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1 Introduction

Over the last decade, considerable research efforts were focused on the use of holography
as a tool to illuminate the properties of strongly correlated condensed matter systems.
Understanding strange metallic, superconducting and other phases in the phase diagram
of high-Tc cuprates is probably one of the most outstanding challenges. A summary of the
large amount of effort done in this direction can be found in refs. [1, 2]. In this context,
the recently uncovered twisted bilayer graphene (TBG) [3, 4], which features a very rich
phase diagram, extensively studied both theoretically [5–52] and experimentally [53–73],
stemming from the enhanced interaction effects in the flat bands forming in the system,
may be of importance. This rich landscape of possible phases and phase diagrams together
with seeming similarities with the ones of high-Tc superconductors [74], motivate us to for-
mulate and study a holographic model that might encode a possible pattern of symmetry
breaking in TBG.

In this context, we emphasize that a first realization of flat bands in a holographic
model was proposed in ref. [75]. In this approach, Lorentz symmetry breaking, a necessary
ingredient for constructing flat bands, is realized through the boundary conditions imposed
on a Dirac spinor field living in an AdS background geometry. As such, this model describes
a flat band, but it does not include the backreaction to the geometry.

We here propose a different approach to address the symmetry breaking, which explic-
itly includes the backreaction, and is based on the method employed to construct the holo-
graphic duals to Weyl semimetals [76, 77], multi-Weyl semimetals [78], and PT-symmetric
non-hermitean systems [79]. We start by constructing a toy model for flat bands in terms
of free Dirac fermions at the neutrality point (zero chemical potential). We then rewrite
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this model by invoking an emergent global symmetry, which is preserved in the UV, and
use simple relevant sources that break such symmetry to produce the flat bands in the
IR. In the next step, we use the standard holographic dictionary and promote the global
symmetries to gauge symmetries in the bulk. We subsequently construct geometries with
boundary conditions given by the relevant deformations studied in the free model. Such
a holographic construction, as we show here, at intermediate scales between UV and IR,
yields Lorentz-symmetry breaking Lifshitz geometry, as expected for a flat band. We
emphasize that the backreaction is explicitly included to obtain the dynamic exponent z
characterizing the Lifshitz geometry. Most importantly, we find that such a geometry be-
low a critical temperature is unstable towards a nematic phase exhibiting an anomalous
Hall effect. Finally, the off-diagonal conductivity features a Drude-like shift of its spectral
weight, which, in a condensed matter model, may be associated with the formation of
Fermi pockets in a nematic phase [80].

2 Free fermions

Let us first discuss the flat bands within a free Dirac fermion model. The corresponding
Dirac Hamiltonian describing a free fermion at neutrality in 2 + 1 spacetime dimensions
reads

HD = −γt(γxpx + γypy) , (2.1)

where γµ = (σ3,−iσ2, iσ1) are the 2 + 1 Dirac gamma matrices. The eigenstates of this
Hamiltonian are characterized by the relativistic dispersion relation ω = ±

√
p2
x + p2

y.
We now couple two copies of free Dirac fermion, analogously to the approach used in

ref. [78], to construct a non-relativistic system as a relevant deformation of this relativistic
one [81, 82]. We emphasize here that this approach is analogous to the construction of the
effective low-energy Hamiltonian for bilayer graphene by coupling two single layers each
featuring linearly dispersing Dirac fermions. A first possibility is to write

H ′D = HD ⊗ 12×2 + im∗ (γx ⊗ σ2 − γy ⊗ σ1) . (2.2)

This Hamiltonian is still quadratic and the spectrum reads

ω = ±m∗ ±
√
p2
x + p2

y +m∗2 (2.3)

with gapped conduction and valence bands corresponding to both positive or both negative
signs respectively, while otherwise the valence and conduction bands cross at zero energy.
In the latter case, the low-energy excitations feature a quadratic dispersion relation for
p2
x + p2

y � m∗

ω ≈ ± 1
2m∗

(
p2
x + p2

y

)
(2.4)

which still preserves rotational invariance.
Although Gaussian, this model features quite an interesting hierarchy of scales, which

may be interpreted in terms of a renormalization group flow. In the deep UV we start
with the two decoupled relativistic Dirac fermions. Now, we turn on the coupling, which
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is a relevant perturbation, and at the end of the RG flow, at a scale much smaller than
the coupling between the two species (m∗), one of them is gapped out while the remaining
one becomes non-relativistic, giving a fixed point with dynamic critical exponent z = 2.
Interestingly, the IR fixed point has a larger z than the original one, seemingly counterintu-
itive from a naive power-counting point of view. The price to pay is that close to this new
fixed point with a larger dynamic exponent, the quartic electron interactions, by virtue of
having a scaling dimension z − 2 after taking into account quantum fluctuations, become
more relevant than close to the Dirac vacuum, and destabilize it.

The wave equation resulting from (2.2) reads i ∂tΨ = H ′DΨ in terms of the fermionic
pair Ψ = (ψ1, ψ2) where ψ1 and ψ2 are two-component Dirac fields. It can be obtained
from the action

S =
∫
d3x iΨ̄ (γµ∂µ − im∗ (γx ⊗ σ1 + γy ⊗ σ2)) Ψ = Sfree − i

∫
d3x Ψ̄ /WΨ. (2.5)

Here Sfree is the free Dirac action for the pair of spinors, which exhibits a U(2) global
symmetry as well as spatial rotational invariance. On the other hand, the deformation
corresponds to coupling the pair to a constant non-Abelian vector field W = m∗(σ1dx +
σ2dy), which explicitly breaks the U(2) symmetry down to U(1). Notice that even if spatial
rotational invariance were broken from the outset, any SO(2) rotation acting on the vector
W could be undone by a U(2) transformation in the direction of σ3, implying that there is
a preserved rotational invariance in the system. We will therefore construct a holographic
model by taking a bulk theory with a U(2) gauge symmetry, whose boundary conditions
explicitly break it to a residual U(1), while preserving a combination of rotational and
U(1)3 invariances.

It is important to stress that we are not building the holographic theory dual to the
model (2.2), but to a strongly coupled theory with the same symmetry breaking pattern.
In other words, we are replacing Sfree in eq. (2.5) by a strongly coupled action invariant
under spatial rotations and a global U(2) symmetry.

3 The holographic theory

As explained in the previous section, in addition to the standard AdS gravitational sector,
the bulk theory must contain a gauge U(2) = U(1)×SU(2) invariance. The minimal action
with such requirements reads

S = Sgrav −
1
4

∫
[F ∧?F + Tr (G ∧?G)] , (3.1)

with
Sgrav =

∫
d4x
√
−g (R− 2Λ)

and where F represents the U(1) gauge field strength while G is the strength of SU(2)
gauge field. They are defined from the corresponding gauge fields A and B = Ba σa/2 with
a = 1, 2, 3 in the standard way F = dA and G = dB − i(q/2)B ∧B.

To construct a holographic theory we look for asymptotically AdS solutions in the
above theory. Since our aim is to describe a flat band, we have to turn on a relevant
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deformation that breaks the boundary U(2) group down to U(1). This translates into the
boundary condition

B −−−→
r→0

m∗ (σ1dx+ σ2dy) = W . (3.2)

This constraint breaks the rotational symmetry in the xy plane as well as the U(2) gauge
symmetry, but it preserves a combination of the two [83], yielding what we will refer to
as “rotational symmetry” in the following. An ansatz for the background fields consistent
with the sources we turned on at the boundary reads

B = 1
2 (Q1(r)σ1 +Q2(r)σ2 ) dx+ 1

2 (Q1(r)σ2 +Q2(r)σ1) dy , A = 0 . (3.3)

Here we recover the minimal ansatz when setting Q2 = 0. Nevertheless, from ref. [84] we
know that spontaneous symmetry breaking of rotational invariance might happen at low
temperatures. Hence we extend the minimal ansatz to include the so called xy-nematic
phase when Q2 6= 0. We chose that combination because of its stability in the 5d model [84]
and it corresponds to a nematic phase since it breaks the rotations SO(2) down to a discrete
fourfold rotational symmetry C4.

For the metric, on the other hand, we write

ds2 = 1
r2

(
−N(r)f(r)dt2 + dr2

f(r) + dx2 + dy2 + 2h(r)dx dy
)
. (3.4)

For the rotational invariant phase with Q2 = 0, it is consistent to set h = 0. The require-
ment of having AdS asymptotics then translates into the boundary conditions

f −−−→
r→0

1 , N −−−→
r→0

1 , h −−−→
r→0

0 . (3.5)

Plugging the ansatz given by eqs. (3.3)–(3.4) into the equations of motion obtained
from (3.1), we find the set of coupled differential equations of the form

−4r2hh′

N
(Nf)′ = −8(3 + rf ′)(1− h2) + q2r4

(
Q2

1 −Q2
2

)2
+ (3.6)

2f
(
12(1− h2)− 3r2h′2 + 8r4hQ′1Q

′
2 + 4r4(Q′21 +Q′22 )(1− 2h2)

)
−(1− h2)4r

(
Nf2)′

fN
= 24(1− h2)− q2r4(Q2

1 −Q2
2)2+ (3.7)

4f(−6(1− h2) + r2h′2 − 4r4hQ′1Q
′
2 + 2r4h2(Q′21 +Q′22 )− 2rhh′)(

Q′1
√
Nf

)′
=

√
N

4(h2 − 1)
(
q2(Q1 − hQ2)(Q2

2 −Q2
1)− 4fh′Q′2

)
(3.8)

(
Q′2
√
Nf

)′
=

√
N

4(h2 − 1)
(
q2(Q2 − hQ1)(Q2

1 −Q2
2)− 4fh′Q′1

)
(3.9)(

h′f
√
N

r2

)′
= 2f

√
N

(
−2Q′1Q′2 + h

(
Q′21 +Q′22 + h′2

2r2(h2 − 1)

))
. (3.10)

In the following, we explore solutions to these equations of motion subject to the
boundary conditions given by eqs. (3.2) and (3.5). The IR boundary conditions depend
on whether we are analyzing the zero temperature or the finite temperature cases, as also
discussed below.
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4 Zero temperature solutions

In this section we will focus on domain wall solutions that interpolate between an IR
and a UV fixed point at zero temperature. We first identify an exact isotropic Lifshitz
solution that can be interpreted as a candidate IR geometry from which we can shoot
into the boundary conditions (3.2)–(3.5) in the UV. Nevertheless, for a sufficiently large
backreaction parameter q this exact IR solution turns out to be unstable under anisotropic
perturbations. We then change the IR solution by a pure AdS one, which is, in turn, stable
under anisotropic perturbations, and study numerically its deformation into a solution
satisfying the boundary conditions given by eqs. (3.2)–(3.5) in the UV. The resulting
numerically obtained profiles describe a nematic phase, in which rotational symmetry is
spontaneously broken.

4.1 Lifshitz solution

Let us start by searching for the fully rotationally symmetric solutions. In other words, we
replace Q2 = h = 0 in the eqs. (3.6)–(3.10). This simplifies the equations considerably, as
can be checked by a direct substitution, and they are of the form

f = 24− (1− z)2q2

8 (2 + z) , (4.1)

N = NL

r2(z−1) , (4.2)

Q1 =
√
z − 1
r

, (4.3)

where the dynamic exponent z solves the following equation

q2(z3 + z2) + (q2 − 24)z − 3(q2 + 8) = 0 . (4.4)

This cubic equation for the values of the parameter q � 1 yields z ≈ 1, as shown in figure 1.
In other words, in this limit the Yang-Mills fields decouple from the Einstein equations,
leaving the metric to be pure AdS, as expected. As we lower the value of q the IR metric
becomes a Lifshitz geometry with increasing dynamic exponent z. For q very small, we
find z ≈ 2

√
6/q, as can be seen in figure 1. We also mention that the effective number of

degrees of freedom in the IR theory, f(q), as given by eq. (4.1), asymptotically approaches
one as q →∞, see right panel in figure 1.

The above exact isotropic Lifshitz solution can only be taken as a candidate for the
IR geometry, since it does not satisfy the correct boundary conditions in the UV. To
construct the full isotropic Lifshitz background, we must add an irrelevant perturbation
that takes the solution away from the one described by eqs. (4.1)–(4.3), and triggers an
RG flow towards the original relativistic UV fixed point, given by eqs. (3.2)–(3.5).

However, as we will show next, such an isotropic Lifshitz background is generically
unstable towards a nematic phase [85], thus explicitly breaking the rotational symmetry and
featuring z = 1, for large enough q. Hence the full geometry we found is strictly speaking
unstable, and as such can only approximate an intermediate scaling regime [86–88].

– 5 –



J
H
E
P
0
5
(
2
0
2
1
)
1
2
3

2 4 6 8 10
0

1

2

3

4

5

q

z

qc 0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

q

f

qc

Figure 1. Left: dynamical critical exponent z as a function of the backreaction parameter q, as
given by eq. (4.4). Right: the number of the degrees of freedom f , given by eq. (4.1), as a function
of the backreaction parameter q. In both plots, the gray region corresponds to values q > qc for
which the Lifshitz solution is unstable.

To study the stability of the isotropic Lifshitz background, we expand the equations
of motion around its exact IR form (4.1)–(4.3) to linear order. In particular, the one
corresponding to Q2 can be solved by

Q2 ≈ c+r
∆+ + c−r

∆− (4.5)

where c± are arbitrary constants, and the exponents ∆± read

∆± = 1
2

z ±√z2 − q2

f

√
z − 1

 . (4.6)

These constants represent the effective conformal dimension of the dual operator in the
deep IR. A sufficient condition indicating an instability is satisfied when such an effective
dimension becomes complex, as it happens here for q & qc ≈ 1.00785. As we will see, such
an instability may still appear for q . qc at the nonlinear level. In figure 2 we show ∆± as
a function of q for the range of q where the solutions are real.

We have found so far that the isotropic Lifshitz background is generically unstable for
large enough values of q. Later on, we will heat up the system and show how the form given
by eqs. (4.1)–(4.3) plays an important role at intermediate temperature scales, leaving its
imprint on the behavior of the entropy as a function of the temperature.

4.2 Nematic domain walls

Since for large enough q the IR region of the isotropic Lifshitz solution becomes unstable,
in order to find the stable background we need to replace such an IR form by a stable
one. To this end, we choose constant IR values for all the functions f = 1, N = Nn,
Q1 = Q2 = Qn, h = hn. This corresponds to pure AdS, since a constant h can be removed
by a change of variables, and the same can be done with constants Q1 and Q2 by applying
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Figure 2. Exponents ∆± as a function of the backreaction parameter q, given by eq. (4.6). The
upper (solid) line is to the ∆+ curve, while the lower (dotted) one corresponds to the ∆−. As
before, the gray region corresponds to values q > qc for which the Lifshitz solution is unstable.

a gauge transformation. In other words, the exact conformal invariance z = 1 is recovered
in the IR. This is no longer true as we extend the solution towards the UV

f ≈ 1−
2Q2

p

p
r3e−2pr + . . . , (4.7)

N ≈ Nn +
2NnQ

2
p

p
r3e−2pr + . . . , (4.8)

Q1 ≈ Qn + Qp
p
e−pr + . . . , (4.9)

Q2 ≈ Qn −
Qp
p
e−pr + . . . , (4.10)

h ≈ hn +
(1 + hn)3/2Q2

p

p
r2e−2pr + . . . . (4.11)

In this expansion p = qQn/
√

1 + hn, and the non-trivial dependence in r is just an expan-
sion in powers of r and exp(−pr). Now we can integrate numerically away from the IR
towards the desired UV using Qp, hn, Nn as shooting parameters. We can shoot towards
any numerical value for m∗ since the residual scaling symmetry allows us to reabsorb its
numerical value. Hence, the value of Qn can be set to any non-zero numerical value, and
we do not use it to shoot. An example of the profile for the field is shown in figure 3.

As the parameter q is decreasing, we find solutions up to q ≥ 0.5362, which is below
the critical value q ≈ 1.00785 suggested by the linear IR behavior. We were not able to
determine whether solutions beyond that critical value exist, since the numerical compu-
tations become too challenging in that regime. From figure 4 we may conclude that as z
increases and q thus decreases, the numerical computations become problematic. This is

– 7 –



J
H
E
P
0
5
(
2
0
2
1
)
1
2
3

-3 -2 -1 0
0

2

4

6

8

Log10(r)

Q1

Q2

-3 -2 -1 0
0

0.2

0.4

0.6

0.8

1

Log10(r)

-h

N

f

Figure 3. Radial profiles for a nematic domain wall at q = 2. Left: Q1 (upper line) and Q2 (lower
line). Right: the functions f (upper line), N (middle line) and −h (lower line). These profiles are
given by integrating from eqs. (4.7)–(4.11).

0.6 0.8 1.2 1.4

-6

-5

-4

-3

-2

-1

q

Log10(Nn)

qc

Figure 4. The coefficient Nn of equation (4.8) gets fixed after shooting towards the desired UV
boundary conditions (3.5). We plot its value as a function of the backreaction parameter q to see
that solutions still exist below qc, but the numerical value of Nn becomes highly suppressed.

so because the numerical value of Nn becomes smaller and smaller, with the form that can
be fitted by a function logNn ≈ 29− 23.3/q.

Finally we would like to comment that the IR (4.7) corresponds to and AdS geometry
with the same radius than the UV which represents a so called “Boomerang RG flow” [87].
Since our relevant deformation breaks Lorentz invariance it escapes the hypothesis of holo-
graphic c-theorems [89, 90].

5 Heating up: finite-temperature solutions

Now we turn to study finite temperature solutions, characterized by the presence of a black
hole horizon at some finite value of the radial coordinate r = rh where f(rh) = 0. The
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Figure 5. Left: dynamical critical exponent for the Lifshitz and nematic phases as a function of
the temperature defined as z ≡ 2S/TS′. The curves correspond to the q = 2 solution. Right: order
parameter Jxy, defined as the subleading term in the near boundary expansion of Q2, as a function
of the temperature.

dual theory has a finite temperature which is determined by the near horizon expansion

f ≈ 4πT√
Nh

(rh − r) + . . . (5.1)

N ≈ Nh + . . . (5.2)
Q1 ≈ Q1h + . . . (5.3)
Q2 ≈ Q2h + . . . (5.4)
h ≈ hh + . . . . (5.5)

The temperature that satisfies the equations of motion close to the horizon is of the form

T =
√
Nh

(
−12 + 12h2

h + 1
2q

2(Q2
1h −Q2

2h)r4
h

)
16π(h2

h − 1)rh
. (5.6)

In holography, it is then natural to fix q and use T/m∗ as the dimensionless tuning pa-
rameter to explore the phase diagram. At high T/m∗ we only find rotational invariant
solutions. From the scaling of the entropy with respect to the temperature S ∼ T 2/z we
can read off the dynamical exponent, see figure 5. This analysis then confirms that the
solutions interpolate from z = 1 in the UV to z ≈ 2.4 (we set q = 2 in the numerical
computations) at low temperatures, in agreement with our previous findings at T = 0. For
low enough temperatures, at certain T = Tc the system undergoes a second order phase
transition towards a nematic phase. In figure 5 we show the order parameter Jxy, defined
as the subleading term in the near boundary expansion of Q2, as a function of the temper-
ature. Furthermore, we checked from the on-shell action that the xy-nematic solution is
preferred. The sub-leading coefficient in the Q1 expansion will be non-zero for any value
of T/m∗ as the operator has an explicit source turned on. In the low temperature regime,
we observe a scaling of the entropy that is consistent with the dynamic exponent z = 1 for
the xy-nematic solutions.
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Figure 6. Phase diagram in the temperature versus dynamical critical exponent plane. We see
that the critical temperature for the nematic phase decreases as the value of the critical exponent
increases. The horizontal axis corresponds to z = z(q), defined as a solution to eq. (4.4).

We carried out the previous analysis at fixed parameter q. On the other hand, as the
parameter q decreases, which implies an increasing the dynamical exponent z, the critical
temperature gets smaller, making the nematic condensate less and less favored, as we show
in figure 6. This behavior nicely fits the expectations from our T = 0 analysis, but seems
to contradict what could have been expected from a purely perturbative point of view. In
general, one expects that as the density of states increases with the dynamical exponent,
instabilities are enhanced at large z. This behavior looks rather puzzling but it may
originate from the strongly coupled nature of the system, circumventing the expectations
based on the weak coupling (perturbative) and single particle pictures.

5.1 Anomalous Hall effect

Now let us turn to the study of the optical conductivities of the solutions constructed above.
This calculation was carried out using standard methods as outlined in references [91, 92].
We consider a linear perturbation of the form

δA = e−iωt (ax(r)dx+ ay(r)dy) , (5.7)

giving the following equation for the ax component

a′′x =
(
−f
′

f
− N ′

2N

)
a′x −

ω2

f2N
ax + h

1− h2a
′
y. (5.8)

Since the xy-nematic phase is invariant under x→ y, y → x, the equation of motion for ay
is obtained from the above one by the exchange ay → ax, ax → ay. Notably, the xy-nematic
background couples the fields ax and ay as is evident from the last term in eq. (5.8). In
turn, this gives rise to a non-zero anomalous Hall conductivity.
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Figure 7. Top panels: real (left) and imaginary (right) parts of the conductivity σxx as a function
of the frequency for various values of T/Tc. Bottom panels: real (left) and imaginary (right) parts
of the Hall conductivity σxy as a function of the frequency for various values of T/Tc.

Imposing infalling boundary conditions at the horizon

ai ≈ ai(h)(r − rh)
iω

4πT + . . . (5.9)

we are left with two free coefficients at the horizon, ax(h) and ay(h), which we can use to
get two independent solutions to the equations of motion. That will suffice to obtain the
conductivity matrix σ

Ji = σijE
j (5.10)

where we can read the currents Ji from the subleading behavior for ai near the boundary,
while the electric field is obtained from the leading behavior of ai. We show the resulting
conductivities in figure 7.

For large ω we find σxx → 1 and σxy = 0, since the CFT governs the UV physics. At
intermediate and low frequencies, on the other hand, both conductivities change from being
featureless in the normal phase to oscillatory behavior as we dive deep into the nematic
phase. Furthermore, σxx develops a Drude like peak, as we show in the top panels of
figure 7. A plausible explanation for this kind of shift in the spectral weight in the absence
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Figure 8. DC conductivities, defined as σDC
ij ≡ σij(ω → 0), as a function of T/m∗.

of momentum dissipation might be related to some additional effects, such as the formation
of Fermi pockets in the nematic phase, as suggested for a condensed matter model [80].

Interestingly, the anomalous Hall DC conductivity σDCxy = σxy(ω → 0) has a non-zero
real part which increases as the temperature is lowered and therefore the system is entering
deeper into the nematic phase. We observe that such anomalous conductivity is a good
indicator for the nematic phase [76], see figure 8.

6 Conclusions and outlook

In summary, we here provided an explicit construction of flat bands within a holographic
setup which explicitly takes into account the symmetries of the free Dirac fermions, and
that includes the backreaction. As we showed, a nematic instability can emerge from the
flat bands constructed in this manner, which exhibits anomalous Hall conductance. Finally,
the off-diagonal optical conductivity in the nematic phase features a Drude-like shift of the
spectral weight.

The analysis of the flat bands introduced in this paper can be extended in several
directions. First, one can add the chemical potential and study the instabilities in this
setting. In particular, it would be interesting to see whether the nematic instability survives
at a finite chemical potential. Furthermore, adding an operator charged under the global
U(1) symmetry in this setting would allow to study the interplay between the nematic
phases and a holographic superconducting order [93, 94], which we plan to study in a
future. Also, as we are claiming to have an approximately flat band at an intermediate
scale, it would be interesting to compute fermionic Green functions [95–97]. For instance,
we could explicitly check the presence of Fermi pockets in the nematic phase within this
setup. The dynamics of the universal sector related to these fermions will be given by
a couple of Dirac fermions in the bulk with the correct charges under the U(2) gauge
symmetry. Finally, constructions from string theory should give further control of the dual
field theory we are dealing with [98–101].
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