic
scattering structure functions of holographic spin-1 hadrons
with Nf ≥ 1, J. High Energy Phys. 01 (2014) 166.

[19] E. Koile, N. Kovensky, and M. Schvellinger, Hadron
structure functions at small x from string theory, J. High
Energy Phys. 05 (2015) 001.

[20] E. Koile, N. Kovensky, and M. Schvellinger, Deep inelastic
scattering cross sections from the gauge/string duality,
J. High Energy Phys. 12 (2015) 009.

[21] D. Jorrin, N. Kovensky, and M. Schvellinger, Towards 1/N
corrections to deep inelastic scattering from the gauge/
gravity duality, J. High Energy Phys. 04 (2016) 113.

[22] D. Jorrin, M. Schvellinger, and N. Kovensky, Deep inelastic
scattering off scalar mesons in the 1/N expansion from
the D3D7-brane system, J. High Energy Phys. 12 (2016)
003.

[23] N. Kovensky, G. Michalski, and M. Schvellinger, 1=N
corrections to F1 and F2 structure functions of vector
mesons from holography, Phys. Rev. D 99, 046005 (2019).

[24] R. C. Brower, M. J. Strassler, and C. I. Tan, On the Pomeron
at large ’t Hooft coupling, J. High Energy Phys. 03 (2009)
092.

[25] R. C. Brower, M. J. Strassler, and C. I. Tan, On the eikonal
approximation in AdS space, J. High Energy Phys. 03
(2009) 050.

[26] L. Cornalba, M. S. Costa, J. Penedones, and R. Schiappa,
Eikonal approximation in AdS=CFT: Conformal partial
waves and finite N four-point functions, Nucl. Phys.
B767, 327 (2007).

HIGHER-TWIST FERMIONIC OPERATORS AND DIS … PHYS. REV. D 103, 106012 (2021)

106012-23

https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1088/1126-6708/2003/05/012
https://doi.org/10.1088/1126-6708/2003/05/012
https://doi.org/10.1103/PhysRevD.80.015025
https://doi.org/10.1103/PhysRevD.80.015025
https://doi.org/10.1103/PhysRevD.81.096006
https://doi.org/10.1103/PhysRevD.81.096006
https://doi.org/10.1088/1126-6708/2008/03/064
https://doi.org/10.1016/j.nuclphysbps.2010.02.011
https://doi.org/10.1007/JHEP10(2018)084
https://doi.org/10.1007/JHEP06(2020)063
https://doi.org/10.1088/1126-6708/2003/07/049
https://doi.org/10.1088/1126-6708/2003/07/049
https://doi.org/10.1143/PTP.113.843
https://doi.org/10.1088/1126-6708/2004/05/041
https://doi.org/10.1088/1126-6708/2004/05/041
https://doi.org/10.1088/1126-6708/2008/09/114
https://doi.org/10.1007/JHEP10(2010)055
https://doi.org/10.1007/JHEP10(2010)055
https://doi.org/10.1016/j.nuclphysb.2012.08.017
https://doi.org/10.1007/JHEP02(2012)103
https://doi.org/10.1007/JHEP02(2012)103
https://doi.org/10.1007/JHEP01(2014)166
https://doi.org/10.1007/JHEP05(2015)001
https://doi.org/10.1007/JHEP05(2015)001
https://doi.org/10.1007/JHEP12(2015)009
https://doi.org/10.1007/JHEP04(2016)113
https://doi.org/10.1007/JHEP12(2016)003
https://doi.org/10.1007/JHEP12(2016)003
https://doi.org/10.1103/PhysRevD.99.046005
https://doi.org/10.1088/1126-6708/2009/03/092
https://doi.org/10.1088/1126-6708/2009/03/092
https://doi.org/10.1088/1126-6708/2009/03/050
https://doi.org/10.1088/1126-6708/2009/03/050
https://doi.org/10.1016/j.nuclphysb.2007.01.007
https://doi.org/10.1016/j.nuclphysb.2007.01.007


[27] L. Cornalba, M. S. Costa, and J. Penedones, Eikonal
approximation in AdS=CFT: Resumming the gravitational
loop expansion, J. High Energy Phys. 09 (2007) 037.

[28] M. S. Costa and M. Djuric, Deeply virtual Compton
scattering from gauge/gravity duality, Phys. Rev. D 86,
016009 (2012).

[29] A. Watanabe and K. Suzuki, Transition from soft- to hard-
Pomeron in the structure functions of hadrons at small-x
from holography, Phys. Rev. D 86, 035011 (2012).

[30] M. S. Costa, M. Djuric, and N. Evans, Vector meson
production at low x from gauge/gravity duality, J. High
Energy Phys. 09 (2013) 084.

[31] N. Kovensky, G. Michalski, and M. Schvellinger, DIS off
glueballs from string theory: The role of the chiral anomaly
and the Chern-Simons term, J. High Energy Phys. 04 (2018)
118.

[32] Y. Hatta, E. Iancu, and A. H. Mueller, Deep inelastic
scattering off a N ¼ 4 SYM plasma at strong coupling,
J. High Energy Phys. 01 (2008) 063.

[33] B. Hassanain and M. Schvellinger, Holographic current
correlators at finite coupling and scattering off a super-
symmetric plasma, J. High Energy Phys. 04 (2010) 012.

[34] M. F. Paulos, Higher derivative terms including the
Ramond-Ramond five-form, J. High Energy Phys. 10
(2008) 047.

[35] M. Anselmino, A. Efremov, and E. Leader, The theory and
phenomenology of polarized deep inelastic scattering, Phys.
Rep. 261, 1 (1995); , Erratum, Phys. Rep. 281, 399 (1997).

[36] B. Lampe and E. Reya, Spin physics and polarized structure
functions, Phys. Rep. 332, 1 (2000).

[37] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and
Y. Oz, Large N field theories, string theory and gravity,
Phys. Rep. 323, 183 (2000).

[38] E. D’Hoker and D. Z. Freedman, Supersymmetric gauge
theories and the AdS=CFT correspondence, arXiv:hep-th/
0201253.

[39] H. J. Kim, L. J. Romans, and P. van Nieuwenhuizen, The
mass spectrum of chiral N ¼ 2 D ¼ 10 supergravity on
S**5, Phys. Rev. D 32, 389 (1985).

[40] P. van Nieuwenhuizen, The compactification of IIB super-
gravity on S5 revisited, arXiv:1206.2667.

[41] P. van Nieuwenhuizen, The Kaluza-Klein program and
supergravity the compactification of type 2B super-
gravity revisited, in The New Physics Frontiers in the
LHC-2 Era, Lectures at the International School for Sub-
nuclear Physics (2019) 247–279, https://doi.org/10.1142/
9789811206856_0009.

[42] G. Dall’Agata, K. Lechner, and M. Tonin,D ¼ 10, N ¼ IIB
supergravity: Lorentz invariant actions and duality, J. High
Energy Phys. 07 (1998) 017.

[43] J. H. Schwarz and P. C. West, Symmetries and transforma-
tions of chiral N ¼ 2 D ¼ 10 supergravity, Phys. Lett.
126B, 301 (1983).

[44] P. S. Howe and P. C. West, The complete N ¼ 2, D ¼ 10

supergravity, Nucl. Phys. B238, 181 (1984).
[45] J. H. Schwarz, Covariant field equations of chiral N ¼ 2

D ¼ 10 supergravity, Nucl. Phys. B226, 269 (1983).
[46] W. Mueck and K. S. Viswanathan, Conformal field theory

correlators from classical field theory on anti-de Sitter

space. 2. Vector and spinor fields, Phys. Rev. D 58, 106006
(1998).

[47] K. A. Mamo and I. Zahed, Diffractive photoproduction of
J=ψ and ϒ using holographic QCD: Gravitational form
factors and GPD of gluons in the proton, Phys. Rev. D 101,
086003 (2020).

[48] A. V. Manohar, An introduction to spin dependent deep
inelastic scattering, arXiv:hep-ph/9204208.

[49] A. V. Kotikov and L. N. Lipatov, DGLAP and BFKL
equations in the N ¼ 4 supersymmetric gauge theory, Nucl.
Phys. B661, 19 (2003).

[50] L. Bianchi, V. Forini, and A. V. Kotikov, On DIS Wilson
coefficients in N ¼ 4 super Yang-Mills theory, Phys. Lett. B
725, 394 (2013).

[51] T. Gutsche, V. E. Lyubovitskij, I. Schmidt, and A. Vega,
Light-front quark model consistent with Drell-Yan-West
duality and quark counting rules, Phys. Rev. D 89, 054033
(2014); , Erratum, Phys. Rev. D 92, 019902 (2015).

[52] S. D. Drell and T. M. Yan, Connection of Elastic Electro-
magnetic Nucleon Form-Factors at Large Q**2 and Deep
Inelastic Structure Functions Near Threshold, Phys. Rev.
Lett. 24, 181 (1970).

[53] G. B. West, Phenomenological Model for the Electromag-
netic Structure of the Proton, Phys. Rev. Lett. 24, 1206
(1970).

[54] S. J. Brodsky and G. R. Farrar, Scaling Laws at Large
Transverse Momentum, Phys. Rev. Lett. 31, 1153 (1973).

[55] V. A. Matveev, R. M. Muradian, and A. N. Tavkhelidze,
Automodellism in the large-angle elastic scattering and
structure of hadrons, Lett. Nuovo Cimento 7, 719
(1973).

[56] T. Gutsche, V. E. Lyubovitskij, I. Schmidt, and A. Vega,
Nucleon structure in a light-front quark model consistent
with quark counting rules and data, Phys. Rev. D 91, 054028
(2015).

[57] G. F. de Teramond, T. Liu, R. Sabbir Sufian, H. G. Dosch,
S. J. Brodsky, and A. Deur (HLFHS Collaboration),
Universality of Generalized Parton Distributions in Light-
Front Holographic QCD, Phys. Rev. Lett. 120, 182001
(2018).

[58] R. C. Brower, J. Polchinski, M. J. Strassler, and C. I. Tan,
The Pomeron and gauge/string duality, J. High Energy Phys.
12 (2007) 005.

[59] L.W. Whitlow, E. M. Riordan, S. Dasu, S. Rock, and A.
Bodek, Precise measurements of the proton and deuteron
structure functions from a global analysis of the SLAC deep
inelastic electron scattering cross sections, Phys. Lett. B
282, 475 (1992).

[60] A. C. Benvenuti et al. (BCDMS Collaboration), A high
statistics measurement of the proton structure functions
F(2) (x, Q**2) and R from deep inelastic muon scattering at
high Q**2, Phys. Lett. B 223, 485 (1989).

[61] E. Folco Capossoli, M. A. Martín Contreras, D. Li, A. Vega,
and H. Boschi-Filho, Proton structure functions from an
AdS/QCD model with a deformed background, Phys. Rev.
D 102, 086004 (2020).

[62] G. F. de Teramond and S. J. Brodsky, Hadronic Spectrum of
a Holographic Dual of QCD, Phys. Rev. Lett. 94, 201601
(2005).

DAVID JORRIN and MARTIN SCHVELLINGER PHYS. REV. D 103, 106012 (2021)

106012-24

https://doi.org/10.1088/1126-6708/2007/09/037
https://doi.org/10.1103/PhysRevD.86.016009
https://doi.org/10.1103/PhysRevD.86.016009
https://doi.org/10.1103/PhysRevD.86.035011
https://doi.org/10.1007/JHEP09(2013)084
https://doi.org/10.1007/JHEP09(2013)084
https://doi.org/10.1007/JHEP04(2018)118
https://doi.org/10.1007/JHEP04(2018)118
https://doi.org/10.1088/1126-6708/2008/01/063
https://doi.org/10.1007/JHEP04(2010)012
https://doi.org/10.1088/1126-6708/2008/10/047
https://doi.org/10.1088/1126-6708/2008/10/047
https://doi.org/10.1016/0370-1573(95)00011-5
https://doi.org/10.1016/0370-1573(95)00011-5
https://doi.org/10.1016/S0370-1573(97)00003-3
https://doi.org/10.1016/S0370-1573(99)00100-3
https://doi.org/10.1016/S0370-1573(99)00083-6
https://arXiv.org/abs/hep-th/0201253
https://arXiv.org/abs/hep-th/0201253
https://doi.org/10.1103/PhysRevD.32.389
https://arXiv.org/abs/1206.2667
https://doi.org/10.1142/9789811206856_0009
https://doi.org/10.1142/9789811206856_0009
https://doi.org/10.1142/9789811206856_0009
https://doi.org/10.1142/9789811206856_0009
https://doi.org/10.1088/1126-6708/1998/07/017
https://doi.org/10.1088/1126-6708/1998/07/017
https://doi.org/10.1016/0370-2693(83)90168-5
https://doi.org/10.1016/0370-2693(83)90168-5
https://doi.org/10.1016/0550-3213(84)90472-3
https://doi.org/10.1016/0550-3213(83)90192-X
https://doi.org/10.1103/PhysRevD.58.106006
https://doi.org/10.1103/PhysRevD.58.106006
https://doi.org/10.1103/PhysRevD.101.086003
https://doi.org/10.1103/PhysRevD.101.086003
https://arXiv.org/abs/hep-ph/9204208
https://doi.org/10.1016/S0550-3213(03)00264-5
https://doi.org/10.1016/S0550-3213(03)00264-5
https://doi.org/10.1016/j.physletb.2013.07.013
https://doi.org/10.1016/j.physletb.2013.07.013
https://doi.org/10.1103/PhysRevD.89.054033
https://doi.org/10.1103/PhysRevD.89.054033
https://doi.org/10.1103/PhysRevD.92.019902
https://doi.org/10.1103/PhysRevLett.24.181
https://doi.org/10.1103/PhysRevLett.24.181
https://doi.org/10.1103/PhysRevLett.24.1206
https://doi.org/10.1103/PhysRevLett.24.1206
https://doi.org/10.1103/PhysRevLett.31.1153
https://doi.org/10.1007/BF02728133
https://doi.org/10.1007/BF02728133
https://doi.org/10.1103/PhysRevD.91.054028
https://doi.org/10.1103/PhysRevD.91.054028
https://doi.org/10.1103/PhysRevLett.120.182001
https://doi.org/10.1103/PhysRevLett.120.182001
https://doi.org/10.1088/1126-6708/2007/12/005
https://doi.org/10.1088/1126-6708/2007/12/005
https://doi.org/10.1016/0370-2693(92)90672-Q
https://doi.org/10.1016/0370-2693(92)90672-Q
https://doi.org/10.1016/0370-2693(89)91637-7
https://doi.org/10.1103/PhysRevD.102.086004
https://doi.org/10.1103/PhysRevD.102.086004
https://doi.org/10.1103/PhysRevLett.94.201601
https://doi.org/10.1103/PhysRevLett.94.201601


[63] T. Gutsche, V. E. Lyubovitskij, I. Schmidt, and A. Vega,
Nucleon structure including high Fock states in AdS/QCD,
Phys. Rev. D 86, 036007 (2012).

[64] I. R. Klebanov and E. Witten, Superconformal field theory
on three-branes at a Calabi-Yau singularity, Nucl. Phys.
B536, 199 (1998).

[65] A. Ceresole, G. Dall’Agata, R. D’Auria, and S. Ferrara,
Spectrum of type IIB supergravity on AdS5 × T1;1:
Predictions on N ¼ 1 SCFT’s, Phys. Rev. D 61, 066001
(2000).

[66] A. Ceresole, G. Dall’Agata, R. D’Auria, and S. Ferrara,
Superconformal field theories from IIB spectroscopy on
AdS5 × T1;1, Classical Quantum Gravity 17, 1017 (2000).

[67] N. Seiberg, Five-dimensional SUSY field theories, non-
trivial fixed points and string dynamics, Phys. Lett. B 388,
753 (1996).

[68] A. Brandhuber and Y. Oz, The D-4–D-8 brane system and
five-dimensional fixed points, Phys. Lett. B 460, 307
(1999).

[69] L. J. Romans, Massive N=2a supergravity in ten dimen-
sions, Phys. Lett. 169B, 374 (1986).

[70] R. D’Auria, S. Ferrara, and S. Vaula, Matter coupled
F(4) supergravity and the AdS(6)/CFT(5) correspondence,
J. High Energy Phys. 10 (2000) 013.

[71] C. Nunez, I. Y. Park, M. Schvellinger, and T. A. Tran,
Supergravity duals of gauge theories from F(4) gauged
supergravity in six dimensions, J. High Energy Phys. 04
(2001) 025.

[72] S. Ferrara and E. Sokatchev, Conformal superfields and BPS
states in AdSð4=7Þ geometries, Int. J. Mod. Phys. B 14,
2315 (2000).

[73] S. Ferrara and E. Sokatchev, Representations of super-
conformal algebras in the AdSð7=4Þ=CFTð6=3Þ correspon-
dence, J. Math. Phys. (N.Y.) 42, 3015 (2001).

[74] E. Sezgin, 11D Supergravity on AdS4 × S7 versus
AdS7 × S4, J. Phys. A 53, 364003 (2020).

[75] U. Gursoy, C. Nunez, and M. Schvellinger, RG flows from
spin(7), CY 4 fold and HK manifolds to AdS, Penrose limits
and pp waves, J. High Energy Phys. 06 (2002) 015.

[76] R. Camporesi and A. Higuchi, On the eigenfunctions of
the Dirac operator on spheres and real hyperbolic spaces,
J. Geom. Phys. 20, 1 (1996).

HIGHER-TWIST FERMIONIC OPERATORS AND DIS … PHYS. REV. D 103, 106012 (2021)

106012-25

https://doi.org/10.1103/PhysRevD.86.036007
https://doi.org/10.1016/S0550-3213(98)00654-3
https://doi.org/10.1016/S0550-3213(98)00654-3
https://doi.org/10.1103/PhysRevD.61.066001
https://doi.org/10.1103/PhysRevD.61.066001
https://doi.org/10.1088/0264-9381/17/5/311
https://doi.org/10.1016/S0370-2693(96)01215-4
https://doi.org/10.1016/S0370-2693(96)01215-4
https://doi.org/10.1016/S0370-2693(99)00763-7
https://doi.org/10.1016/S0370-2693(99)00763-7
https://doi.org/10.1016/0370-2693(86)90375-8
https://doi.org/10.1088/1126-6708/2000/10/013
https://doi.org/10.1088/1126-6708/2001/04/025
https://doi.org/10.1088/1126-6708/2001/04/025
https://doi.org/10.1142/S0217979200001837
https://doi.org/10.1142/S0217979200001837
https://doi.org/10.1063/1.1374451
https://doi.org/10.1088/1751-8121/ab8e67
https://doi.org/10.1088/1126-6708/2002/06/015
https://doi.org/10.1016/0393-0440(95)00042-9

