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Abstract
The development of breast cancer is a complex process that involves the 
participation of different factors. Several authors have demonstrated the overex-
pression of muscarinic acetylcholine receptors (mAChRs) in different tumor 
tissues and their role in the modulation of tumor biology, positioning them as 
therapeutic targets in cancer. The conventional treatment for breast cancer 
involves surgery, radiotherapy, and/or chemotherapy. The latter presents 
disadvantages such as limited specificity, the appearance of resistance to 
treatment and other side effects. To prevent these side effects, several schedules of 
drug administration, like metronomic therapy, have been developed. Metronomic 
therapy is a type of chemotherapy in which one or more drugs are administered 
at low concentrations repetitively. Recently, two chemotherapeutic agents usually 
used to treat breast cancer have been considered able to activate mAChRs. The 
combination of low concentrations of these chemotherapeutic agents with 
muscarinic agonists could be a useful option to be applied in breast cancer 
treatment, since this combination not only reduces tumor cell survival without 
affecting normal cells, but also decreases pathological neo-angiogenesis, the 
expression of drug extrusion proteins and the cancer stem cell fraction. In this 
review, we focus on the previous evidences that have positioned mAChRs as 
relevant therapeutic targets in breast cancer and analyze the effects of adminis-
tering muscarinic agonists in combination with conventional chemotherapeutic 
agents in a metronomic schedule.
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Core Tip: Muscarinic acetylcholine receptors should be considered as new targets in 
breast cancer therapy since they are expressed in breast tumor tissue but not in normal 
tissue. The addition of muscarinic agonists at low concentrations combined with 
traditional chemotherapeutic drugs presents promising results. The administration of 
these combinations in a metronomic schedule is effective to kill tumor cells, reduce 
tumor invasion and neoangiogenesis. Promising results have also been reported 
regarding the expression of drug extrusion pumps and the decrease of the cancer stem 
cell fraction, which would be useful to reduce resistance to traditional chemotherapy 
and the relapse of breast cancer.
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INTRODUCTION
Cancer is a heterogeneous disease characterized by the loss of normal behavior of cells 
and the acquisition of new characteristics that lead to malignant transformation. These 
characteristics include high growth and division rate, and the ability to invade 
neighboring tissues and to disseminate to distant organs to generate metastases[1].

For many years, researchers thought that tumors had a clonal origin[2,3], but taking 
into account the high intra-tumor heterogeneity observed, they later considered the co-
existence of different cell subpopulations within a tumor. One of these subpopulations, 
known as cancer stem cells, was identified in 1994 in an acute myoleid lymphoma[4] 
and later described in several solid tumors such as lung, breast, colon, prostate and 
brain tumors[5-8]. These cells have self-renewal and differentiation capacity, and also 
exhibit high expression of drug extrusion pumps, the latter of which confers them 
resistance to chemotherapy[9]. In addition, several authors have described that this cell 
population is responsible for the failure of response to cancer treatment and for cancer 
recurrence[10-12].

Also, it has been demonstrated that primary and metastatic tumor cells present 
phenotypic, genotypic and epi-genotypic differences[13]. These differences result in 
several changes in the expression and function of membrane protein receptors as well 
as in their signaling pathways. Thus, this intra-tumor heterogeneity creates a great 
challenge in the selection of specific biomarkers and treatments in oncology[14].

The transformation of a normal cell into a tumor one is a complex and progressive 
process in which the cell acquires genetic modifications like deletions or other 
mutations in tumor suppressor genes and/or oncogenic genes. Since these genes 
control cell proliferation either directly or indirectly, deletions or mutations in these 
genes may allow tumor cells to grow without control, disseminate and invade other 
tissues[15].

Tumor suppressor genes can either inhibit the cell cycle or promote apoptosis. The 
loss of their functionality can cause the development of cancer, as demonstrated in 
ovarian[16], lung[17], colorectal[18], head and neck[19], pancreatic[16], uterine[20], 
osteosarcoma[21], gastrointestinal[22], bladder[23] and breast[24] tumors.

The presence of several of these genes is associated with a high incidence of cancer. 
These genes can be divided into highly and moderately penetrant in relation to cancer. 
Highly penetrant genes include BRCA1, BRCA2, TP53, PTEN, CDH1, STK11 and 
PALB2, whereas moderately penetrant ones include CHEK2, ATM, BARD1, BRIP1, 
NBN, NF1, RAD51D and MSH6[25-27].

Oncogenes, on the other hand, are abnormal or mutant genes related to normal 
genes called proto-oncogenes, which support tumor development. From the beginning 
of the 1980’s, the participation of these genes has been studied and associated with 
tumor progression[28]. Many studies have demonstrated that proto-oncogenes affect 
the activity of telomerase enzyme in different tumor cell types. Due to the latter, these 
cells exhibit short telomeres and chromosomal instability[29]. Somatic mutations in the 
telomerase gene promoter have been described in gliomas[30], head and neck cancer
[31], thyroid carcinoma[32], hepatocellular carcinoma[33], squamous cell carcinoma
[34], bladder cancer[35], breast carcinoma[36] and melanomas[37].
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In an incipient stage of tumor growth, when malignant cells exert a rapid rate of 
proliferation, the nutritional requirements of cells increase, leading to an angiogenic 
switch. The latter implies the development of new blood vessels from the ones 
preexisting in the tumor environment, which allows the emerging tumor to duplicate 
its diameter from 1 mm to 2 mm[38]. Concomitantly, changes in the cellular biological 
properties lead tumor cells to invade the surrounding extracellular matrix, to 
intravasate into the nearby blood and lymphatic vessels, and then to disseminate 
through the circulation to distant organs and to metastasize[39].

According to data from the International Agency for Research on Cancer, in 2020 
this illness produced more than 19 million new cases and caused almost 10 million 
deaths worldwide. In particular, breast cancer has the highest incidence among all 
female cancer types. It represents 24.5% of the total new recorded female cancer cases 
and is one of the main causes of death in women, corresponding to 15.5% of deaths 
from this disease (Figure 1)[40].

Since life expectancy in the world population has become higher, the risk of 
developing tumors has also increased, considering that this parameter increases with 
age[41]. It is expected that the number of new cases of breast cancer in 2040 will rise to 
3.2 million people and there will be more than 1 million deaths unless treatments 
present higher effectiveness[40].

BREAST CANCER
The breast is composed of lobules (which are milk-producing glands), the ducts that 
connect the lobules to the nipple, and connective, fatty and lymphatic tissues. Breast 
cancer occurs when there is an uncontrolled growth of cells within any of these 
components. Although tumors can appear in any tissue of the breast, it occurs most 
frequently in the lobules[42].

Breast tumors exhibit particular histopathological and biological characteristics that 
require specific and different antitumor strategies. For these reasons, the adequate 
classification of tumors has a main therapeutic importance[43-45].

The different types of therapies against breast cancer include surgery, radiation and 
the administration of immunobiological or chemotherapeutic agents[46,47].

Surgery (tumorectomy or mastectomy) is one of the main options of treatment for 
patients at different stages of this disease, whereas radiotherapy is used as a 
complement to surgery and/or chemotherapy to reduce the probability of tumor 
relapse. The combination of tumorectomy and radiotherapy is used as a replacement 
for mastectomy in patients at the first stages of the disease.

Chemotherapy consists of the use of drugs to kill tumor cells. It can be administered 
as adjuvant therapy, when drugs are applied after another treatment like surgery in 
order to eradicate tumor cells that might have survived. Oncologists also administer 
neoadjuvant chemotherapy before surgery to reduce the tumor size and to be more 
likely to completely eliminate the tumor after the procedure[40].

As described below, according to their mechanism of action, chemotherapeutic 
agents can be classified into: endocrine drugs, immunological agents, DNA alkylating 
agents, antimetabolites and antimitotic drugs[48].

Endocrine drugs are used to treat estrogen receptor (ER) or progesterone receptor 
(PR) positive breast tumors. These drugs are synthetic analogs of the anti-gonado-
tropin-releasing hormone, anti-progestins or anti-estrogens. The latter can be divided 
into aromatase inhibitors and ER antagonists. The most common side effects of these 
drugs are: flushing sensation, nightly sweats, vaginal dryness, high blood clot risk, 
apoplexy, cataracts, endometrial cancer, uterus cancer, bone-mass decrease and 
gastrointestinal symptoms[40,49].

Immunological agents are drugs that can stimulate the patient´s immune system to 
detect and eliminate breast cancer cells. Immunological agents also include 
monoclonal antibodies against specific tumor cell proteins, and cancer treatment 
vaccines. Different types of immunological agents can be administered to inhibit 
check-points, block the suppression of the immune response and/or over-activate T-
cells from patients. The most common side effects of these drugs are: fatigue, fever, 
shivers, weakness, nausea, vomits, dizziness, body aches and high or low blood 
pressure[40,50-52].

Regarding DNA alkylating agents, the ones used to treat breast cancer include 
cyclophosphamide and doxorubicin. Cyclophosphamide, which is an oxazaphos-
phorine, interferes with the duplication of DNA and RNA transcription, and its most 
common undesired effects are: myelosuppression, hepatotoxicity, pulmonary fibrosis, 
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Figure 1 Female world incidence of new cases of different types of cancer and number of cancer deaths in 2020. A: Different types of cancer; 
B: Number of cancer deaths.

nephrotoxicity, mucosis, megaloblastic anemia, birth defects and neurotoxicity[40,53].
Doxorubicin, which is an anthracycline, is a topoisomerase II inhibitor that increases 

DNA degradation, preventing cell replication. Additionally, it can intercalate into 
DNA and promote the formation of free radicals, which in turn causes the fragmen-
tation of DNA strands. Unfortunately, this agent can also cause cardiotoxicity, 
myelosuppression, alopecia, extravasation, infertility and urine discoloration[40,53].

The antimetabolites used in breast cancer can be divided into antifolates (such as 
methotrexate) and pyrimidine antagonists (such as 5-FU, capecitabine or gemcitabine). 
Methotrexate is a competitive inhibitor of the dihydrofolate reductase which causes a 
decrease in pyrimidine and DNA synthesis. On the other hand, 5-FU or capecitabine 
can form a complex with the thymidylate synthase-folic acid, inhibiting its activity and 
reducing thymidine and DNA synthesis, whereas gemcitabine can incorporate a 
pyrimidine analog into DNA, decreasing its synthesis. The most common collateral 
effects of these drugs are: myelosuppression, cardiotoxicity, hepatotoxicity, pulmonary 
toxicity, hemolytic uremic syndrome and hyperammonemic encephalopathy[40,53].

Finally, the antimitotic drugs used in breast cancer treatment can be divided into 
three types: vinca alkaloids (such as vinorelbine), taxanes (such as paclitaxel and 
docetaxel) and non-taxane microtubule inhibitors (such as eribulin, ixabepilone and 
epothilone). Vinorelbine binds to B tubulin, inhibiting its polymerization into 
microtubules; it also prevents the formation of the mitotic spindle and arrests cells in 
the M phase. Taxanes produce hyper-stabilization in polymerized microtubules, thus 
inhibiting the degradation of the mitotic spindle, and also arrest cells in the M phase. 
Non-taxane microtubule inhibitors can either prevent the formation of the mitotic 
spindle (eribulin) or bind to B tubulin, hyper-stabilizing microtubules and producing 
cell arrest. Undesirable actions of these drugs are: myelosuppression, peripheral 
neuropathy, QT prolongation and hypersensitivity[40,54-56].

Selecting the most effective chemotherapeutic agent to treat breast tumors requires 
the determination of their genetic profile. Tumors are classified according to the 
immunohistochemical analysis of the protein expression levels of ER, PR, human 
epidermal growth factor receptor type 2 (HER2) and Ki-67. This analysis allows 
defining four breast cancer subtypes: (1) Luminal A; (2) Luminal B; (3) HER2 positive; 
and (4) Basal-like or triple negative[57,58].

Luminal A tumors express ER and/or PR, are HER2 negative and present low levels 
of Ki-67 protein, which modulates tumor cell growth[59]. This tumor subtype is the 
most frequently diagnosed annually and has a 5-year relative survival rate of 94%[60]. 
The conventional treatment for these tumors is endocrine therapy[61].

Luminal B tumors express ER and/or PR and can be positive or negative for HER2 
expression. This tumor subtype has a higher cell proliferation rate than the luminal A 
subtype because it expresses a higher concentration of Ki-67 protein[61]. Luminal B 
tumors represent 10% of the total of annually diagnosed breast tumors and have a 5-
year relative survival rate of 90%[60]. This tumor subtype is usually treated with 
endocrine therapy and in some cases with HER2 targeting drugs or other chemothera-



Español A et al. Muscarinic receptors in breast cancer

WJCO https://www.wjgnet.com 408 June 24, 2021 Volume 12 Issue 6

peutic agents[61,62].
HER2 positive tumors have a high expression of this molecule and do not express 

ER or PR. These tumors also have a high concentration of the Ki-67 protein[59]. This 
tumor subtype represents 5% of all annually diagnosed breast tumors and has a 5-year 
relative survival rate of approximately 80%[60]. HER2 positive tumors are usually 
treated with HER2 targeting antibodies like trastuzumab[61] or margetuximab[63,64] 
alone or combined with other chemotherapeutic agents[65,66].

Triple negative tumors do not express ER, PR or HER2, but express a high concen-
tration of Ki-67 protein and are usually very invasive and agressive[59]. This tumor 
subtype represents 10% of all annually diagnosed breast tumors and has a 5-year 
relative survival of approximately 80%[60]. These tumors can be subdivided into basal, 
claudin-low, normal-like and other less frequent subtypes[43,67], and, since they do 
not have a specific therapeutic target, they do not have any specific treatment. 
Although some authors indicate the use of a platinum-based agent such as cisplatin, 
the results are not encouraging due to the low life expectancy of the patients[68,69].

The 5-year relative survival rate varies significantly from patients with luminal A 
tumors, who have the best prognosis, to patients with triple negative tumors, who 
have the worst prognosis. The decrease in the survival rate observed in triple negative 
tumor patients can be explained by different factors, including higher resistance to 
chemotherapy and/or radiotherapy, higher relapse probability, and higher ability to 
metastasize in comparison with other tumor subtypes[70].

Although in recent years the diagnosis, classification and treatment of breast cancer 
have improved, treatment failure, recurrence and mortality are still reported world-
wide.

It must be taken into account that, one of five women worldwide will develop 
cancer during her lifetime and one of eleven will die from this illness[40].

MUSCARINIC ACETYLCHOLINE RECEPTORS
Muscarinic acetylcholine receptors (mAChRs) are G protein-coupled receptors 
(GPCRs), which belong to the superfamily of seven-transmembrane domain receptors 
and can modulate many functions in normal and tumor cell biology[71,72]. Regarding 
the latter, several authors have described an increase in the expression of different 
GPCRs in tumor tissues. GPCRs include thrombin receptor[73], protease-activated 
receptor-1[74], angiotensin II receptor type I[75], GPR161[76], GPR81[77] and leucine-
rich repeat-containing G-protein-coupled receptor 5[78].

mAChRs were firstly described in the central nervous system[79] and then in the 
parasympathetic nervous system[80]. More recently, mAChRs, together with nicotinic 
receptors, have also been localized in non-neuronal cells. Also, their ligand, 
acetylcholine (ACh) and the enzymes that synthesize and degrade it have also been 
detected out of the nervous system, defining a new organization known as the non-
neuronal cholinergic system[81]. In our laboratory, we described for the first time the 
over-expression of mAChRs of the GPCR family in breast tumor tissues and in cancer 
cell lines from murine and human origin[82,83].

mAChRs are metabotropic receptors and five subtypes (M1 to M5) have been 
identified. When activated, they can trigger different signaling pathways known as 
canonical or non-canonical in distinct tissues[84].

These receptors are glycoproteins with seven hydrophobic transmembrane domains 
connected by three extracellular and three intracellular hydrophilic loops. The 
domains assemble forming a structure with a pocket where the agonist binds. Also, the 
cytoplasmic region of the receptor couples to G protein, which is composed of three 
subunits: α, β and γ[85]. When a ligand binds to the receptor, guanosine diphosphate 
is released and replaced by guanosine triphosphate, while the subunits are dissociated 
into a βγ dimer and the guanosine triphosphate-bound α monomer. Depending on the 
α subunit type (Gαs, Gαi, Gαq, and Gα11) different downstream effectors are 
stimulated[86].

Agonists like ACh or the synthetic non-hydrolyzable analog carbachol can activate 
M1, M3 and M5 receptors, which couple to a Gαq protein, which in turn up-regulates 
phospholipase C activity. This enzyme cleaves phosphatidylinositol 4,5-bisphosphate 
into 1,2-diacylglycerol and inositol 1,4,5-triphosphate. 1,2-diacylglycerol activates 
protein kinase C, which stimulates downstream proteins, causing calcium influx. 
Inositol 1,4,5-triphosphate leads the sarcoplasmic reticulum to release stored calcium, 
which modulates the activation of many calcium-dependent enzymes like nitric oxide 
synthase[87]. Additionally, the M3 receptor can activate Ras-Raf-1-Erk-Akt through a 
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non-canonical pathway[88].
In turn, the activation of M2 and M4 receptors, which are coupled to a Gαi/o 

protein, inhibits adenylyl cyclase, decreasing cyclic adenosine 3’,5’-monophosphate 
(cAMP) production from ATP. The decrease in cAMP concentration subsequently 
blocks the activation of protein kinase A[87]. M2 and M4 receptors can also regulate 
the activity of potassium and calcium channels[89].

The expression of the different mAChR subtypes changes throughout different body 
organs and tissues. This differential expression leads to diverse responses to the same 
stimuli. Therefore, the identification of the mAChR subtypes in different cell types is 
important, especially because they could have therapeutic potential. The nervous 
system, for example, expresses all subtypes[90-92], whereas the M1 receptor is mainly 
expressed in salivary glands[93], pancreas[94], bladder[95] and respiratory pathways
[96]. The M2 receptor subtype is predominantly expressed in cardiac[97], digestive[98] 
and respiratory[99] tissues, whereas the presence of M3 receptor protein has been 
documented in salivary glands[93], pancreas[100], bladder[101], lung[102], colon[103] 
and gastric smooth muscle[104]. Finally, the M4 and M5 receptors are also expressed 
in the lung[105,106], while the M4 subtype is also detected in gastric tissue[107].

The expression of mAChRs in different tissues can be regulated by various stimuli. 
Grodzki et al[108] demonstrated that the expression of M2 receptor can be increased by 
the treatment of sympathetic neurons with gamma interferon. In line with these 
results, at our lab, we demonstrated that the de novo expression of M3 and M5 
receptors can be induced by the treatment of NIH3T3 fibroblasts with interferon 
gamma plus lipopolysaccharide from Escherichia coli, and that this leads to an increase 
in the sensitivity of these cells to carbachol[109].

In several diseases, including cancer, mAChRs or their signaling pathways are 
differentially expressed in comparison to healthy tissues. This could be useful at the 
moment of considering these receptors as therapeutic targets, as described in many 
respiratory diseases[110]. It has been demonstrated that in pulmonary arterial 
hypertension, for example, the administration of M3 receptor agonists induces an anti-
hypertensive therapeutic response[111]. Additionally, in chronic obstructive 
pulmonary disease, it has been described that the usage of muscarinic antagonists 
combined with beta2 adrenergic receptors reduces hyperinflation, improves dyspnea, 
and reduces exacerbations while improving cardiac functions[112]. This combination 
of muscarinic antagonists and beta2 adrenergic receptors has also been studied as a 
therapeutic treatment for asthma, showing promising results[113].

Alterations in the expression of mAChRs or their signaling pathways have also been 
detected in several diseases of the central nervous system[114-117]. However, 
researchers could not determine whether these alterations are either the causes or the 
consequences of these pathologies[118]. In spite of this, muscarinic therapy has shown 
promising results for these diseases. It has been documented that the treatment of 
patients with Alzheimer or Huntington diseases with M1 receptor agonists causes 
beneficial effects, reducing the symptoms of these diseases[119,120]. Furthermore, the 
usage of M1 antagonists in Parkinson's disease and multiple sclerosis leads to positive 
results, also reducing the disease symptoms[121,122].

Different authors have determined that the expression of mAChRs in malignant 
tissues is different from that in normal tissues. These differences comprise an increase 
in the expression of receptors and/or a modulation in the subtype expression pattern. 
In human colon cancer, for example, the expression of the M3 receptor subtype is 
increased more than 100-fold respect to normal tissue and its activation modulates cell 
proliferation, progression and invasion of this neoplasia[123]. Also, in small cell lung 
cancer, the M3 receptor subtype is up-regulated, promoting cell migration and 
invasion[124]. In human bladder, while normal tissue expresses M1, M2 and M3 
receptors, tumor tissue expresses only the M2 receptor and its activation induces a 
decrease in cell proliferation and migration[125]. Regarding breast cancer, several 
studies from our laboratory have demonstrated the presence of different mAChR 
subtypes in breast cancer cells of murine and human origin that promote tumor 
growth and angiogenesis, and the absence of these receptors in normal mammary cells
[126-129].

The predominant expression of different mAChR subtypes in human tumors is 
summarized in Table 1.

It has been reported that the activation of mAChRs leads to the stimulation of 
several steps of tumor progression, involving different receptor subtypes in each 
tumor. Cell proliferation has been found to be induced by the M5 receptor subtype in 
melanoma cells[130], by the M1 and M4 receptor subtypes in glioblastoma cells[131], 
by the M3 receptor subtype in stomach and colon cancer[132,133], by the M2 receptor 
subtype in non-small cell lung cancer[134] and by all receptor subtypes in the 
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Table 1 Summary of the expression of muscarinic acetylcholine receptor subtypes (M) in different human cancers

Receptor subtypes Malignant tissue

Skin[142] Breast[128]

Brain[131] Liver[140]

Prostate[136] Esophagus[135]

M1

Cervix uteri[139] Pancreas[147]

Lung[134] Esophagus[135]

Brain[143] Bladder[125]

M2

Breast [128] Leukemia[145]

Lung [124] Breast[148]

Colon[133] Esophagus[135]

Skin[142] Liver[139]

Prostate[138] Stomach[132]

Cervix uteri[139] Leukemia[145]

M3

Head and neck[146]

Brain[131] Breast[128]

Prostate[137] Esophagus[135]

M4

Cervix uteri[139] Oral cavity[141]

Skin[130] Breast[128]M5

Cervix uteri[139] Esophagus[135]

esophagus[135].
In other types of tumor, researchers have observed not only an increase in cell 

proliferation, but also an increase in cell invasiveness and migration ability. This 
increase is induced by the M1, M3, M4 receptor subtypes in prostate tumors, by the 
M1, M3, M4 and M5 receptor subtypes in cervical tumors[136-139] and by the M1 and 
M3 receptor subtypes in hepatocellular carcinoma[124,140]. Finally, in oral cavity 
tumors, cell motility and dissemination have been found to be increased by the 
activation of the M4 receptor subtype[141].

Another important aspect to analyze is the expression and function of mAChRs in 
primary tumors and their metastases. Regarding the latter, two melanoma cell lines 
and a third one derived from a metastasis have been found to express M1 and M3 
receptors. Although all of them responded to carbamylcholine, increasing cytosolic 
calcium levels, the metastatic cell line responded with a higher peak in calcium 
concentration. The authors speculated that this difference could be responsible for a 
higher malignance and migratory potential in metastasis[142]. In accordance with the 
latter observations, we have reported that the expression of mAChRs is significantly 
higher in the metastatic murine mammary cell line LMM3 than in the non-metastatic 
LM3 tumor cells that originated them[82]. However, when analyzing the function of 
mAChRs in tumor tissues, other authors confirmed opposite results, particularly 
considering the expression and function of the M2 receptor subtype. Lucianò et al
[143], for example, established that two cell lines derived from a neuroblastoma with 
bad prognosis, SK-N-BE and SK-N-BE(2C), express the M2 receptor and that its 
activation inhibits the cell cycle. In human bladder tumors, Pacini et al[125] reported 
the expression of M2 receptor protein and found that its stimulation reduced cell 
proliferation and migration. These results are in line with the findings of Alessandrini 
et al[144], who demonstrated that the activation of the M2 receptor increases apoptosis 
in glioblastoma, a brain tumor with bad prognosis. Regarding leukemia, Cabadak et al
[145] identified the presence of the M2 and M3 receptors in K562 cells, and linked their 
activation to an inhibition in cell proliferation. In head and neck cancer, Sun et al[146] 
reported a similar effect by M3 activation. Finally, in human pancreas tumor, Renz et al
[147] demonstrated that M1 receptor activation decreases tumorigenesis.

Regarding breast cancer, we have reported the expression of all mAChR subtypes in 
the breast adenocarcinoma cell lines LM2 and LM3 derived from spontaneously 
aroused tumors in female BALB/c mice and the lack of expression of these receptors in 
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the murine mammary non-tumorigenic cell line NMuMG[82]. Using tritiated quinuc-
lidinyl benzilate ([3H]-QNB) in binding assays, we determined the expression mainly 
of the M2 and M3 receptor subtypes[126]. We also found that the addition of carbachol 
to tumor cells induces two opposite actions depending on the concentration of the 
agonist and the time of treatment. At low concentrations added for 1 h or less, we 
reported a stimulation in cell proliferation, migration and also in tumor angiogenesis, 
whereas at higher concentrations or longer periods of treatment, we observed cell 
death[126]. These differences due to distinct experimental conditions besides the 
expression of different mAChRs could explain the opposite results documented in the 
literature previously mentioned.

Luminal breast cancer tumors are characterized by the expression of their endocrine 
receptor. In MCF-7 cells, the human luminal breast cancer cell line most studied in 
oncology research, we identified the expression of the M3 and M4 receptors by 
Western blot. We also found that the short-time treatment of MCF-7 cells with 
carbachol activates, through the M3 receptor, a phospholipase C/protein kinase 
C/calcium-dependent nitric oxide synthase signaling pathway, increasing cell prolif-
eration. Carbachol also stimulates the formation of tumor blood vessels and the 
expression of vascular endothelial growth factor A, concomitantly with tumor cell 
migration and matrix metalloproteinase-9 expression and activity[148,149]. Similarly 
to that reported in murine normal mammary cells, the non-tumorigenic human breast 
cell line MCF-10A does not express these receptors[148].

Triple negative breast tumors are characterized by the absence of a specific 
therapeutic target and bad prognosis. By studying two different human cell lines 
derived from this type of tumor, at our lab, we documented that both express 
mAChRs, but while MDA-MB231 cells express the M1, M2, M4 and M5 receptor 
subtypes, MDA-MB468 express all receptor subtypes including M3 protein[128]. 
Similarly to that documentated in our previous reports, short-time activation of these 
cell lines with carbachol stimulated proliferation in a dose-dependent manner. This 
effect was prevented by the presence of the muscarinic antagonist atropine, confirming 
the involvement of mAChRs in this effect[128]. In MDA-MB231 cells, we were able to 
identify the receptor involved in the mentioned effects by using small interfering RNA 
silencing assays, which revealed that the one responsible for the proliferative actions 
in this cell line is the M2 subtype[128].

Based on previous reports by other authors and our results proving that long-term 
and low-concentration treatment with muscarinic agonists induces a decrease in cell 
viability, we next decided to focus on mAChRs as therapeutic targets for breast cancer 
treatment in triple negative tumors[128,129].

To assign more specificity to mAChRs as blanks of action in anti-tumor therapy, it 
must be taken in mind that non-tumorigenic human mammary cells, like MCF-10A, or 
breast samples from patients with benign pathology (fibroadenoma) lack expression of 
mAChRs and, as a consequence, they are not sensitive to the treatment with 
muscarinic agonists. However, when transfected with mAChRs, normal cells acquire 
the ability to respond to muscarinic treatment[129]. All these results highlight the 
relationship between mAChRs and breast cancer development and treatment.

CHEMOTHERAPEUTIC DRUGS INTERACTING WITH MACHRS
Many chemotherapeutic drugs are used in breast cancer treatment, but only two of 
them are able to bind with the active site of mAChRs: paclitaxel[82] and doxorubicin
[150]. Both induce an inhibitory effect on cell proliferation in vitro similar to that 
observed with the cholinergic agonist carbachol[128].

Paclitaxel
Paclitaxel is a drug of first choice in the treatment of breast cancer. It is a taxane 
derived from the tree Taxus brevifolia[151]. This drug was approved by the Food and 
Drugs Administration (FDA) for the treatment of ovarian cancer in 1992, for advanced 
stages of breast cancer in 1995[152], and for the early stages of breast cancer in 2001
[153]. Paclitaxel is a diterpenoid pseudoalkaloid made up of an N-benzoyl phenyl-
isoserine group and a taxane ring. In contrast with other taxanes, paclitaxel has a 
lateral complex chain connected to its taxane ring in C-13, which gives this drug its 
antitumor activity[154]. Its molecular formula is C47H5NO14 and its chemical structure 
is described in Figure 2.

Despite the extended use of paclitaxel in anti-tumor treatment, it has been reported 
that its administration at therapeutic concentrations (10-6 mol/L approximately) causes 
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Figure 2 Chemical structure of paclitaxel.

adverse effects like hepatotoxicity, leukopenia, neutropenia, anemia, thrombocyt-
openia, neurotoxicity, vomits, alopecia, fatigue, mucositis and diarrhea[155-158]. In 
addition to the low-efficiency synthesis of paclitaxel and its side effects, another 
problem is its insolubility in water, which affects its bioavailability. Thus, to improve 
its availability, it is dissolved in polyoxyethylated castor oil as a vehicle (Cremophor 
EL); however, this oil has been associated with several anaphylactic reactions like 
dyspnea with bronchospasm, hypotension and urticaria since it activates the 
complement system[159]. Because of this, new technologies have been developed to 
improve the biodistribution of this taxane, and alternative ways of administration like 
paclitaxel binded to albumin[160,161], paclitaxel-loaded PEG-vitamin E nanoparticles
[162,163] and micellar paclitaxel[164,165] have been proposed.

The conventional dose of paclitaxel administered to treat breast cancer is 175 mg/m2 
skin by intravenous inoculation for 3 h every 21 d in 6 cycles[166] and its halflife time 
after inoculation is 4.9 ± 3.6 h[167]. After one administration, most of the paclitaxel in 
the circulation binds to proteins and its systemic clearance is 700 mL/min on average
[168]. Approximately 90% of the drug is degraded by hepatic metabolism by P-450 
isoenzymes (CYP3A and CYP2C) and is excreted by feces, while the other 10% is 
excreted by urine without alterations[168-170].

Paclitaxel exerts its anti-tumor effects through different mechanisms. One of these is 
by acting as a cytostatic drug that binds to the β subunit of tubulin and stabilizes the 
polymerized microtubules, inhibiting their depolymerization[171,172]. Consequently, 
cells lose their ability to divide due to insufficient requirements in the G2/M mitotic 
control checkpoint[173]. The prolonged arrest of mitosis eventually leads to cell death
[174].

Besides its antimitotic effect, paclitaxel also acts in the immune system since its 
administration is associated with the change in the macrophage phenotype from an 
M2 to an M1 profile through TLR4 (toll-like receptor 4) activation[175]. Millrud et al
[176] reported that, in the presence of paclitaxel, primary human monocytes turn into 
proinflammatory M1 macrophages, contributing to tumor eradication.

Also, at low doses, paclitaxel can induce apoptosis in tumor cells by inactivating the 
B-cell lymphoma 2 protein (Bcl-2)[177-179]. Additionally, it has been described that 
this cytostatic drug modulates several non-coding RNAs that have a regulatory 
function over genes related to tumor progression[180]. Moreover, paclitaxel can 
modulate the release of the apoptogenic factor cytochrome that can trigger 
programmed cell death[181,182]. The dysregulation of these and other parameters can 
lead to resistance to paclitaxel treatment.

One interesting point that we have analyzed in our laboratory is the ability of 
paclitaxel to interact with mAChRs in a specific manner[126]. We proved that 
paclitaxel displaces the binding of [3H]-QNB to mAChRs expressed in murine 
mammary adenocarcinoma cell lines in a manner similar to that of atropine. Moreover, 
when we treated these cells with paclitaxel at very low concentrations (10-11 mol/L), 
we reported an inhibitory effect on tumor cell proliferation. This effect was prevented 
by the previous treatment of cells with atropine, confirming the participation of 
mAChRs in this action[126].
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Doxorubicin
The other chemotherapeutic drug frequently used in breast cancer treatment is 
doxorubicin[183,184], which is an antibiotic that belongs to the family of anthra-
cyclines and is produced by the bacterium Streptomyces peucetius. It was approved by 
the FDA in 1974 for metastatic breast cancer treatment[185]. Its molecular formula is 
C27H29NO11 and its chemical structure is shown in Figure 3.

The treatment with doxorubicin causes many side effects, including cardiotoxicity
[186], infertility[187], genotoxicity[188], amenorrhea[189], thrombophlebitis[190] and 
lung embolism[191]. Regarding cardiotoxicity, the additional challenge is that it can 
occur 10 years after chemotherapy treatment, appearing as a progressive congestive 
cardiac failure secondary to a non-ischemic dilated cardiomyopathy, and is irrever-
sible and usually fatal[192,193]. Although many authors indicate that this effect is 
mediated by cardiac adrenergic interactions[194-196], Chugun et al[197] pointed out 
that it would be due to muscarinic interactions by modulating the ionotropic effect of 
carbachol.

In breast cancer, doxorubicin is administered in 60/75 mg/m2 per dose intrave-
nously in one inoculation every 21 d. Its half life time is approximately 48 h[198] and 
its systemic clearance is between 700 and 1250 mL/min[199,200]. Most of the 
doxorubicin is degraded by hepatic metabolism and the unaltered drug and its 
metabolite are excreted mainly by the gallbladder and in a small fraction by the 
kidneys[201].

Doxorubicin exerts its chemotherapeutic effect by three mechanisms. The first one is 
the inhibition of the enzyme topoisomerase II-α, which regulates the superhelical state 
of DNA and has a structural function regulating the tension of the DNA strands[202]. 
Doxorubicin stabilizes the binding of topoisomerase II-α to the cleaved DNA, 
preventing the replication process and leading the cell to apoptosis[203]. Given that 
tumor cells present a higher proliferative rate, the expression of topoisomerase II-α is 
high, producing a greater selectivity of doxorubicin for these cells[204].

The second mechanism of action also affects directly the DNA strands. Doxorubicin 
intercalates into DNA, inhibiting the activity of topoisomerase II-α, which in turn 
causes the inhibition of DNA synthesis[205]. Moreover, doxorubicin intercalation 
causes the break of the DNA in double-strand fragments and chromatin condensation, 
which leads to an increase in apoptosis[206]. This antibiotic can also intercalate in 
RNA, inhibiting the activity of RNA polymerase, although it has more affinity for 
DNA[207].

Finally, the third mechanism of action of doxorubicin is the production of free 
radicals. Doxorubicin can act as an electron acceptor, transforming its quinone to a 
semiquinone-free radical, which causes oxidative damage and induces the cleavage 
and degradation of DNA. This is a mitochondrial reaction catalyzed by the enzyme 
cytochrome P450 reductase in the presence of NADH dehydrogenase[208]. It has also 
been described that the free molecular iron can interact with doxorubicin, forming 
toxic free radicals and reactive nitrogen species that increase nitrosative stress and 
mitochondrial dysfunction, promoting apoptosis[209].

Interestingly, doxorubicin can also interact with mAChRs. It has been demonstrated 
that doxorubicin displaces the [3H]-QNB binding in the left atrial muscle of guinea pig 
hearts in a concentration-dependent manner, similarly to atropine, indicating that 
doxorubicin can also bind to mAChRs[150,197]. Additionally, in triple negative human 
tumor cells, we determined that doxorubicin exerts an inhibitory effect on prolif-
eration, comparable to that induced by carbachol[128].

Multidrug resistance
One of the most important causes in the failure of chemotherapy not only in breast 
cancer treatment but also in other cancers is the appearance of resistance. It can appear 
as a primary form, when it is present before the treatment, or acquired, when it 
develops after the exposure to a drug[210,211].

To improve the efficacy of chemotherapeutic agents in the treatment of breast 
cancer, it is important to define the mechanisms underlying resistance in this type of 
tumor. In breast cancer, resistance is multifactorial and implies different mechanisms 
and genes that exert their effects either together or separately, leading to a reduction or 
an inhibition of the effect of different drugs.

Regarding the factors that modulate the resistance to paclitaxel or doxorubicin, 
some of them are common to both drugs and others are specific to each of them. The 
main factors in common are the expression of drug extrusion pumps, noncoding 
RNAs, Bcl-2 and p53. Drug extrusion pumps are also known as ATP binding cassette 
(ABC) transporters. They are located in the cytoplasmic membrane and modulate the 
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Figure 3 Chemical structure of doxorubicin.

time that the drug is present inside the cell by controlling its active transport. The 
expression and activity of these pumps can be modified by different factors, including 
the chemotherapy treatment. Amawi et al[212] reported that paclitaxel treatment exerts 
an increase in pump activity and expression in different breast cancer cell lines, 
whereas Cox and Weinman[213] reported similar results in hepatocellular carcinomas 
treated with doxorubicin. In both cases, the increase in the expression and activity of 
these pumps reduced the effectiveness of the treatment. Regarding the other factors 
that modulate the action of paclitaxel or doxorubicin, noncoding RNAs, also called 
miRNA, can modulate the expression of genes that regulate apoptosis and cell 
survival, increasing the sensitivity or the resistance to the chemotherapeutic treatment
[214-216], whereas Bcl-2 and p53 expression proteins regulate tumor growth and are 
important tumor markers that can be modulated by chemotherapeutic drugs, 
increasing the resistance to treatment[217,218].

Among paclitaxel resistance factors, the most relevant are changes in the 
cytoskeletal dynamics and kinetic degradation of the taxane structure. Several tumor 
cells express high levels of βIII-tubulin that are related to resistance to paclitaxel 
treatment[219,220]. When this expression is down-regulated, cells recover sensitivity 
to paclitaxel[221]. In this regard, Wang et al[222] described an increase in the 
expression of βIII-tubulin, which induces resistance because higher concentrations of 
the drug are needed to stabilize microtubules and block cell division.

Regarding the proteins that modulate cytoskeletal dynamics, many authors have 
established that an increase in the resistance to paclitaxel treatment is related to an 
over-expression of stathmin[223], septin[224], tubulin binding cofactor C[225] and 
BRCA1[226] proteins.

It is also known that enzymes of the cytochrome P450 subfamily 3A and 2C play a 
major role in the metabolism of taxane anticancer agents. The expression of these 
enzymes in solid tumors may thus play a role in the in situ metabolism of drugs as 
well, potentially affecting the intrinsic susceptibility of these tumors to taxane. An 
abnormal up-regulation of enzyme activity or expression reduces the halflife time of 
paclitaxel and as a consequence its efficacy in cancer patients[227].

Regarding doxorubicin, the expression of topoisomerase II-α and FOXO3 is 
mentioned as a main aspect in the mechanism of resistance to this drug. Doxorubicin 
exerts part of its chemotherapeutic effect by the binding to topoisomerase II-α, which 
produces DNA structure stabilization and induces apoptosis. Wang et al[222] reported 
that a down-regulation in topoisomerase II-α expression induces resistance to 
doxorubicin treatment in human breast tumor cells MCF-7. In human malignant breast 
samples, O'Malley et al[228] demonstrated that topoisomerase II-α expression is a good 
marker to determine the resistance to doxorubicin since cells with higher levels of this 
enzyme are more sensitive to this anthracycline.

FOXO3 is a factor associated with longevity due to its antioxidant effect[229]. In this 
regard, Gomes et al[230] reported that the administration of doxorubicin in breast 
cancer patients can increase FOXO3 expression, inducing resistance to treatment and 
making it a marker of bad prognosis.

Other side effects
Besides the previous points, it must be taken into account that the treatment with these 
drugs can stimulate the development of metastases. Regarding this matter, 
Karagiannis et al[231] demonstrated that the in vivo administration of doxorubicin or 
paclitaxel to murine breast tumor bearers promotes the formation of micrometastases 
in the lung, which is the first step necessary to produce tumor cell intravasation and 
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the subsequent formation of metastases. Moreover, Daenen et al[232] established that 
paclitaxel treatment also increases vascular endothelial growth factor receptor-1 
expression in lung endothelial cells, which stimulates the adhesion of circulating 
tumor cells and the subsequent formation of metastases.

Additionally, conventional therapeutic treatment with doxorubicin or paclitaxel can 
affect normal cells, inducing cell death. We and other authors have demonstrated that, 
at therapeutic concentrations, paclitaxel besides reducing cell viability in human breast 
tumor cells MCF-7 and MDA-MB231 also causes cell death in normal mammary cells 
MCF-10A[128,233-235].

METRONOMIC THERAPY
The conventional treatment usually applied to cancer patients considers the adminis-
tration of chemotherapeutic drugs at the maximum tolerated dose. Because of all the 
undesirable effects caused, patients need a long interval of time between cycles of 
treatment so that normal tissues can recover. The usage of the maximum tolerated 
dose is useful in tumors that rarely have a complex network of activating mutations, 
like acute lymphoblastic leukemia or testicular cancer. However, in other tumors like 
breast tumors, this conventional treatment is less effective mainly because these 
tumors permanently modulate the tumor microenvironment. In addition, as 
mentioned above, besides the toxicity induced by the administration of the maximum 
tolerated dose in breast cancer, development of resistance to treatment is frequently 
described[236,237].

One of the strategies to reduce side effects and the resistance to anti-tumor drugs is 
the administration of minimal doses of one or more chemotherapeutic agents, which, 
administered in a continuous regime or with short time intervals, improves the results 
of treatment. This strategy is known as metronomic therapy and its main aim is to 
reduce the toxicity and to increase the quality of the patients’ lives.

Metronomic therapy may be effective to inhibit tumor progression through different 
mechanisms that modulate not only tumor cell death but also the cancer stem cell 
population involved in tumor generation and metastasis[129,236]. Folkins et al[238] 
demonstrated that metronomic therapy with cyclophosphamide could reduce the 
growth of human glioma spheroids, a cancer stem cell marker. Vives et al[239] 
reported that the same treatment reduces the number of cancer stem precursor cells in 
human pancreatic tumor. Similarly, in our laboratory, we demonstrated that the 
treatment of human breast cancer cells MCF-7 with paclitaxel plus carbachol in a 
metronomic schedule causes a decrease in the cancer stem cell population[129].

The target of this kind of therapy is not only tumor cells but other cells of the tumor 
microenvironment[236,240-242]. Several authors have demonstrated that some 
chemotherapeutic drugs administered at low doses can inhibit the synthesis of pro-
angiogenic factors produced by endothelial cells, which are necessary for tumor 
growth[236].

In addition, metronomic therapy is effective to modulate the activity of the immune 
system, by decreasing the number of regulatory T cells and increasing the population 
of cytotoxic T lymphocytes and natural killer cells[243,244].

Metronomic therapy is usually linked to repurposing drugs. The latter refers to the 
assignation of new uses for drugs usually administered to treat diseases other than 
cancer[245]. In oncology, there is an increasing interest in the prescription of non-
cancer drugs for cancer treatments due to the knowledge of their pharmacokinetics/ 
dynamics and side effects, and because most of them are available at low cost[246].

Considering previous results obtained in our laboratory, we have recently proposed 
the administration of low doses of paclitaxel or doxorubicin combined with low doses 
of carbachol, a non-selective muscarinic agonist, or arecaidine, an M2 selective agonist, 
in a metronomic schedule to effectively reduce breast tumor cell viability[128]. As 
shown in Table 2, the effect of metronomic combinations is similar to that obtained 
with paclitaxel or doxorubicin administered at therapeutic concentrations (10-6 mol/L). 
These results position muscarinic agonists in the spectrum of repurposing drugs.

Our results focused on the presence of mAChRs in tumor cells and their absence in 
normal cells, giving specificity to this type of anti-tumor therapy, and indicating that it 
also prevents cytotoxic actions in normal cells, which could be an indicator of reduced 
adverse effects (Table 2).

It is important to mention that the treatment with paclitaxel plus carbachol not only 
reduces tumor cell viability but also prevents other important steps of tumor 
progression. This therapy diminishes tumor cell migration, cancer stem cell 
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Table 2 Effect of metronomic chemotherapy targeting muscarinic acetylcholine receptors on breast tumors

Murine breast malignant cells Murine breast not malignant cells
Paclitaxel (10-11 mol/L) + Carbachol (10-9 mol/L)[126]

LM2: 68.2 ± 5.1b NMuMG: 6.8 ± 6.6

LM3: 64.6 ± 6.5b

Human breast malignant cells Human breast not malignant cells

Paclitaxel (10-9 mol/L) + Carbachol (10-11 mol/L)[127]

MCF-7: 45.6 ± 5.8a MCF-10A: 1.9 ± 0.3

Paclitaxel (10-9 mol/L) + Carbachol (10-10 mol/L)[128]

MDA-MB468: 33.4 ± 2.5c MCF-10A: 2.9 ± 3.1

Paclitaxel (10-9 mol/L) + Arecaidine propargyl ester (10-7 mol/L)[128]

MDA-MB468: 26.9 ± 3.6c MCF-10A: 3.3 ± 6.2

Paclitaxel (10-8 mol/L) + Carbachol (10-11 mol/L)[128]

MDA-MB231: 36.8 ± 6.2c MCF-10A: 3.1 ± 6.2

Doxorubicin (10-8 mol/L) + Carbachol (10-11 mol/L)[128]

MDA-MB231: 35.3 ± 0.8c MCF-10A: 6.1 ± 3.1

Paclitaxel (10-8 mol/L) + Arecaidine propargyl ester (10-5 mol/L)[128]

MDA-MB231: 35.8 ± 3.1c MCF-10A: 8.2 ± 6.5

Doxorubicin (10-8 mol/L) + Arecaidine propargyl ester (10-5 mol/L)[128]

MDA-MB231: 33.3 ± 2.1c MCF-10A: 7.8 ± 6.8

Paclitaxel (10-6 mol/L)[128]

MDA-MB231: 38.0 ± 6.1c MCF-10A: 33.3 ± 1.5c

Doxorubicin (10-6 mol/L)[128]

MDA-MB231: 41.1 ± 2.3c MCF-10A: 45.7 ± 1.8c

aP < 0.01.
bP < 0.001.
cP < 0.0001 vs control (untreated cells).

percentage, neoangiogenesis and the expression of the drug extrusion pump ABCG2
[128].

CONCLUSION
The research about new antitumor therapies with drugs that increase beneficial actions 
and reduce adverse effects is a challenge to improve breast cancer patients’ lives. The 
usage of repurposing drugs, like the muscarinic agonist carbachol, which synergizes 
the action of traditional anti-tumor drugs might be an alternative schedule focused on 
mAChRs as new therapeutic targets. The presence of these receptors at high concen-
trations not only in breast tumors but also in other types of tumor could help to find a 
more specific and less aggressive manner to treat cancer patients. On the other hand, 
metronomic therapy is effective to kill tumor cells without affecting normal cells and 
also decreases pathological neo-angiogenesis and the expression of drug extrusion 
proteins. The latter could prevent the appearance of resistance reported in conven-
tional chemotherapy. More in vivo experiments are needed to confirm the effectiveness 
of this treatment in breast cancer models and to gain information to discard systemic 
adverse reactions.
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