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The cardiac Na+/H+ exchanger (NHE1) is a membrane glycoprotein fundamental for

proper cell functioning due its multiple housekeeping tasks, including regulation of

intracellular pH, Na+ concentration, and cell volume. In the heart, hyperactivation of

NHE1 has been linked to the development of different pathologies. Several studies

in animal models that reproduce the deleterious effects of ischemia/reperfusion injury

or cardiac hypertrophy have conclusively demonstrated that NHE1 inhibition provides

cardioprotection. Unfortunately, NHE1 inhibitors failed to reproduce these effects in the

clinical arena. The reasons for those discrepancies are not apparent yet. However, a

reasonable clue to consider would be that drugs that completely abolish the exchanger

activity, including that its essential housekeeping function may not be the best therapeutic

approach. Therefore, interventions tending to specifically reduce its hyperactive state

without affecting its basal activity emerge as a novel potential gold standard. In this

regard, a promising goal seems to be the modulation of the phosphorylation state of the

cytosolic tail of the exchanger. Recent own experiments demonstrated that Sildenafil,

a phosphodiesterase 5A inhibitor drug that has been widely used for the treatment of

erectile dysfunction is able to decrease NHE1 phosphorylation, and hence reduce its

hyperactivity. In connection, growing evidence demonstrates cardioprotective properties

of Sildenafil against different cardiac pathologies, with the distinctive characteristic of

directly affecting cardiac tissue without altering blood pressure. This mini-review was

aimed to focus on the regulation of NHE1 activity by Sildenafil. For this purpose,

experimental data reporting Sildenafil effects in different animal models of heart disease

will be discussed.
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INTRODUCTION

During the last 40 years, the structure, function, and regulation of the sodium/hydrogen exchanger
(NHE) have been deeply studied (1–3). This superfamily of transporter proteins comprises 10
isoforms with different cell localization and physiological roles (4, 5). All isoforms share the
common fundamental function of protecting cells from intracellular acidification, by means of
an electroneutral elimination of one intracellular H+ in exchange for one extracellular Na+, and
driven by the transmembrane electrochemical Na+ gradient (3). This mini review focuses on the
ubiquitous isoform 1 (NHE1) of this protein family also known as the “cardiac isoform” and its
regulation by the cyclic guanosine monophosphate/protein kinase G (cGMP/PKG) signaling route,
triggered by inhibition of the phosphodiesterase 5A (PDE5A) by Sildenafil.
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THE CARDIAC NA+/H+ EXCHANGER
“NHE1”

The NHE1 was the first cloned isoform, the most characterized
(2, 6, 7), and the main expressed variant found in plasma
membrane of mammalian cardiac cells (4). The NHE1 is a
dimeric transmembrane protein, and as other NHE isoforms,
intracellular H+ extrusion through the NHE1 contributes
to maintain intracellular pH (pHi) of cardiac cells in a
healthy narrow range, fulfilling its crucial basal housekeeping
function (3). In fact, around normal pHi values of ∼7.2,
the exchanger activity is low but enough to compensate
for basal metabolic H+ production. However, under certain
conditions, either physiological or pathological, when pHi

falls far below the normal range, the NHE1, as well as the
sodium-bicarbonate cotransporter, becomemore active being the
NHE1 the dominant alkalizing mechanism (8). Interestingly, the
recent demonstration that NHE1 is the isoform expressed in
mitochondria (9) suggests a potential role of the exchanger in
modulating both mitochondrial Na+ and H+ gradients (10).

An exacerbated NHE1 activity has been linked to pathological
cardiac processes (6). Excessive H+ efflux through NHE1 leads to
a Na+-dependent Ca2+ overload with the consequent activation
of deleterious routes, including the calcium/calmodulin
dependent protein kinase-histone deacetylase signaling pathway
(11), and a mitochondrial permeability transition pore (MPTP)
opening (9) followed by the release of reactive oxygen species
(ROS) and apoptosis (6, 12). Hyperactivity of NHE1 has been
found in several diseased states, such as ischemia/reperfusion
injury (6) and postischemic cardiac remodeling (6), as well
as in pressure overload (13, 14) and hypertensive (15) cardiac
hypertrophy. Reinforcing all these evidences, preclinical studies
have demonstrated that blunting NHE1 activity effectively
provided cardioprotection in different models of heart failure
(16–19). In addition, NHE1 blockade during reperfusion of
hearts exposed to an ischemic insult promoted preservation
of cardiac function as well as minimization of necrosis and/or
apoptosis (20, 21). The latter case is rather paradoxical. NHE1
activation after pHi fall during ischemia is necessary to preserve
cell integrity. However, extracellular pH lowering due to H+

extrusion under reduced blood flow, together with energetic
imbalance due to deficient O2 supply, rapidly leads to exchanger
inhibition. During reperfusion, an immediate washout of
extracellular H+ suddenly restores NHE1 function whose
hyperactivity leads to Na+ and Ca2+ overload responsible for the
deleterious but distinctive effects of this phase (22). The recovery
of pHi and the subsequent Ca+2 overload results in an increased
ROS release due to the MPTP opening, uncontrolled myofibrilar
hypercontraction, calpain activation-mediated proteolysis, and
finally apoptosis (23).

The promising results of NHE1 inhibition in animal models
prompted exploration of the clinical use of NHE1 inhibitors
such as cariporide and eniporide in patients. Unfortunately, the
results were far from expected, demonstrating lack or insufficient
cardioprotection (24, 25) or even worse, severe side effects (26).
The reasons for these unexpected discrepancies are not apparent
yet. However, the total abolition of the exchanger activity,
including both its indispensable function and the pathological

hyperactivation, could be a possible explanation. Despite these
unforeseen results, inhibition of NHE1 is still considered the
most-effective potential therapeutic approach for preventing
pathological remodeling of the myocardium irrespective of its
origin (27, 28). Thus, a novel scenario of investigation would be
to find interventions oriented to specifically reduce the NHE1
hyperactive state. In this regard, a promising approach seems to
be the modulation of its phosphorylation level. It is necessary
to be reminded that phosphorylation of the cytosolic tail of
the NHE1 may either enhance (residues Ser703, Ser770, Ser771)
(12, 29) or reduce (Ser 648) (30) exchanger activity. Different
kinases have been linked to the phosphorylation/regulation of
the NHE1. Among them, the mitogen-activated protein kinase
(MAPK) route or the Ras-Raf-MEK-ERK cascade (31) activation
in response to different hormones, growth factors, mechanical
muscle stretch, or sustained acidosis are themost prominent ones
(12, 31–37).

PDE5A AND CARDIAC PATHOLOGIES:
INTRODUCING THE PDE5A INHIBITOR
SILDENAFIL

Inhibitors of the cGMP-catabolizing enzyme PDE5A are known
by their important vasodilatory properties. Sildenafil, among
them, was developed as a promising drug against angina pectoris
(38) but subsequently safely employed for the treatment of
erectile dysfunction (39), pulmonary hypertension, and high-
altitude pulmonary edema (40, 41). The main action of Sildenafil
was originally assigned to vasodilation and attributed to the
increase in the endothelial nitric oxide (NO)-cGMP pathway
(42, 43), even in pulmonary hypertension (40). Basal PDE5A
expression in cardiac tissue was initially considered insufficient
to be detected (44), but further evidence demonstrated that
PDE5A is a ubiquitous enzyme (45) and that themyocardium has
baseline PDE5A activity (46). Moreover, recent studies showed
that upregulation of cardiac PDE5A expression was tightly
associated to failing (47, 48) and hypertrophic (49) hearts, to
ischemic left and right ventricles (47), and also to the lethal
congenital disease known as failing single ventricle (50). In
addition, an increased PDE5A expression has been found in
different cardiomyopathies that lead to heart failure, such as
Chagas (51), or burn-induced (52) cardiac disease. For the
specific objective of our current review, PDE5A overexpression
has been linked to oxidative stress and the development
of pressure overload-triggered myocardial hypertrophy (53,
54), conditions that clearly resemble NHE1 hyperactivation
(6). Taken together, the experimental evidence encourages
considering that PDE5A inhibition may conceivably be a suitable
target to treat cardiac pathologies.

PDE5A INHIBITION BY SILDENAFIL:
EFFECT ON MYOCARDIAL NHE1

General Mechanism
The pharmacological target of Sildenafil is PDE5A, with high
isozyme selectivity (43). The three PDE5A splicing variants
showed equal activity in terms of cGMP-hydrolytic breakdown,
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as well as similar sensitivity to the inhibition by Sildenafil
(45). Due to the structural similarity with cGMP, Sildenafil
competitively interacts and inhibits PDE5A enzyme, with the
consequent increase in cGMP levels (43). This second messenger
binds to PKG, producing an allosteric structural change in
the kinase that leads to thiol oxidation, inducing a disulfide
homodimer, hence activating the kinase (55). A well-known
consequence of PDE5A inhibition is the activation of Ca+2-
dependent K+ channels (BKCa) (43). However, novel actions of
Sildenafil will be discussed below.

Effects of Acute Sildenafil Administration
on NHE1 Activity in the Myocardium
Sildenafil was found to trigger a direct NHE1 inhibitory
action in rat (56, 57) and cat (58) myocardium following
sustained intracellular acidosis (Figure 1), and also in the
setting of ischemia/reperfusion injury in isolated rat hearts
(60). It has been demonstrated that the cGMP/PKG route
also regulates different NHE isoforms in different tissues (61,
62). In our hands, inhibition of the NHE1 hyperactivity by
acute Sildenafil intervention was due to phosphatase-mediated
Ser703 dephosphorylation (57, 58, 60). Importantly, acute NHE1
inhibition by Sildenafil did not affect its basal phosphorylation or
expression, and hence preserved its critical homeostatic function
(56, 57). This posttranslational regulation of the exchanger was
found only after sustained acidosis and was canceled by PKG
inhibitors (56). In apparent contradiction to our results, Richards
et al. (63) reported two different routes for cGMP-triggered
NHE1 regulation according to NO concentration. Using an
aminoacidic sequence that reproduced the C-terminal of the
NHE1, they showed that high NO concentration triggers PKA-
mediated Ser648 phosphorylation, while low NO concentration
leads to PKG-mediated Ser703 phosphorylation (63). Although
speculative, and thinking in terms of dimeric kinases-mediated
phosphorylation (such as PKG and PKA actions), the fact that
the authors used part of the whole NHE1 molecule composes a
completely different experimental scenario that would condition
any possibility of comparison.

We have also demonstrated that the inhibitory effect of
Sildenafil on the NHE1 requires activation of the p38MAPK
(Figure 1), since blockade of this kinase canceled the inhibitory
effect of Sildenafil on the exchanger (59). The exact sequence
of events triggered by Sildenafil seems to be as follows:
cGMP/PKG activation increase after PDE5A inhibition;
p38MAPK phosphorylation/activation by PKG (64); p38MAPK-
triggered PP2A assembling (65) and migration to sarcolemmal
membrane (66); NHE1 dephosphorylation at Ser703 by PP2A
(67); inhibition of NHE1 hyperactivity (57). See Figure 2

for details.
Another controversial subject is the possible role of acute

Sildenafil on ROS. In this regard, it has been shown that this
drug did not reduce ROS-induced lipid peroxidation in hearts
subjected to regional ischemia/reperfusion (60) but reduced
mitochondrial H2O2 production under ischemia (68, 69). Despite
possible differences in the sensitivity of experimental methods,
ROS-sensitive kinases remained enhanced even after short

FIGURE 1 | Inhibition of NHE1 activity by Sildenafil. Original traces (thin lines)

and its regression approximations (thick lines) of the recovery of pHi after

10min of sustained acidosis in Control (absence of Sildenafil); 1mM Sildenafil

(SIL); 1mM Sildenafil plus 10µM of the p38MAPK inhibitor SB202190

(SIL+SB); and Sildenafil plus 1 nM of Okadaic Acid (SIL+OKA) used to

selectively inhibit PP2A. Sildenafil blunted pHi recovery after the acidic

challenge, an effect that was reverted either by p38MAPK or PP2A inhibition.

Adapted from Díaz et al. (59) with permission from Elsevier.

incubation with Sildenafil, strategy that was enough to effectively
inhibit the NHE1 (60). Longer time periods of Sildenafil
incubation or preischemic application of the drug conducted to a
marked reduction of ROS (68–70).

Cardiac Intracellular Response to Chronic
Sildenafil Administration
Different studies were aimed to explain the subcellular basis of
the beneficial actions of chronic PDE5A inhibition by Sildenafil
in the myocardium. Among them, it is interesting to recall
the described inhibitory effect on voltage-operated L-type Ca+2

channels (71), and on the transient receptor potential channels
(TRPC) (72), with the consequent decrease in intracellular Ca2+,
therefore eluding the calcium/calmodulin-NFAT pro-apoptotic
pathway (73). The results obtained in our own laboratory add a
new piece of knowledge about Sildenafil anti-hypertrophic and
anti-apoptotic effect, since its previously unknown inhibitory
effect on NHE1 hyperactivity provides an additional clue to
understand how this kind of drug can prevent calcium overload.
Regarding the modulation of NHE1 activity as a potential
therapeutic target, it was reported that complete and chronic
blockade of the exchanger triggers protein upregulation to escape
from inhibition (74). Interestingly, chronic treatment of infarcted
hearts with Sildenafil did not follow this rule by decreasing NHE1
expression (56).

The possibility that chronic effects of Sildenafil could also
involve mitochondrial actions should be considered. Chronic
Sildenafil treatment improved respiratory rate and reduced ROS
production (51). These effects were attributed to restoration of
mitochondrial DNA-encoded gene expression (51), activation
of mitochondrial BKCa channels (68), prevention of MPTP
opening (75), and/or maintenance of mitochondrial membrane
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FIGURE 2 | Putative mechanism of cardiac actions of Sildenafil following acute or chronic treatment. Left panel: Acute Sildenafil effects comprise the classical action

on BKCa channels, and the novel cGMP/PKG mediated NHE1 dephosphorylation and inactivation [Adapted from Díaz et al. (59) with permission from Elsevier]

involving a sequential activation of p38MAPK and PP2A. Right panel: Chronic Sildenafil effects includes inhibition of TRPC and L-type Ca+2 channels, and prevention

of NHE1 hyperactivation, all together leading to a decrease in the Ca+2 overload-triggered calcineurin/NFAT deleterious pathway. Furthermore, mitochondrial actions

of Sildenafil involving mBKCa channel opening, mNHE1 inhibition, and membrane potential maintenance reduce the probability of MPTP opening and ROS release,

contributing to cardioprotection.

potential (76). In connection, it is important to be reminded
that a decrease in mitochondrial NHE1 expression/activity
preserves an acidic environment around mitochondria,
therefore diminishing Ca+2-induced mitochondrial swelling
(9). In addition, it was shown that inhibition of MPTP
opening leads to a decrease in ROS production after ischemia
(77). Considering these results as a whole, the question as
to whether Sildenafil could regulate mitochondrial NHE1
certainly arises. In this regard, recent experiments in the
hypertrophied myocardium of SHR suggested that a decreased
ROS production after chronic Sildenafil treatment may
conceivably result from inhibition of mitochondrial NHE1
through a reduction in its phosphorylation state (78).
Figure 2 summarizes putative signaling pathways triggered
by Sildenafil.

Cardiac Pharmacodynamics of Sildenafil
As it was mentioned in a previous section, since the
approval and commercialization of Sildenafil more than
two decades ago (79), the pharmacodynamics of this drug
has been extended to different pathological therapeutic
targets. Actually, it has been studied for the treatment of
different types of cancers (80), Alzheimer disease (81),
vascular dementia (82), and also recently proposed to treat
COVID-19 patients (83). Regarding cardiac pathologies,
Sildenafil showed the ability to prevent and/or reverse
cardiac remodeling induced by acute myocardial infarction
(56), chronic mitral regurgitation (84), or pressure overload
(85, 86). Additional benefits of Sildenafil were attenuation
of sympathetic hyperinnervation (87) and promotion of

an increase in the QT interval (88), therefore reducing the
incidence of ischemia-induced arrhythmia. Concerning to
other causes of cardiac morbidity, Sildenafil reverted (89),
or prevented (52, 85, 90, 91), cardiac fibrosis development
regardless of its origin. Furthermore, improvement of heart
failure by PDE5 inhibition was shown to involve attenuation
of chronotropic response to dobutamin and a T-tubule
network restoration (92). Importantly, different studies
under diverse experimental conditions demonstrated that the
beneficial cardiac effects of Sildenafil are independent of blood
pressure (78, 84, 86).

CONCLUDING REMARKS

We have briefly reviewed the role of Sildenafil on NHE1
regulation and its possible pathophysiological relevance. Classical
Sildenafil targets were presented, but the main focus of this
revision was centered on the novel inhibitory action of this drug
on the NHE1. We were particularly interested in stressing the
potential benefits of specifically targeting NHE1 hyperactivity,
avoiding its complete blockade, which suggests that Sildenafil
treatment would be a better therapeutic approach than traditional
NHE1 blockers in the field of cardiology.

Finally, considering that Sildenafil has been safely used during
more than two decades (39) and that recent results in heart
failure patients are certainly promising (93), we suggest that
Sildenafil treatment would represent an appropriate opportunity
for immediately access to a less expensive and more secure
novel therapeutic alternative to treat severe cardiac pathologies
characterized by exacerbated NHE1 activity.
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