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1Instituto Nacional de Medicina Tropical, Administración Nacional de Laboratorios e Institutos de Salud ‘‘Dr. Carlos G. Malbrán’’. Ambar s/n, Puerto
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Abstract: Orthohantaviruses (genus Orthohantavirus, family Hantaviridae) are the etiologic agents of Han-

tavirus Pulmonary Syndrome in the Americas. In South America, orthohantaviruses are highly diverse and are

hosted by sigmodontine rodents (subfamiliy Sigmodontinae, family Cricetidae), an also diverse group of

rodents. The aims of this work were to (1) identify orthohantavirus hosts and (2) to study the spatial and

temporal variations in the prevalence of infection and their associations with community, environmental and

individual characteristics, in different environments of Misiones province, northeastern Argentina. Live-cap-

ture sessions were carried out during two years in different land uses, with a trapping effort of 31,653 trap

nights. We captured 719 individuals from the species Akodon montensis, Rattus rattus, Mus musculus, Calomys

tener, Thaptomys nigrita, Oligoryzomys nigripes, Euryoryzomys russatus, Oligoryzomys flavescens, Brucepatterso-

nius sp., and Juliomys pictipes. Antibodies against orthohantavirus were detected in Akodon montensis in one

natural protected and one periurban areas, and it was the most abundant species in almost every study sites.

We observed the presence of spatial focality of orthohantavirus infection and a positive association with host

abundance suggesting the existence of a threshold density. At the individual level, large, reproductively active,

and male individuals were more likely to have antibodies against orthohantavirus. This is the first record of

orthohantavirus infection in A. montensis in Argentina, which shows the importance of investigations about

emerging diseases.

Keywords: emerging infectious diseases, hantavirus pulmonary syndrome, national parks, rodents, sigmod-

ontinae, zoonoses

INTRODUCTION

Orthohantaviruses (genus Orthohantavirus, family Han-

taviridae) are the etiologic agents of Hemorrhagic Fever
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with Renal Syndrome (HFRS) and Hantavirus Pulmonary

Syndrome (HPS). The viruses causing HFRS are particu-

larly widespread in Asia and Europe and are hosted by

cricetid and murid rodents (families Cricetidae and Muri-

dae) as Rattus norvegicus, R. rattus and Apodemus agrarius,

while those causing HPS in America are hosted by cricetid

rodents of the subfamilies Sigmodontinae and Neotominae

(de Oliveira et al. 2014; Oliveira et al. 2014; Milholland

et al. 2018). Though there have been a few reports of

natural infected rodents by Seoul virus (an etiologic agent

of HFRS) in South America, mainly in R. norvegicus (Seijo

et al. 2003; Padula et al. 2010), HFRS has never been re-

ported in this continent (Mull et al. 2020). Regarding HPS,

more than 5,000 cases have been reported up to 2016 in

South America, where Brazil, Argentina and Chile are the

most affected countries (Pan American Health Organiza-

tion 2020). Risk of acquiring HPS depends on numerous

factors such as the spatial distribution of the viruses and

hosts, the seasonal and multi-annual fluctuations in their

prevalence and abundances, and several human-associated

factors such as agricultural work, outdoor recreation and

peridomestic activities (Alonso et al. 2019; Kuenzi et al.

2000). Each virus is generally hosted by one or a few closely

related species, though spillover and host switching events

are frequent (Mull et al. 2020).

Transmission among hosts is horizontal, either

through social interactions or through the inhalation of

infectious particles released into the environment (Forbes

et al. 2018). Shedding of the virus occurs throughout the

host’s life, though some evidence suggests it is higher

shortly after infection (Safronetz et al. 2008; Voutilainen

et al. 2015). Infection is thought to be mostly asymptomatic

for the hosts (Forbes et al. 2018), but there is some evidence

supporting a decrease in growth rate and survival (Dou-

glass et al. 2007; Luis et al 2012). The genus Orthohan-

tavirus is still not fully known, and new variants and hosts

are described or reclassified almost every year (Mull et al.

2020). This is particularly so in South America where its

reservoirs seem to be particularly complex and diverse. To

date, more than 20 variants of orthohantaviruses and more

than 25 host species have been reported in South America,

and approximately half of these genotypes have been

associated with human disease (de Oliveira et al. 2014;

Oliveira et al. 2014; Mull et al. 2020). However, because

hosts and viruses are highly diverse, and studies, particu-

larly in remote areas, have not been sufficient, the number

of variants and reservoirs is almost certainly being under-

estimated. In Argentina, ten viruses and seven main hosts

have been described so far (López et al. 1996; Levis et al.

1998, 2004; Pini et al. 2003; Padula et al. 2007; Martinez

et al. 2010). In Misiones province (northeastern Argentina),

two genotypes, Juquitiba and Lechiguanas, have been

found, both causing HPS. Juquitiba was found to be hosted

by Oligoryzomys nigripes, while Lechiguanas was only iso-

lated from humans in this province (Padula et al. 2007),

though it is known to be hosted by O. flavescens in central

Argentina (Palma et al. 2012; Vadell et al. 2011). However,

other sigmodontine species known to host orthohan-

taviruses in other regions of Argentina and neighboring

Paraguay and Brazil are also present in this province,

suggesting that other genotypes may be circulating in ro-

dent populations in northeastern Argentina. This could be

the case of Akodon montensis, host of Apé-Aimé in Para-

guay and Jaborá in Brazil and Paraguay; A. paranaensis,

host of Jaborá in Brazil; Necromys lasiurus, host of Arara-

quara in Brazil; Thaptomys nigrita, host of Juquitiba in

Brazil; Callomys callidus, host of Laguna Negra in north-

west Argentina, Brazil and Paraguay and Holochilus sp.,

host of Alto Paraguay in Paraguay (Mull et al. 2020; de

Oliveira et al. 2014; Oliveira et al. 2014).

To date, there is no effective treatment or approved

vaccine against HPS (Brocato and Hooper 2019), and

therefore, preventive measures are the only means to curtail

human disease. Because HPS is the result of a spillover

event from a rodent host, a correct understanding of the

distribution and ecology of orthohantaviruses in their host

populations is crucial in order to design effective preventive

measures that could help reduce transmission to humans.

To aid in reducing transmission to humans, the aims of this

work were to identify orthohantavirus hosts and to study

the spatial and temporal variation in the prevalence of

infection and their association with community, environ-

mental and individual characteristics in different environ-

ments of the Argentinean Atlantic Forest, Misiones,

Argentina.

METHODS

Study Area

The study was conducted in Iguazú department

(26�01021.7‘‘S 54�36045.6’’W), Misiones province, Argen-

tina. Misiones borders to the west with Paraguay and to the

east with Brazil, with the Paraná and Iguazú rivers as its

west and north natural borders (Fig. 1). This area belongs
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to the Paranaense Rainforest Ecoregion, the largest one of

the Atlantic Forest ecoregion complex (Cabrera 1994). The

weather is subtropical with mean minimum and maximum

temperatures of 11 8C and 32 8C, respectively. Rainfalls are

abundant all around the year with average annual values of

2000 mm (Placı́ and Di Bitetti 2005).

This study was conducted in urban, periurban, rural

and natural protected areas (Fig. 1). Puerto Iguazú city

(urban area) has a population around 40,000 people and its

main economic activity is tourism, being the hotel and

gastronomic services the main sources of employment

(Nuñez 2009). The periurban area studied includes an area

known as 2000 hectáreas (2,000 hectares, in English) which

has low human population and where subsistence farming

is the main activity, and the Mbya-Guaranı́ natural and

cultural reserve called Reserva Indı́gena Iryapú (RII). In

both urban and periurban areas, rodent samples were

carried out in gardens and yards (in and around houses,

pigpens, henhouses and orchards, when present). The

natural protected areas include the reserves Reserva Na-

cional Iguazú (RNI, 7,675 ha), Parque Provincial Puerto

Penı́nsula (PPPP, 6,900 ha) and Reserva Natural de la

Defensa del Puerto Peninsula (RNDPP; 8,800 ha), all of

which are part of the green corridor which aims to preserve

the Atlantic Forest. The rural area is composed of fields of

crops and forestations in the localities of Puerto Libertad,

Puerto Esperanza and Wanda (Fig. 1).

Trapping Methods

Rodent trapping was carried out every three months from

2017 to 2020, resulting in ten seasonal trapping sessions in

the urban (July 2017 to March 2020; total capture-ef-

fort = 4,035 trap nights), periurban (July 2017 to March

2020; total capture-effort = 7,245 trap nights) and rural

(July 2017 to March 2020; total capture-effort = 10,935

Figure 1. The Study Area in Northwest Misiones, Argentina, Included Puerto Iguazú City (1) as the urban area; the 2000 hectáreas

neighborhood (2) and Reserva Indı́gena Iryapú (2*) as the periurban area; Reserva Nacional Iguazú (3), Parque Provincial Puerto Penı́nsula

(3*) and Reserva Nacional de la Defensa del Puerto Peninsula (3**) as the natural protected areas and, the area of crops and forestations as rural

land use (4; Indicated with a gray box).
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trap nights) areas; eight trapping sessions in RNI and PPPP

(November 2017 to March 2020 total effort-cap-

ture = 7,398 trap nights) and four in RNDPP (May 2019 to

March 2020 total capture-effort = 2,040 trap nights). Small

rodents were live-trapped using Sherman live traps

(8 9 9 9 23 cm) baited with a mixture of peanut butter,

fat, and rolled oats, and cage traps (15 9 15 9 30 cm)

baited with meat and apple. Traps were active for three

consecutive nights during each session. Approximately the

same amount of Sherman and cage traps (75–90) were set

each trapping session in the urban and periurban sites,

except for the RII site where less Sherman traps were used

(50–70) and where the use of cage traps (75) was inter-

rupted in 2018. In rural areas, 300 Sherman traps and 150

cage traps were used per season. Finally, in natural pro-

tected areas only Sherman traps were used (200 per season

in RNI and PPPP, and 150 per season in RNDPP). Traps

were set in approximately the same locations in successive

trapping sessions.

Captured rodents were anaesthetized, and sex, repro-

ductive condition (active: open vagina/descended testes,

and inactive: close vagina /abdominal testes), weight, total

body length, body–tail length, foot length and ear length

were recorded. The species were identified based on

external morphology (the metrics recorded were used to

double check the identification done on the field, whenever

necessary). Individuals were tagged with a uniquely num-

bered ear tag and were released at the point of capture.

Animals were handled according to the 14,346 Argentinean

National Law of Animal Care.

Hantavirus Seroprevalence

A small sample of blood was obtained from each rodent

through a small cut on the tip of the tail. These samples

were serologically screened by IgG ELISA using the ANDV

recombinant nucleocapsid protein (Padula et al. 2000a,

2000b). IgG antibodies were detected in rodent blood di-

luted 1:200 in PBS-Tween buffer, using peroxidase-labeled

affinity-purified IgG antibodies anti Peromyscus leucopus,

and/or anti-rat conjugate for Rattus rattus, in conjunction

with the ABTS Microwell Peroxidase Substrate System and

absorbance was measured at 405 nm. Rodents showing

optical density (OD) up 0.3 were consider negatives, while

those with OD higher than 0.3 were considered positive.

We used antibody presence as an indication of infection.

Total RNA was extracted from lung samples from the

IgG-positive rodents, when available, as previously de-

scribed (Padula et al. 2000a, b). The RNA was subjected to

RT-PCR targeting a conserved region of the orthohan-

tavirus genome. Specific primers were used in order to

amplify a 952nts fragment of the S-segment (positions 22

to 974 from AF324902 Gene Bank accession number).

The amplified DNA was sequenced using BigDye

TerminatorTM v3.1 Cycle Sequencing kit and for purifica-

tion the BigDye� X-Terminator Purification kit (Applied

Biosystems, Foster City, CA, USA), according to the

manufacture’s recommendations. The nucleotide sequences

were analyzed using MEGA10 software (Kumar et al. 2018).

Multiple sequence alignment, nucleotide comparison, and

deduced amino acid sequences were performed by Mega

software.

Rodent and Environmental Variables

Variables thought to affect the dynamics of the orthohan-

tavirus/rodent system were grouped in three: rodent com-

munity variables, weather variables, and individual

variables. For community variables, we included the pro-

portion of individuals of each rodent species, the propor-

tion of males in the host population, species richness, and

diversity of the assemblage (Shannon Index). Weather

variables included mean, minimum and maximum tem-

peratures, and accumulated rainfall. These variables were

calculated for 30, 60 and 90 days prior to rodent sampling.

Weather data were provided by the National Meteorolog-

ical Service (Servicio Meteorológico Nacional 2020) based

on data taken at the meteorological station located 12 km

away from Puerto Iguazú. As individual variables we used

body weight, body length, sex and reproductive condition,

and body condition (calculated as following: body condi-

tion =
ffiffiffiffiffiffiffiffiffiffi

body3
p

weight/body length). Trap success was ex-

pressed as number of captures per 100 trap nights.

Statistical Analyses

We studied which factors modulate orthohantavirus

infection using three different types of models, each with a

different set of explanatory variables: weather variables,

rodent community variables, and individual variables.

Reproductive activity was not included in the analyses gi-

ven that most individuals had the same status. Seropreva-

lence ((number of individuals with orthohantavirus

antibodies/number of individuals tested)*100) was used as

response variable in the weather and rodent community

models, and the presence/absence of orthohantavirus
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antibodies was used as response variable in the individual

models. The analyses were conducted using generalized

mixed models with forward stepping selection (Bates et al.

2014; R-Core-Team. 2020). The weather and community

models were constructed using binomial family distribu-

tions of errors and logit link functions, and R2 was calcu-

lated to estimate their degree of fit (Barton 2020).The

individual models were built using a Bernoulli distribution

with cloglog link functions (Zuur et al. 2007), and Kappa

Cohen�s concordance estimators were calculated to assess

the accuracy of the selected models (Landis and Koch 1977)

using the package PresenceAbsence (Freeman and Moisen

2008). Multiple correlation tests and variance inflation

factor (VIF; Burnham and Anderson 2002) were performed

among all the explanatory variables in order to avoid

redundancy in the models. Model selection was based on

Akaike’s information criterion corrected for small sample

size (AICc) and variables with parameters that differed

from zero were considered candidate models. All models

with DAICc > 2 with respect to the null model, and a

DAICc < 2 with respect to the best model, with a weight

higher than 0.5 were selected as candidate models (Zuur

et al. 2007).

RESULTS

During the study period, we captured and sampled 719

individuals (on average, 2.33 rodents per 100 trap nights)

from the species Akodon montensis (551), Rattus rattus (63),

Mus musculus (49), Calomys tener (16), Thaptomys nigrita

(15), Oligoryzomys nigripes (12), Euryoryzomys russatus

(10), Oligoryzomys flavescens (1), Brucepattersonius sp. (1)

and Juliomys pictipes (1; Fig. 2).

Akodon montensis was the dominant species in peri-

urban, rural and natural protected areas, and was not

captured in urban areas (Fig. 2). The highest trap success of

A. montensis in natural protected areas was in RNI with

7.02 rodents per 100 trap nights, while in periurban areas it

was in RII with 2.75.

We detected orthohantavirus antibodies in 14 indi-

viduals of the species Akodon montensis (seroprevalence:

3.3%), 12 of which were captured in the natural reserve

RNI (seroprevalence: 3.23%, n = 371; Table 1), and two in

the periurban area RII (seroprevalence: 3.63%, n = 55;

Table 2). We did not find antibody-positive individuals in

any other site. We did not detect orthohantavirus anti-

bodies in any other captured species.

Despite the restrictions to remove animals in protected

areas, we were able to euthanize and collect six individuals

of A. montensis captured at RNI, two of which were IgG

positive to orthohantavirus. Viral genome amplification

was successful from one of them (rodent No. 391). The

fragment obtained from viral S-segment (72 to 897 nts

from AF324902 Gene Bank accession number) was sub-

jected to nucleotide sequencing. The obtained sequence was

compared with previously published genomes from

orthohantaviruses by BLAST algorithm. The highest nu-

cleotide identity (92.9%) was found with an orthohan-

tavirus previously identified from an Akodon cursor in

Paraguay (GeneBank Acc. Num. EU373732; Padula et al.

2007), followed by other viruses found in Brazil (Table 3).

Temporal variations in orthohantavirus seroprevalence

in RNI were positively associated with A. montensis trap

success (AICc: 35.85, wi: 0.52, AICc_null model: 39; R2: 0.87,

Table 4, Fig. 3). No significant association between sero-

prevalence and weather variables, community richness and

diversity were detected.

The presence of orthohantavirus antibodies at indi-

vidual level was explained by sex and body weight (AICc:

90.29, wi: 0.77, AICcnull: 104.28; Table 3). Body condition

did not significantly explain the occurrence of infection.

The reproduction condition was not evaluated because al-

most all individuals were sexually actives. This model

showed almost perfect values of classification and speci-

ficity indexes, but a discrete Kappa index (Kappa = 0.2784;

PCC = 0.94; Specificity = 0.967; Sensitivity = 0.333). Big

individuals and males had the highest probability of

infection (higher than smaller individuals and females).

The mean weight of infected males was 44.18 g (SE = 2.12)

while that of non-infected males was 38.61 g (SE = 0.72).

The only infected female weighted 27.50 g, whereas the

mean weight of all females was 28.74 g (SE = 0.76).

DISCUSSION

Akodon-borne orthohantaviruses were previously described

in Argentina, Brazil and Paraguay (de Oliveira et al. 2014;

Oliveira et al. 2014). Akodon azarae is the known reservoir

host of Pergamino virus, a non-pathogenic virus prevalent

in central-east Argentina (Levis et al. 1998; Vadell et al.

2011). In 2007, a distinct virus was identified in an A. cursor

from the natural reserve Limoy, eastern Paraguay, near the

border with Misiones (Padula et al. 2007). In the present

study, we reported for the first time evidence of ortho-
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hantavirus infection (antibodies and viral genome) in

Akodon montensis populations in Misiones, Argentina, a

region for which there are no previous reports of Akodon-

borne orthohantavirus. The seroprevalence for this species

was 3.3%. Further studies are required to obtain complete

sequences to identify this strain.

A. montensis has a wide distribution and high abun-

dance throughout most of the Atlantic forest, including its

southernmost remnants in Misiones province (Lanzone

et al. 2018). This is probably related to certain tolerance to

anthropogenic disturbance which allows the species to in-

habit not only forests but also cultivated lands and grass-

lands (de Oliveira et al. 2014; Oliveira et al. 2014). We

detected A. montensis in periurban, rural and natural pro-

tected areas, while we did not detect the species in urban

areas. Despite the fact A. montensis was present in the three

Table 1. Number of captures, trap success, percentage of males, richness, diversity index, and orthohantavirus seroprevalence (number

of seropositive individuals is shown in brackets) of Akodon montensis (A.m.) in the natural reserve Reserva Nacional Iguazú (RNI),

Misiones, Argentina from 2018 to 2020.

Year Season No. A.m. TS A.m. Males % Richness Shannon index Seroprevalence

Male Female Total

2018 Summer 1 0.17 100 1 0 0 0 0

Autumn 18 3.05 55.60 1 0 10.00 (1) 0 5.55 (1)

Winter 26 4.95 62.90 3 0.26 0 0 0

Spring 47 7.83 55.30 4 0.13 3.85 (1) 0 2.13 (1)

2019 Autumn 64 10.72 54.40 2 0.02 9.68 (3) 0 4.68 (3)

Winter 95 16.33 65.30 4 0.23 9.37 (6) 2.94 (1) 7.37 (7)

Spring 69 11.50 50.70 3 0.04 0 0 0

2020 Summer 54 9.00 53.70 3 0.37 0 0 0

Figure 2. Trap success (No. captures per 100 trap nights) by rodent species in each land use in Iguazú department, Argentina, 2017–2020.

Oligoryzomys flavescens, Brucepattersonius sp. and Juliomys pictipes were not included because too few animals were captured.

E. F. Burgos et al.



areas types specified above, we found orthohantavirus-in-

fected individuals only in one of the three natural protected

and one of two periurban areas (patchy distribution of

hantavirus). This particularity has also been observed in

several other pathogen-host systems, and is considered a

relevant factor in determining the risk of disease trans-

Table 2. Number of captures, trap success, percentage of males, richness, diversity index, and seroprevalence (number of seropositive

individuals is shown in brackets) of Akodon montensis (A.m.) in periurban area Reserva Indı́gena Iryapú (RII), Misiones, Argentina, from

2018 to 2020.

Year Season No. A.m. TS A.m. Male % Richness Shannon index Seroprevalence

Male Female Total

2017 Spring 0 0 0 1 0 0 0 0

2018 Summer 0 0 0 1 0 0 0 0

Autumn 9 3.85 55.55 2 0.65 20.00(1) 0 11.11(1)

Winter 10 4.44 75.00 2 0.45 0 0 0

Spring 5 2.22 60.00 1 0 33.33(1) 0 20.00(1)

2019 Autumn 4 1.77 25.00 2 0.68 0 0 0

Winter 15 10.00 75.00 2 0.36 0 0 0

Spring 7 4.67 57.10 1 0 0 0 0

2020 Summer 1 0.51 100 1 0 0 0 0

Table 3. Percentage nucleotide sequence identity between rodent No. 391 and the more closely related sequences published in

the National Center for Biotechnology Information database. Nucleotide sequence identities based on a fragment of 905 bp

amplified from the vial S-segment. Comparison was performed by BLAST program.

Virus Host species Country Year Accession number Percentage of identities

Hantavirus AC210PY A. cursor Paraguay 2007 EU373732 92.9

Hantavirus Strain IP16 A. montensis Paraguay 2006 DQ345764 92.9

Ape Aime-Itapúa A. montensis Paraguay 2009 GU205340 92.5

Jaborá A. montensis Paraguay 2014 MG575411 91.3

Table 4. Variation in orthohantavirus seroprevalence and antibody presence in Akodon montensis (A.m.) as a function of community

and individuals features in the natural reserve Reserva Nacional Iguazú (RNI), Misiones, Argentina. Estimates, standard errors and 95%

confidence intervals (CI) are shown.

Estimate Standard error CI

Community

Intercept - 5.84 1.17 - 7.98; - 4.09

A.m. trap success 0.21 0.09 0.07; 0.36

Individual features

Intercept - 8.08 1.79 - 11.85; - 5.68

Weight 0.08 0.02 0.04; 0.12

Sex male 2.33 1.27 0.64; 5.06
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mission (Abbott et al. 1999; Chen et al. 2020). The reason

why there are infectious rodents in some but not all sites

could be related to a threshold population density below

which the virus is prone to experience local extinctions

(Tersago et al. 2011; Luis et al. 2015; Maroli et al. 2018).

The association between the proportion of infected indi-

viduals and A. montensis�s abundance in RNI supports this

idea. Orthohantavirus circulation in the numerically

dominant species of a rodent community has been ob-

served in this research and in other orthohantavirus-rodent

systems (Vadell et al. 2011; de Oliveira et al. 2014; Oliveira

et al. 2014; Maroli et al. 2018) and may be a quite common

characteristic of the ecology of these viruses. Also, low

abundance of the reservoir may decrease the chance of

detecting infected individuals, resulting in a lack of detec-

tion of the virus when it is in fact present.

Orthohantavirus infection in A. montensis was most

frequent in adult males in agreement with other studies on

orthohantavirus-rodent systems in Argentina, Brazil,

Paraguay and United States (Douglass et al. 2001; Owen

et al. 2010; Polop et al. 2010; Vadell et al. 2011; de Oliveira

et al. 2014; Oliveira et al. 2014). Adult individuals may be

mainly responsible for the largest contacts in the popula-

tion, and thus the main intra-population transmitters of

the virus (Clay et al. 2009; Dearing et al. 2015). In agree-

ment with other studies in central Argentina, we did not

observed any relationship between orthohantavirus infec-

tion in A. montensis and body condition (Mills et al. 2007;

Vadell et al. 2011) suggesting that infected rodents have no

changes in their health conditions (Maroli et al. 2020).

However, due to the negative effect produced by another

hantavirus, Sin Nombre virus on Peromyscus maniculatus,

with a 13.4% decrease on survival of infected males com-

pared to uninfected mice (Luis et al. 2012), we have to be

cautious, and therefore, we recommend more studies to

better understand the effects of hantavirus infection on

rodent health.

We did not observe association between orthohan-

tavirus infection and richness or diversity of the rodent

community in the natural protected area RNI. Both dilu-

tion and amplification effects were proposed to explain the

transmission of orthohantavirus in rodents communities

by several authors (as, Dizney and Ruedas 2009; Dearing

et al. 2015)), but evidence supporting these effects seem

insufficient (Salkeld et al. 2013; Vadell et al. 2020). In fact, a

meta-analysis examining the dilution effect in orthohan-

tavirus/rodent systems in the Americas found no clear

support for this effect, suggesting instead that it is the

abundance and the relative proportion of reservoir indi-

viduals in the community which have an effect on ortho-

hantavirus infection (Vadell et al. 2020).

Weather conditions have long been proposed to affect

infection and transmission of orthohantaviruses in a variety

of ways (Mills et al. 1999; Owen et al. 2010; Maroli et al.

2018). For example, some authors proposed that low

temperatures and high humidity could increase survival

outside the host (Kallio et al. 2006), others observed a

positive association between seroprevalence and rainfall

(Owen et al. 2010), while other authors proposed that

weather conditions during winter may affect body condi-

tion of the hosts, making them more susceptible to infec-

tion (de Oliveira et al. 2014; Oliveira et al. 2014). However,

our results do not support this idea because no significant

associations between infection and body condition or

weather variables were detected. However, as above said,

further long-term studies are necessary to confirm this

hypothesis.

In this research we captured two other known HPS

rodent host species of Argentina, O. nigripes and O. fla-

vescens, but we did not detect orthohantavirus antibodies in

these species. The lack of detection of seropositive indi-

viduals in these species could be due to the low number of

individuals captured (particularly in the case of O. fla-

vescens, in which only one individual was captured), and

not necessarily to the absence of infected individuals, so

additional studies are recommended. We also captured R.

Figure 3. Orthohantavirus seroprevalence predicted values as a

function of Akodon montensis trap success in the natural protected

area Reserva Nacional Iguazú, Misiones, Argentina.
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rattus, host of Seoul virus, one of the etiologic agents of

HFRS, mainly in Asia, though reports of infection in other

continents have been increasing (Clement et al. 2019; Knust

et al. 2020). Though up to date no HFRS case has been

confirmed in South America, infected Norway rats (Rattus

norvegicus) were detected in Argentina and Brazil (Padula

et al. 2010; Mull et al. 2020; Pan American Health Orga-

nization 2020), and evidence of past infection was found in

humans in Brazil (Iversson et al. 1994). Therefore, vigilance

of urban rodent populations is important because they are

involved in the transmission of several zoonoses.

Despite the fact A. montensis has not been associated

with HPS cases up to now, high abundance and widespread

distribution throughout southern Brazil, eastern Paraguay

and Northeast Argentina, together with its generalist habits

and relatively high tolerance to anthropogenic disturbance

(de Oliveira et al. 2014; Oliveira et al. 2014; Lanzone et al.

2018) suggest a potential risk to humans through viral

mutation (becoming a pathogenic strain) or host switching

(A. montensis becoming host of a pathogenic strain).
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