Molecular and physiological analysis of indole-3-acetic acid degradation in *Bradyrhizobium japonicum* E109

Daniela Torres, Elías Mongiardini, Florencia Donadío, Raúl Donoso, Gonzalo Recabarren-Gajardo, José Gualpa, Stijn Spaepen, Roberto Defez, Gastón Lopez, Carmen Bianco, Fabricio Cassán

PII: S0923-2508(21)00027-9

DOI: https://doi.org/10.1016/j.resmic.2021.103814

Reference: RESMIC 103814

To appear in: Research in Microbiology

Received Date: 27 August 2020

Revised Date: 20 January 2021

Accepted Date: 26 January 2021

Please cite this article as: D. Torres, E. Mongiardini, F. Donadío, R. Donoso, G. Recabarren-Gajardo, J. Gualpa, S. Spaepen, R. Defez, G. Lopez, C. Bianco, F. Cassán, Molecular and physiological analysis of indole-3-acetic acid degradation in *Bradyrhizobium japonicum* E109, *Research in Microbiologoy*, https://doi.org/10.1016/j.resmic.2021.103814.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

1	Molecular and physiological analysis of indole-3-acetic acid degradation in
2	Bradyrhizobium japonicum E109
3	
4	Daniela Torres ^a , Elías Mongiardini ^b , Florencia Donadío ^a , Raúl Donoso ^{c,d} , Gonzalo
5	Recabarren-Gajardo ^{e,f} , José Gualpa ^a , Stijn Spaepen ^g , Roberto Defez ^h , Gastón
6	Lopez ^{a,1} , Carmen Bianco ^{h,1} , Fabricio Cassán ^{a,1}
7	
8	^a Instituto de Investigaciones Agrobiotecnológicas (INIAB). Universidad Nacional de Río
9	Cuarto, Córdoba Argentina
10	^b Laboratorio de Interacciones Rizobios y Soja. Instituto de Biotecnología y Biología
11	Molecular. Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata,
12	Argentina
13	^c Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi),
14	Universidad Tecnológica Metropolitana, Santiago, Chile
15	^d Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
16	^e Bioactive Heterocycles Synthesis Laboratory, BHSL, Departamento de Farmacia,
17	Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago,
18	Chile
19	^f Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile,
20	Santiago, Chile
21	^g Katholieke Universiteit Leuven. Leuven, Belgium.
22	^h Institute of Biosciences and Bioresources, National Research Council of Italy, UOS
23	Naples, Italy
24	
25	*Correspondence: fcassan@exa.unrc.edu.ar; Tel.: +54-9-358-4676-532

26 ¹ Cassán Fabricio, Carmen Bianco and López Gastón have contributed equally to this work.

E-mail addresses: <u>dtorres@exa.unrc.edu.ar</u> (Daniela Torres), Elías Mongiardini
(mongiardini@biol.unlp.edu.ar), <u>fdonadio@exa.unrc.edu.ar</u> (Florencia Donadío),
<u>radonoso@uai.cl</u> (Raúl Donoso), <u>grecabarren@uc.cl</u> (Gonzalo Recabarren-Gajardo),
<u>jgualpa@exa.unrc.edu.ar</u> (Jose Gualpa), <u>glopez@exa.unrc.edu.ar</u> (Gastón Lopez),
<u>roberto.defez@ibbr.cnr.it</u> (Roberto Defez), <u>carmen.bianco@ibbr.cnr.it</u> (Carmen Bianco),
<u>fcassan@exa.unrc.edu.ar</u> (Fabricio Cassán).

33

34

35 Abstract

36 Bradyrhizobium japonicum E109 is a bacterium widely used for inoculants production in 37 Argentina. It is known for its ability to produce several phytohormones and degrade 38 indole-3-acetic acid (IAA). The genome sequence of *B. japonicum* E109 was recently 39 analyzed and it showed the presence of genes related to the synthesis of IAA by 40 indole-3-acetonitrile, indole-3-acetamide and tryptamine pathways. Nevertheless, B. 41 *japonicum* E109 is not able to produce IAA and instead has the ability to degrade this 42 hormone under saprophytic culture conditions. This work aimed to study the molecular 43 and physiological features of IAA degradation and identify the genes responsible of this 44 activity. In B. japonicum E109 we identified two sequences coding for a putative 45 3-phenylpropionate dioxygenase (subunits α and β) responsible for the IAA degradation that were homologous to the canonical cluster of *iac*C and *iac*D of *P. putida* 1290. These 46 47 genes form a separate cluster together with three additional genes with unknown 48 functions. The degradation activity was found to be constitutively expressed in B. 49 japonicum E109. As products of IAA degradation, we identified two compounds, 50 3-indoleacetic acid 2,3-oxide and 2-(2-hydroperoxy-3-hydroxyindolin-3-yl) acetic acid. 51 Our report proposes, for the first time, a model for IAA degradation in Bradyrhizobium.

2

52

53 **Keywords:** *B. japonicum*; indole-3-acetic acid; IAA; 3-phenylpropionate dioxygenase;

- 54 3-indoleacetic acid 2;3-Oxide; 2-(2-hydroperoxy-3-hydroxyindolin-3-yl) acetic acid
- 55

56 **1. Introduction**

57 The auxins are a group of phytohormones characterized by their ability to induce 58 plant growth and to reproduce the physiological effects of the naturally occurring indole-3-acetic acid (IAA). The IAA metabolism in higher plants, fungi and bacteria 59 60 comprises several mechanisms, such as the biosynthesis, degradation, catabolism (i.e. 61 oxidation and assimilation), conjugation and hydrolysis of auxin conjugates [1], which 62 globally regulate the IAA levels in these biological systems. Bradyrhizobium is an 63 alphaproteobacterium with the ability to produce IAA and this capacity has been 64 demonstrated in vitro and in planta after soybean inoculation [2-4]. Thimann [5] 65 proposed that auxins play an important role in the ontogeny of the root nodules during the 66 rhizobia-legume symbiosis, as many studies have indicated that a change in the 67 concentration of this phytohormone is a pre-requisite for nodule organogenesis [6]. 68 Nielsen et al. [7] were the first to report that *B. diazoefficiens* USDA110 (formerly *B.* 69 *japonicum* USDA110) has the capacity to degrade indole-3-acetic acid (IAA) and Egebo 70 et al. [8] suggested that this reaction might be dependent on oxygen availability in the 71 culture medium. Jensen et al. [9] isolated metabolites of IAA degradation in B. 72 diazoefficiens USDA110 and the identified products suggested a new metabolic pathway 73 that included anthranilic acid. However, they could not confirm this pathway or identify 74 the gene(s) or enzyme(s) responsible for such capacity.

Two sets of canonical genes have been characterized for IAA catabolism in bacteria:
i) the *iac* (indole 3-acetic acid catabolism) gene cluster identified in *P. putida* 1290 [10]

77 and others bacteria, which codes for an aerobic pathway through which IAA is 78 transformed into catechol; the iaa (indole 3-acetic acid degradation) gene cluster 79 identified in Aromatoleum aromaticum EbN1 [11], which underlies the anaerobic 80 conversion of IAA into 2-aminobenzoyl-CoA. P. putida 1290 has the ability to degrade 81 IAA as the sole source of carbon and energy (catabolism). This process is carried out by 82 the *iac* locus, which consists of 10 genes coding for enzymes with a metabolic activity for 83 both indole and aromatics molecules, as well as proteins with regulatory functions [10]. 84 At present, there is no information about the full set of processes involved in the IAA 85 catabolism in B. japonicum, its homeostatic control, or the effects on the symbiotic 86 interaction with soybean. B. japonicum E109 has been one of the most used strains for the 87 production of soybean inoculants in Argentina for 40 years [12]. The genome sequence of 88 B. japonicum E109 has revealed the presence of genes involved in several plant growth 89 promoting mechanisms and in particular in the biosynthesis of the phytohormone IAA 90 [13]. The genome analysis of E109 revealed the existence of three putative pathways for 91 indole-3-pyruvate (IPyA), indole-3-acetonitrile (IAN) and biosynthesis: IAA 92 indole-3-acetamide (IAM) [14]. However, the LC-MS-MS analysis did not show significant amounts of the hormone in liquid culture media, suggesting that B. japonicum 93 94 E109 is not able to produce IAA, but on the contrary it has the ability to degrade IAA 95 under *in vitro* conditions [15]. In the same report, we also confirmed the ability of B. 96 *japonicum* E109 to degrade other natural and synthetic auxins, such as indole-3-butyric 97 acid (IBA) or α-naphthalene acetic acid (NAA). Exogenous IAA induced an increase in 98 the production of biomass and exopolysaccharide in liquid culture media of *B. japonicum* 99 E109, leading to a modification of its symbiotic behavior with soybean plants.

5

100	The aim of this work was to analyze the molecular and physiological features of IAA
101	degradation in B. japonicum E109 in order to identify the responsible genes and the
102	produced metabolites, and to outline a putative degradation pathway in this bacterium.
103	

- 104 **2. Materials and Methods**
- 105 **2.1 Bacterial strains and culture conditions**

The strains and their characteristics are summarized in Table 1. *B. japonicum* E109 106 (BjE109) was provided by the IMYZA-INTA, Buenos Aires (Argentina); B. elkanii 107 108 SEMIA5019 (BeSEMIA5019) was obtained from Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA) in Brazil; B. diazoefficiens USDA110 wild type 109 (BdUSDA110) and B. diazoefficiens USDA110 deficient in nrgC gene named B. 110 111 diazoefficiens 8620 or USDA110 spc4 (BdUSDA110∆iacA) were provided by Prof. Dr. 112 Hans-Martin Fischer of Institute of Microbiology in Zürich, Switzerland. Despite the 113 product of ngrC (NrgC, accession number AAG61032) has been previously associated 114 with nitrogen fixation [16], in silico analysis showed that ngrC sequence has homology 115 with that of *iacA* of *P. putida* 1290, related with IAA degradation [10] and *idoA* of *P*. 116 alcaligenes PA-10 related with indigo production [17]. Thus this strain was named as 117 BdUSDA110∆iacA in Table 1 and along the manuscript. Bacteria were inoculated in 250 ml flasks containing 100 ml of Yeast Extract Mannitol (YEM) culture medium [21] 118 modified by the addition of 10 mg.l⁻¹ L-tryptophan (Trp) as the main precursor for IAA 119 120 biosynthesis [22] and antibiotics according to the strain (Table 1). Cultures were 121 incubated at 30°C with orbital shaking (180 rpm) until exponential growth phase was

- 122 reached. The purity of the cultures was checked routinely on YEM agar [21] and TSA
- 123 plating (Trypticase Soybean Agar) at 10% (v/v).

124

125 **Table 1**

126

127 2.2 IAA degradation by Bradyrhizobium

128 We compared the IAA degradation activity in three strains belonging to different species of Bradyrhizobium according to Torres et al. [15]. In particular, 100 µl aliquots 129 130 obtained from exponential growth phase cultures of BiE109, BeSEMIA5019 and BdUSDA110 were individually inoculated in 250 ml flasks containing 100 ml of YEM 131 132 culture medium [21] modified by the addition L-Trp as described before. Cultures were 133 incubated at 30°C with orbital shaking (180 rpm) until early exponential growth phase 134 $(OD_{595}\approx 0.6)$, and were divided into 5 ml aliquots which were dispensed into 10 ml sterile borosilicate tubes. After 15 min of incubation conditions at 30°C, 200 µl of 1 mg.ml⁻¹ 135 136 IAA solution (or equivalent volume of sterilized water) were separately added into the tubes containing the cultures of each strain to obtain a final concentration $\approx 40 \ \mu g.ml^{-1}$ 137 $(38.5 \ \mu g.ml^{-1})$ IAA per tube. This concentration was selected because it is similar to that 138 139 produced by several rhizobacteria, including the phytostimulatory model Azospirillum 140 brasilense [22]. To account for the non-biological degradation of the compound the same 141 volume of IAA solution was added to tubes containing 5 ml of non-inoculated YEM 142 medium. Tubes were incubated at 30°C with orbital shaking (180 rpm) and samples were 143 taken at T0 (5-10 min after IAA induction) and every 2 h to measure the IAA concentration ($\mu g.ml^{-1}$). 144

145

146 **2.3 Quantification of IAA**

147 Quantification of IAA was performed by spectrophotometry [23] and confirmed by 148 HPLC according to Torres et al. [15]. Briefly, aliquots of 500 µl of bacterial culture were 149 centrifuged at 11.300 x g for 10 min. Subsequently, 250 µl of supernatant was filtered (0.2 μ m), mixed with 250 μ l of Salkowski's reagent (7.9 M H₂SO₄ and 12.5 gl⁻¹ FeCl₃) 150 151 and gently shaken in inverted position at least 10 times. Samples were incubated in the 152 dark for 30 min and the absorbance at 530 nm was measured. An aliquot of filtered 153 supernatants was also injected with a final volume of 20 µl in an HPLC Waters 600-MS 154 device (Waters Inc., USA) equipped with an U6K injector and C18 reverse phase column 155 (Purospher STAR RP C-18, 3 mm, Lichrocart 55-4) heated at 30 °C, coupled to a system with UV-VIS Waters 486 detector (Waters Inc., USA) set at 265 nm. The elution was 156 157 performed with a mixture of ethanol: acetic acid: water (Et-OH/H-Ac/H20) (12: 1: 87) as mobile phase at a flow rate of 1 ml.min⁻¹ at 30 °C. The retention time for IAA was 158 159 10.1-10.3 minutes and it was previously identified using an appropriate standard solution 160 of IAA (Sigma Aldrich, Germany). Quantification was performed by integration of the 161 peak area corresponding to the retention time (RT) using an integration software (Waters 162 Inc. USA). The IAA concentration was expressed in μ g.ml⁻¹

163

164 **2.4 Analysis of constitutive or inducible character of IAA degradation**

We evaluated whether the degradation of IAA was triggered by its own addition (inducible) or it depended on bacterial growth (constitutive). For that, *Bj*E109 was grown until late exponential growth phase ($OD_{595}=1.2$), then a 50 ml aliquot was centrifuged at 8000 rpm for 15 min, and the cell-free supernatant was filtered (0.2 µm). The resultant filtrate was divided into 5 ml aliquots and transferred into 10 ml sterile borosilicate tubes for IAA induction. The treatments of the supernatants were the following: (1) addition of

171 IAA solution to obtain a final concentration $\approx 40 \ \mu g.ml^{-1}$ IAA per tube (sE109); (2) 172 addition of IAA to heat denatured supernatants (15 min at 90 °C) to obtain a final 173 concentration $\approx 40 \ \mu g.ml^{-1}$ IAA per tube (sE109 ϕ) and (3) addition of 200 μ l of sterile 174 water to supernatants, and (4) addition of 200 μ l of sterile water to denatured 175 supernatants. Tubes were incubated as previously described and 500 μ l of the mixtures 176 were sampled every 2 h to measure IAA concentration ($\mu g.ml^{-1}$).

177

178 2.5. Analysis of cellular or extracellular character of IAA degradation

179 BiE109 was grown as described before, but 10 ml aliquots obtained from exponential growth phase cultures were centrifuged at 12,000 x g for 20 min (4 °C). The 180 supernatants were used as control treatment for IAA degradation assays (extracellular 181 182 feature) as described before. The pellets were washed twice and resuspended in 10 ml of 20 mM Tris-HCl buffer pH 8.0 containing 1 mM EDTA, 10 mM MgCl₂, 12.5 % (v/v) 183 184 glycerol, 0.1% (v/v) Triton, and the complete mini EDTA-free protease inhibitor 185 cocktail (Sigma-Aldrich, Germany). The cells were disrupted (lysed) by sonic treatment 186 (M.S.E. 150 W) for 210 s (in 30 s period), centrifuged and the cellular debris discarded. 187 The supernatants were used for IAA degradation assays (cellular feature).

188

189 **2.6 Evaluation of IAA degradation kinetics**

We assessed the kinetics of IAA degradation in both cell-free supernatants andnon-centrifuged cell cultures of *Bj*E109.

192 In the case of cell cultures, we evaluated the addition of different concentrations of 193 exogenous IAA to *Bj*E109 cultures during exponential growth phase in order to estimate

194 the maximum quantity of IAA that this metabolically active microorganism is able to 195 degrade. To achieve this, cell cultures were incubated as previously described until early 196 exponential growth phase ($OD_{595}\approx 0.6$) and divided into 5 ml aliquots, which were added 197 into 10 ml sterile borosilicate tubes. After 15 min of stabilization at 30°C with orbital 198 shaking (180 rpm), 200 µl of IAA solution or equivalent volume of sterilized water was 199 alternatively added into the tubes containing *Bj*E109 to obtain a final concentration ≈ 20 , 40, 80, 120 and 160 µg.ml⁻¹ of IAA per tube. Control treatments using uninoculated YEM 200 201 medium modified by the addition of IAA solutions were also performed. Tubes were 202 incubated at 30°C with orbital shaking (180 rpm), and 500 µl of the mixture was sampled 203 after 15 min (T0), 8, 12, 24 and 32 h of incubation to measure IAA concentration (μ g.ml⁻¹). The viability of *Bj*E109 cells was evaluated after 32 h of IAA addition by direct 204 205 plate counting on YEM agar, according to Vincent [21].

206 In the case of the cell-free supernatants, *Bj*E109 cultures were incubated at 30°C with 207 orbital shaking (180 rpm) until early exponential (EE) (OD₅₉₅~0.6) or late exponential 208 (LE) (OD₅₉₅ \approx 1.2) growth phase. A 50 ml aliquot obtained from these cultures was centrifuged at 8000 rpm for 15 min, filtered (0.2 µm) to obtain a cell free supernatant and 209 210 divided in 5 ml aliquot in borosilicate tubes for IAA-treatment as described before. The 211 treatments carried out were the following: (1) addition of pure IAA solution to EE supernatant to obtain a final concentration $\approx 40 \,\mu \text{g.ml}^{-1}$ IAA per tube; (2) addition of IAA 212 to LE supernatant to obtain a final concentration $\approx 40 \,\mu \text{g.ml}^{-1}$ IAA per tube. Treatments 213 214 were performed in triplicate. Control treatments using uninoculated YEM medium modified by the addition $\approx 40 \ \mu g.ml^{-1}$ IAA solutions were also carried out. Tubes were 215 216 incubated as previously described, and 500 μ l of the mixture was sampled every 2 h to 217 measure IAA concentration ($\mu g.ml^{-1}$).

218

219 2.7 Analysis of IAA degradation pathway

220 2.7.1 Analysis in silico

Based on the canonical metabolic pathway described in *P. putida* 1290 by Leveau and Gerards [10] for the IAA degradation, we analyzed the presence of similar proteins by sequence comparison in the *Bj*E109 genome. For bioinformatics analysis, the following tools (T) and databases were used: Blast (T) [24], KEGG [25], RAST [26], T-coffee (T) [27], Smart [28], MaGe [29], UniProt [30] and InterPro [31].

226

227 2.7.2 Construction of ΔiacC mutants

228 The general cloning procedures were performed according to Sambrook et al. [32] 229 with minor modifications. The deletions in the *iac*C gene in both strains of 230 Bradyrhizobium were carried out through an unmarked in-frame deletion using the 231 pK18mobSacB plasmid carrying the counter-selection gene sacB, as described by 232 Mongiardini et al. [33]. Given the sequences similarity between the predicted *iac*C genes 233 (AJA64126.1 in E109 or blr3400 in USDA110), the PCR products were amplified with 234 the same set of primers, FWiacCE and RViacCH (Table 1). The fragments were 235 gel-purified and cloned at the restriction sites *EcoRI/Hind*III into the pK18mobSacB [19] 236 giving the plasmids, pK18mobSacB::*iacCBd* and pK18mobSacB::*iacCBj* carrying the 237 BdUSDA110fragment and the BjE109 fragment respectively. Each plasmid was Sall 238 digested which released a 468 bp fragment from the insert cloned before as exemplify for 239 BjE109 in the Fig. S1. Then, each plasmid was re-ligated giving the final construction, 240 pK18mobSacB:: $\Delta iacCBd$ and pK18mobSacB:: $\Delta iacCBj$. These plasmids were 241 transferred by bi-parental conjugations to the corresponding wild-type strain according to 242 Quelas et al. [34] and simple-crossover transconjugants (cointegrate) were selected by 243 Km resistance in YEM media agar and the double crossover recombination was induced

by plating the transconjugants in YEM agar plates supplemented with 10% (w/v) sucrose. These sucrose resistant clones, that resolve the recombinant plasmid and that are Km sensitive, were checked by PCR to dissociate between the mutant and the wild-type genotype. The mutants obtained carry an in-frame deletion in each *iacC* gene and were named *Bj*E109 Δ *iac*C and *Bd*USDA110 Δ *iac*C. All the plasmids and constructions are listed in the Table 1.

250

251 2.7.3 Restoration of the IAA degradation capacity in ΔiacC mutants

252 The restored phenotype of the mutant $BjE109\Delta iacC$ was obtained using competent cells of Escherichia coli S-17 containing the pJN105 (pBBR) plasmid [20] with the iacC 253 254 cloned fragment inducible by L-arabinose. E. coli S-17 was grown in LB medium modified by the addition of 30 µg.ml⁻¹ gentamicin (Gm), and *Bj*E109 was grown in PSY 255 256 medium modified by the addition of L-arabinose [47]. For conjugation, E. coli S-17 257 culture was diluted a hundred times in LB medium without antibiotics and grown at 30°C 258 with orbital shaking (180 rpm) until $OD_{595} \approx 0.8$ -1. Subsequently, a mix with 900 µl of 259 E109 culture during exponential growth phase with 400 µl of S-17 culture was made. The 260 culture mix was centrifuged for 8 minutes at 3000 rpm and the pellet was re-suspended 261 and placed in a plate containing PSY agar medium with L-arabinose. Plates were 262 incubated at 30°C for 48 h. Colonies were re-suspended and homogenized into 1 ml of saline solution. A 150 µl aliquot of conjugation homogenate was placed in YEM medium 263 with 50 µg.ml⁻¹ Gm and plates were incubated in the conditions previously mentioned for 264 72-96 h. The restored phenotype of BjE109 named BjE109∆iacC/pJN105iacC was 265 266 evaluated in comparison with $B_j E109$ (wild type) and $B_j E109 \Delta iacC$ as control 267 treatments.

268

269 2.8 IAA biosynthesis and degradation in BjE109, BdUSDA110 and their mutants

270 We evaluated both degradation and biosynthesis of IAA by the BjE109 and 271 BdUSDA110 wild type strains and their mutants $B_i E 109 \Delta iac C$, BdUSDA110 $\Delta iac A$ and 272 BdUSDA110 Δiac C. Cultures of each strain were incubated until early exponential 273 growth phase (OD₅₉₅ \approx 0.6), and treated with IAA solution to obtain a final concentration \approx 40 µg.ml⁻¹ IAA as described before. A control treatment using uninoculated YEM 274 275 medium, but modified by addition of pure IAA was also considered. Tubes were 276 incubated at 30°C with orbital shaking (180 rpm), and 500 µl of the mixture was taken 277 every 2 h incubation to measure IAA concentration (µg.ml⁻¹). In the case of the IAA 278 biosynthesis, 250 ml flasks containing 100 ml of YEM culture medium modified by addition of 10 mg.l⁻¹ L-trp were inoculated with 10 % (v/v) BiE109 cultures in early 279 280 exponential growth phase (OD₅₉₅ \approx 0.6) or its mutant BjE109 $\Delta iacC$. Cultures were 281 incubated as previously described and after 12 h and 24 h of incubation samples were taken to measure cell growth (OD_{595}) and IAA concentration (µg.ml⁻¹). 282

283

284 **2.9 Identification of metabolites produced by IAA degradation**

285 The identification of IAA degradation metabolites was achieved by analyzing the 286 expression of the BiE109 genes iacC, iacD or iacCD in the heterologous strain 287 *Cupriavidus pinatubonensis* JMP134 (Table 1) under the control of the AraBAD (P_{BAD}) 288 promoter in the pBS1 plasmid [48]. This strain lacks *iac* gene sequences and is unable to 289 use IAA as a sole carbon and energy source which allow its use as an appropriate 290 heterologous host for higher expression of *iac* genes. An empty pBS1 plasmid (control) 291 and pBS1 derivatives containing *iacC*, *iacD* or *iacCD* were independently electroporated 292 in *C. pinatubonensis* JMP134 and selected in LB medium plus Gm (30 µg.ml⁻¹). For the 293 expression of *iac* genes driven by the heterologous P_{BAD} promoter, these derivatives were

294 exposed to 5 mM L-arabinose [35]. Exponential growth cultures of C. pinatubonensis JMP134 of 100 ml final volume were exposed to a final concentration of 40-160 µg.ml⁻¹ 295 296 IAA during 24 h and then analyzed for metabolites identification. The organic fraction of 297 the culture medium was extracted by triplicate using an equal volume of ethyl acetate. 298 Then, the organic layer was dried over anhydrous Na₂SO₄ and filtered, and the solvent 299 was removed in vacuum. The resultant mixture of products was subjected to a 300 spectroscopic analysis. The NMR (nuclear magnetic resonance) spectra were recorded on a Bruker Advance III HD 400 at 400 MHz for ¹H and 100 MHz for ¹³C. NMR spectra 301 302 were recorded in DMSO-d6 (dimethyl sulfoxide), using the solvent signal as reference. 303 The chemical shifts are expressed in ppm (δ scale) downfield from tetramethylsilane 304 (TMS) and coupling constant values (J) are given in Hertz. The mass spectra were 305 determined in TQ 4500 triple-quadrupole mass spectrometer coupled with electrospray ionization (ESI) source and were operated in the negative ion mode. The IAA degradation 306 307 metabolites identified by expression of *iac* genes in C. pinatubonensis JMP134 were 308 evaluated by spectroscopic and spectrometric analysis in late exponential cultures of *Bj*E109 obtained from YEM culture media exposed during 24 h to \approx 40 µg.ml⁻¹ IAA. The 309 310 analytical procedure was the same previously described.

311

312 **2.10** Bradyrhizobium-soybean symbiosis in BjE109, BdUSDA110 and their mutants

Cultures of *Bj*E109, *Bd*USDA110 and *iac*C mutants, grown as previously described in section 2.1, were used to inoculate soybean seeds cv. Don Mario 4800 with a 3 ml.kg⁻¹ dose (Note: this dose is normally used under field conditions by most of the agricultural companies). The nodulation pattern was individually evaluated on both inoculated and non-inoculated (control) seeds according to Burton et al. [36] with some modifications.

1	4
I	4

318	A triplicate of 9 soybean seeds (n=27) were sown in three separate plastic pots (300 ml
319	volume capacity) containing vermiculite as a solid substrate, irrigated with
320	nitrogen-deficient sterile N-free Hoagland's solution (25% v/v) [37]. The seedlings were
321	maintained for 21 days in a growth chamber at 30/20 °C and 80% relative humidity with
322	a 16/8 h day/night photoperiod. At the end of the experiment, the following parameters
323	were measured: (1) number of nodules on the main root per plant, (2) number of nodules
324	on the secondary roots per plant, (3) number of nodules per plant, following Burton et al.
325	[36], and (4) shoot and root dry weight.
326	
327	2.11 Statistical analyses
328	Treatments were performed in triplicate from three independent experiments. Values
329	shown represent mean \pm standard deviation (SD). Results of IAA degradation were
330	analyzed by the Kruskal-Wallis non-parametric test, while results obtained from soybean
331	symbiosis assays were analyzed by ANOVA followed by a Tukey's post hoc analysis at
332	p<0.05. Analyses and graphs were performed using the PRISM V 4.0 statistical package
333	for Windows (GraphPad Software, San Diego, CA USA).
334	
335	3. Results
336	3.1 IAA degradation by Bradyrhizobium
337	We measured the evolution of IAA concentration (μ g.ml ⁻¹) along time in
338	exponential cultures of BjE109, BdUSDA110 and BeSEMIA5019 modified by the
339	exogenous addition of the hormone.

340

341 Fig. 1

342

343	The concentration of IAA in cultures of <i>Bj</i> E109 and <i>Bd</i> USDA110, modified by the
344	addition of the hormone, decreased as a function of time (Fig. 1A). A 50% decrease of
345	in the IAA concentration was observed 8 h after addition, whereas it was no longer
346	detected in culture media after 24 h of incubation. Despite both BjE109 and
347	BdUSDA110 strains were able at 24 h after addition to degrade all the IAA, the
348	degradation rate in <i>Bd</i> USDA110 (6.570 \pm 0.2754 µg.ml ⁻¹ .h ⁻¹) was faster than <i>Bj</i> E109
349	$(5.655 \pm 0.4524 \ \mu g.ml^{-1}.h^{-1})$ between 4 and 8 h after addition. On the other hand,
350	BeSEMIA5019 was unable to degrade IAA and the hormone concentration was
351	maintained along the experiment and even found to be slightly increased after 24 h of
352	incubation, presumably as a result of the ability of this bacterium to synthesize this
353	molecule [15]. In the case of uninoculated YEM culture media, the IAA concentration
354	$(\mu g.ml^{-1})$ did not change over time, probably because the culture medium did not affect
355	the stability of the molecule.

To elucidate the nature of the molecule responsible for IAA degradation in *Bj*E109, we measured the IAA concentration (μ g.ml⁻¹) in supernatants (sE109) and heat denatured supernatants (sE109 ϕ). For that, around 40 μ g.ml⁻¹ IAA was added to each treatment. A significant decrease in the IAA concentration (μ g.ml⁻¹) was observed 4 h after addition of the hormone in sE109, while a complete absence of the molecule was

361	found after 8 h of incubation (Fig.1B). IAA concentration in sE109¢ did not change
362	over time. No IAA degradation was observed in disrupted cells (lysates cells) indicating
363	the extracellular feature of the activity. Under our experimental conditions, results
364	suggest the molecule responsible for IAA degradation should be released into the
365	culture medium (extracellular feature) before IAA addition (constitutive feature). The
366	loss of activity in the supernatants following heat denaturation suggested an enzyme
367	candidate.
368	
369	3.2 Evaluation of the kinetics for IAA degradation by <i>Bj</i> E109
370	We evaluated the IAA degradation kinetics of BjE109 by the use of two different
371	approaches. In the first one, we estimated the maximum concentration of IAA that could
372	be degraded by these bacteria, using the whole exponential cultures of BjE109. Results
373	of these experiments are summarized in Fig. 2. In the second approach, we used the
374	supernatants obtained from both early (EE) and late exponential (LE) growth phases of
375	BjE109 cultures and these results are summarized in Fig.3.
376	
377	Fig.2
378	
379	Fig.2 shows that <i>Bj</i> E109 cultures under exponential growth phase were able to fully
380	degrade up to \approx 80 $\mu g.ml^{\text{-1}}$ of exogenous IAA after 24 h of treatment. However, at
381	higher concentrations of the hormone (i.e. around 120 and 160 μ g.ml ⁻¹), there was a

382	reduction in the degradation capacity: about 50% of the initial concentration was
383	measured at the end of the experiment, clearly showing a saturation kinetics after 8 h of
384	IAA treatment over 80 μ g.ml ⁻¹ . The viability of the <i>Bj</i> E109 was measured at 24, 36 and
385	48 h incubation by direct plate counting on YEM agar and no significant variations
386	between treatments were recorded.
387	
388	Fig.3
389	
390	Fig.3 shows that supernatants of <i>Bj</i> E109 cultures obtained from both early (EE) and
391	late exponential (LE) growth phases had different kinetics for IAA degradation after 12
392	h of IAA treatment. The supernatants obtained from the late exponential (LE) growth
393	phase of BjE109 cultures degrade the IAA more rapidly than the ones obtained from the
394	early exponential (EE) growth phase. This behavior is probably due to the fact that
395	enzyme biosynthesis has kinetics similar to that of a primary metabolite produced
396	during bacterial growth, in which the accumulation of the enzyme into the culture
397	medium increases the degradation capacity of IAA per unit of time.
398	

399 **3.3. IAA degradation is encoded in the genome of** *B. japonicum*E109

400 Based on the metabolic pathway described in *P. putida* 1290 by Leveau and 401 Gerards [10] for the IAA degradation, we checked for the presence of similar sequences 402 in the *Bj*E109 genome. The results of the *in silico* analyses are showed in Table S1. We

403	found homologous sequences for all the proteins related to the <i>iac</i> cluster of <i>P. putida</i>
404	1290 in the BjE109 genome; however, they are not located in a unique cluster of genes
405	but distributed along the genome in a random way. The protein sequence with highest
406	amino acid similarity is the one homologue to <i>iacA</i> , which codes for an acyl-CoA
407	dehydrogenase in BjE109. The protein encoded by the iacA gene has been previously
408	reported in BdUSDA110 as NrgC, which is regulated by NifA during the
409	Bradyrhizobium-soybean interaction [16]. We assessed the IAA degradation by
410	Bd USDA110 Δiac A mutant [16] and fully discarded that iac A expression product would
411	participate in the IAA degradation process (Fig. 4).
412	
413	Fig. 4.
414	
415	The wild type strain degraded 100% of the 40 μ g.ml ⁻¹ IAA added in the culture
416	medium before 24 h of incubation. This behavior was similar to that of the mutant
417	Bd USDA110 Δiac A. In our experimental conditions the gene <i>iac</i> A was not involved in

418 IAA catabolism, thus this result allowed us to abandon the hypothesis about *iac*A as the

419 main responsible for IAA degradation. In the case of the Δiac C, the results showed that

420 the mutant strain could not degrade the hormone and this fact indicates that the product

421 of *iac*C is required for IAA degradation in *Bd*USDA110.

422

423 **3.3.1 The** *iac***CDF** cluster of *Bj***E109**

424 The in silico analysis of the BiE109 genome shows that iacC codes for an 425 oxidoreductase 3-phenylpropionate dioxygenase (α -subunit), according to the Blast-p 426 tool of NCBI and RAST database (Fig. S2). The *iac*C is flanked by *iac*D, which codes 427 for a 3-phenylpropionate dioxygenase (β -subunit) and *iac*F, which codes for a ferredoxin and grouped with two additional genes encoding for long chain fatty acid 428 429 CoA ligase and an oxidoreductase, forming a separate cluster in the genome of BjE109 (Fig. S2). We performed a complementary analysis of the IacC sequence by SignalP-5.0 430 431 (http://www.cbs.dtu.dk/services/SignalP/) and established its tentative extracellular localization by the presence of a TAT [Tat/SP] signal peptide, responsible for the 432 433 protein translocation. Finally, the *iac*C sequence of *Bj*E109 was compared with similar sequences obtained from other strains belonging to different species of the genus 434 435 *Bradyrhizobium*. In the case of those strains belonging to the same species as *B*_jE109, the 436 *iac*C gene identity was higher than 97%, while in other species the identity decreased by 437 95-91% (Table S2) with B. yuanmingense and B. diazoefficiens as the closest to B. 438 japonicum.

439

440 **3.4 IAA degradation by** *B. japonicum* E109 and E109∆*iac*C mutant

Taking into account the *in silico* analysis, we decided to consider the *iac*C of *Bj*E109 as the target gene for mutagenesis procedure. The main objective of this procedure was to obtain the *Bj*E109 Δ *iac*C mutant and to evaluate the capacity of such strain to degrade IAA in comparison with the wild type one. **Fig.5**.

448	Fig.5 shows that $BjE109\Delta iacC$ mutant was unable to degrade IAA when the
449	molecule was exogenously added into the culture medium, even for a long period of 48
450	h incubation. On the contrary, the strain <i>Bj</i> E109 degraded 100% of the $\approx 40 \ \mu g.ml^{-1}$
451	IAA in the culture medium before 24 h of incubation. To confirm that the observed
452	phenotype was due to the mutation in the <i>iac</i> C, we evaluated the complemented strain
453	BjE109∆iacC/pJN105iacC. The capacity to degrade IAA was resumed: after IAA
454	addition a 28% IAA degradation (10.96 μ g.ml ⁻¹) in the first 24 h, a 72% after 48 h (28.4
455	μ g.ml ⁻¹) and a 90% after 72 h (34.1 μ g.ml ⁻¹) was measured (Fig. 5). On the other hand,
456	the IAA concentration did not change along the experiment ($\approx 40 \ \mu g.ml^{-1}$) in the case of
457	the $BjE109\Delta iacC$ mutant, in contrast to the $BjE109$ strain, for which IAA degradation
458	was 100% at 24 h after IAA-treatment. These results allowed us to confirm that <i>iac</i> C
459	codes for the putative enzyme responsible for IAA degradation in this bacterium.
460	Experiments of heterologous expression in C. pinatubonensis JMP134 showed that the
461	product of <i>iac</i> D alone and the control with empty vector were not able to degrade ≈ 40
462	μ g.ml ⁻¹ IAA in comparison with the product of <i>iac</i> C and <i>iac</i> CD genes, which were able
463	to degrade this molecule in less than 24 h incubation.

3.5 Evaluation of IAA biosynthesis in the *Bj*E109∆*iac*C

466	In a previous report using liquid chromatography-multiple reaction
467	monitoring-mass spectrometry (LC-MRM-MS), we found a negligible amount of IAA
468	$(0.67 \text{ pmol.ml}^{-1})$ in supernatants of <i>Bj</i> E109. However, the molecule did not accumulate
469	into the culture medium at a significant concentration to be detected by HPLC, we thus
470	concluded that this strain was unable to produce IAA [15]. In this study, no significant
471	amount of IAA was detected by HPLC for both wild type and the mutant $BjE109\Delta iacC$.
472	The mutation in the <i>iac</i> C gene led to the bacterium losing the ability to degrade IAA;
473	however, the mutant did not release a detectable amount of the hormone in the culture
474	media. The results obtained in this paper (under defined experimental conditions), in
475	addition to those previously published [15] and our particular experience modifying a
476	broad range of experimental conditions (i.e. culture media, incubation time,
477	temperature, etc.) to evaluate the bacterial capacity to biosynthesize IAA (data not
478	shown), allow us to conclude that the BjE109 has no significant activity in any of the
479	proposed pathways for IAA biosynthesis and thus it cannot synthesize it in significant
480	amounts.

481

482 **3.6 Metabolites of IAA catabolism in** *Bj***E109**

The metabolites deriving from the *iac*CD expression in *C. pinatubonensis* JMP134 in presence of IAA were analyzed by different spectroscopic and spectrometric techniques (¹H-NMR, ¹³C-NMR, DEPT, MS) (Fig. S3, S4 and S5) and confirmed in *Bj*E109 cultures modified by the presence of the hormone. The ¹H-NMR spectrum

21

487	analyses indicated that the product of degradation of IAA contained two metabolites in
488	equal proportions with a structural similarity. Chemically, both metabolites showed an
489	intact phenyl ring and a signal concordant with CH group between 5-6 ppm. This result
490	suggests that the pyrrole ring of the IAA molecule was saturated at positions C2-C3. On
491	the other hand, the presence of signals corresponding to aliphatic hydrogen atoms
492	between 2-3 ppm indicates that a methylene group adjacent to the carboxylic group
493	presents both hydrogens with a different magnetic environment, suggesting that the
494	pyrrole ring was modified in both metabolites in relation to the precursor IAA. The
495	¹³ C-NMR spectrum analysis indicated that both metabolites have a carbonyl group with
496	a similar magnetic environment, reinforcing the idea that both products have very
497	similar identities. Also, the joint analysis of the ¹³ C-NMR and DEPT spectra indicated
498	the presence of one carbonyl group, three quaternary carbon atoms, five CH groups and
499	one methylene group for each of the molecules. The number and type of carbon atoms
500	finding in metabolites are equal to the presents in the precursor (IAA); however, the
501	displacement of one of the CH groups and of one of the quaternary carbons accounts for
502	an aliphatic rather than aromatic character for these two carbon atoms. The MS analysis
503	indicated the presence of two compounds with a mass of 190.8 (A) and 224.9 (C)
504	g.mol ⁻¹ , respectively (Fig S3, S4, S5 and Fig. 6). The IAA molecule has an exact mass
505	of 175.1 g.mol ⁻¹ . Mass difference of 190.8 g.mol ⁻¹ between IAA and the metabolite A is
506	equal to the mass of an oxygen atom. This experimental data together with NMR
507	evidences allow us to postulate that the molecule A is one of the metabolites isolated

508	from IAA degradation by E109. However, the presence of the metabolite C (224.9
509	g.mol ⁻¹) in the degradation product was interesting, as from a chemical point of view the
510	logical sequence would be the opening of the epoxide group in A by a molecule of
511	water to obtain the molecule B (209.7 g.mol ⁻¹). Nevertheless, MS did not show any
512	compound B with a 209 g.mol ⁻¹ . Summarizing, analyses by ¹ H and ¹³ C NMR
513	spectroscopy and mass spectrometry suggested that purified compounds produced by
514	IAA degradation in <i>Bj</i> E109 are 3-indoleacetic acid 2,3-oxide or
515	2-(1a,2-dihydro-6bH-oxireno [2,3-b] indol-6b-yl) acetic acid, according to IUPAC (A)
516	and 2-(2-hydroperoxy-3-hydroxyindolin-3-yl) acetic acid (C).
517	
518	Fig.6.
519	
520	3.7 Bradyrhizobium-soybean symbiosis in BjE109, BdUSDA110 and their mutants
521	Table 2 shows the growth and nodulation of soybean seedlings inoculated with
522	BjE109, BdUSDA110 and their iacC mutants.
523	
524	Table 2
525	
526	Plant growth and nodulation increased in soybean plants obtained from inoculated
527	seeds as compared to those uninoculated, in which no nodule was observed. In the case

528 of inoculated seeds, nodulation as MRN (main root nodules), SRN (secondary root

529	nodules) and RN (root nodules) increased in plants treated with the wild type strain in
530	comparison with <i>iac</i> C mutants. The MRN, SRN and RN of <i>Bj</i> E109 inoculated plants
531	increased by 25.6, 16.4 and 21.6% respectively, in comparison with $BjE109\Delta iacC$. In
532	the case of <i>Bd</i> USDA110, plants inoculated with this strain increased by 42.8; 35.0 and
533	40.4% respectively in comparison with the mutant. Shoot dry weight increased by
534	18.0% and 20.6% in plants inoculated with BjE109 and BdUSDA110 respectively, in
535	comparison with the ones inoculated with the <i>iac</i> C mutants. Root dry weight increased
536	by 21.9% and 8.7% in plants inoculated with wild type strains in comparison with
537	mutants.

538

539 **4. Discussion**

540 Minamisawa and Fukai [38] observed, for the first time, that some strains of B. japonicum were unable to accumulate IAA in the culture media. They suggested that 541 542 such strains were unable to produce IAA or degraded the molecule after its biosynthesis. 543 At the same time, Egebo et al. [8] confirmed that *Bd*USDA110 degraded IAA under an 544 oxygen-dependent reaction and suggested that IAA is oxidized to aminobenzoyl-acetic 545 acid and anthranilic acid by a putative tryptophan 2,3-dioxygenase. A different pathway 546 for IAA degradation, starting with an oxidation of IAA to anthranilic acid, was proposed 547 by Jensen et al. [9]. They reported the production of dioxindole-3-acetic acid, dioxindole, isatin, 2-aminophenyl glyoxylic acid (isatinic acid) and anthranilic acid as 548 549 metabolites related to IAA catabolism in BdUSDA110. Olesen and Jochimsen [39]

550	suggested that both an isatin reductase and isatin amidohydrolase were responsible of
551	IAA degradation in <i>B. japonicum</i> . However, these metabolites or the related enzymes
552	were not identified in this or later reports [40]. A transcriptional analysis of
553	BdUSDA110 after exogenous treatment with 1 mM of IAA did not reveal a potential
554	catabolic pathway of IAA or any enzymes involved [41]. Recently, we confirmed the
555	non-assimilative degradation of both natural and synthetic auxins in BjE109 cultures
556	after 24 h exposition [15]. In the present work we showed two new features about the
557	IAA degradation in BjE109. The IAA degradation capacity is preexisting to the
558	exogenous addition of the molecule in the culture medium and the degradation capacity
559	occurs in the extracellular environment. The denaturation by heat of BjE109
560	supernatants led to the complete loss of IAA degradation capacity, supporting the
561	existence of a preexisting (constitutive) and extracellular enzyme as responsible.
562	Two different clusters for IAA catabolism have been characterized in eubacteria,
563	the <i>iac</i> cluster identified in the alphaproteobacteria <i>P. putida</i> 1290 [10] and the <i>iaa</i>
564	cluster identified in the betaproteobacteria A. aromaticum EbN1 [11]. In the case of P.
565	putida 1290, which uses IAA as a sole source of carbon and energy, it contains a cluster
566	of 10 genes [10]. The canonical cluster of <i>P. putida</i> 1290 is well conserved and named
567	the <i>iac</i> ABCDEFGRHI gene cluster. The <i>iac</i> A encodes the acyl-CoA dehydrogenase,
568	which would start the IAA degradation attacking the indole ring of IAA, thus generating
569	2-hydroxy-IAA. The <i>iac</i> B encodes a conserved hypothetic protein with unknown
570	functions. The <i>iac</i> C and <i>iac</i> D genes encode the alpha and beta subunits of Rieske (2Fe–

571	2S) domain containing aromatic ring hydroxylating dioxygenase, which is involved in
572	3-hydroxy-2-oxo-IAA conversion to catechol. The <i>iac</i> E encodes a short-chain
573	dehydrogenase/reductase, which is involved in the conversion of 2-hydroxy-IAA to
574	3-hydroxy-2-oxo-IAA. The <i>iac</i> F encodes for ferredoxin and the <i>iac</i> G encodes a flavin
575	reductase domain protein. This protein, in P. phytofirmans PsJN, might provide reduced
576	flavins to the IacA protein [35]. The <i>iac</i> H and <i>iac</i> I genes, which encode for a putative
577	Glu-tRNA amidotransferase and conserved hypothetical protein respectively, both have
578	unknown functions. The <i>iac</i> R encodes for transcriptional regulator of the MarR family
579	[42-43]. P. putida 1290 carries two copies each of the iacC, iacD and iacF genes [44]. In
580	the case of <i>Bj</i> E109, the <i>iac</i> C gene forms a separate cluster together with <i>iac</i> D, <i>iac</i> F and
581	two additional genes (Fig. S2). Based on this fact, we constructed the $BjE109\Delta iacC$
582	mutant and observed the full loss of IAA degradation capacity We then confirm the role
583	of 3-phenylpropionate dioxygenase (α -subunit) in the IAA degradation process.
584	Both, P. putida 1290 and Caballeronia glathei DSM 50014 utilize IAA as a sole
585	source of carbon and energy and the final product of this pathway is catechol [10;45].
586	The first reaction is catalyzed by IacA, which converts IAA to 2-hydroxy-IAA
587	(2-oxindole-3-acetic acid) [42] or 2,3-dihydroxy-indoline-3-acetic acid, according to
588	Sadauskas et al. [45]. Then, IacE catalyzes the conversion of these metabolites to
589	3-hydroxy-2-oxindole-3-acetic acid (dioxindole-3-acetic acid). The conversion of
590	dioxindole-3-acetic acid to the final product, catechol, involves multiple reactions but

591 mainly are carried out by IacC and IacD. Both BjE109 cultures and heterologous

592 expression of *iac*C or *iac*CD genes in C. *pinatubonensis* JMP134 during IAA 593 degradation allowed identify 3-indoleacetic acid 2,3-oxide us to and 594 2-(2-hydroperoxy-3-hydroxyindolin-3-yl) acetic acid. These metabolites were not 595 produced in any of the pathways previously described in both BdUSDA110 and P. 596 *putida* 1290.

Bradyrhizobium sp. has been extensively studied because of its symbiotic 597 598 association with legumes and its biological nitrogen fixation capacity. BjE109 is broadly 599 used to inoculate soybean seeds because it has the ability to increase the performance of the legumes under agronomic conditions [46]. In a previous report, we observed that 600 601 addition of IAA to BjE109 cultures increased the viable cell recovery from soybean seeds after inoculation, in comparison with the untreated control [15]. In similar 602 603 experiments, Donati et al. [41] examined the effect of pretreatment with IAA on the ability of BdUSDA110 to nodulate soybean roots, but in this report, none of the 604 605 pretreatments affected the number of nodules, nodule weight, or plant weight. In our 606 experiments BjE109 and BdUSDA110 were able to increase the number of nodules and 607 dry weight of shoots and roots in soybean plants in comparison with the mutants *iac*C, 608 unable to degrade the phytohormone. These parameters were remarkably higher in 609 BdUSDA110 in comparison to plants inoculated with BjE109. Summarizing, the 610 inability of the *iac*C mutants to degrade the hormone determined a change in their 611 symbiotic behavior: the establishment of the symbiosis at the level of the nodules 612 number and their location in the roots, as well as the growth of the inoculated plant, were

613	negatively affected. This behavior could be partially due to the change in the mutant's
614	abilities related to: (a) the survival on soybean seeds after inoculation; (b) the
615	colonization of roots after germination or (c) the formation of active nodules during
616	symbiosis process. This issue should be addressed in a future work.
617	In this study, we have presented new molecular and physiological evidences related
618	to the IAA degradation in <i>B. japonicum</i> and we have proposed a putative model/pathway
619	for IAA degradation in this bacterium.
620	
621	Conflicts of Interest
622	The authors declare no conflict of interest
623	
624	Acknowledgments
024	
625	We thank to Instituto de Investigaciones Agrobiotecnológicas (INIAB); Universidad
625 626	We thank to Instituto de Investigaciones Agrobiotecnológicas (INIAB); Universidad Nacional de Río Cuarto (UNRC); Consejo Nacional de Investigaciones Científicas y
625 626 627	We thank to Instituto de Investigaciones Agrobiotecnológicas (INIAB); Universidad Nacional de Río Cuarto (UNRC); Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Fondo Nacional de Ciencia y Tecnología (FONCyT);
 625 626 627 628 	We thank to Instituto de Investigaciones Agrobiotecnológicas (INIAB); Universidad Nacional de Río Cuarto (UNRC); Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Fondo Nacional de Ciencia y Tecnología (FONCyT); Instituto de Biotecnología y Biología Molecular (IBBM); Pontificia Universidad Católica
 625 626 627 628 629 	We thank to Instituto de Investigaciones Agrobiotecnológicas (INIAB); Universidad Nacional de Río Cuarto (UNRC); Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Fondo Nacional de Ciencia y Tecnología (FONCyT); Instituto de Biotecnología y Biología Molecular (IBBM); Pontificia Universidad Católica de Chile (PUC); Fondo de Equipamiento Científico y Tecnológico (FONDEQUIP),
 625 626 627 628 629 630 	We thank to Instituto de Investigaciones Agrobiotecnológicas (INIAB); Universidad Nacional de Río Cuarto (UNRC); Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Fondo Nacional de Ciencia y Tecnología (FONCyT); Instituto de Biotecnología y Biología Molecular (IBBM); Pontificia Universidad Católica de Chile (PUC); Fondo de Equipamiento Científico y Tecnológico (FONDEQUIP), project EQM120021. R.D. acknowledges support by ANID PIA/Anillo ACT172128 and
 625 626 627 628 629 630 631 	We thank to Instituto de Investigaciones Agrobiotecnológicas (INIAB); Universidad Nacional de Río Cuarto (UNRC); Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Fondo Nacional de Ciencia y Tecnología (FONCyT); Instituto de Biotecnología y Biología Molecular (IBBM); Pontificia Universidad Católica de Chile (PUC); Fondo de Equipamiento Científico y Tecnológico (FONDEQUIP), project EQM120021. R.D. acknowledges support by ANID PIA/Anillo ACT172128 and ANID PIA/BASAL FB0002 grants. FC is Researcher of CONICET at the UNRC. DT is a
 625 626 627 628 629 630 631 632 	We thank to Instituto de Investigaciones Agrobiotecnológicas (INIAB); Universidad Nacional de Río Cuarto (UNRC); Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Fondo Nacional de Ciencia y Tecnología (FONCyT); Instituto de Biotecnología y Biología Molecular (IBBM); Pontificia Universidad Católica de Chile (PUC); Fondo de Equipamiento Científico y Tecnológico (FONDEQUIP), project EQM120021. R.D. acknowledges support by ANID PIA/Anillo ACT172128 and ANID PIA/BASAL FB0002 grants. FC is Researcher of CONICET at the UNRC. DT is a Postdoctoral researcher at the UNRC granted by CONICET. JG and FD are PhD student
 625 626 627 628 629 630 631 632 633 	We thank to Instituto de Investigaciones Agrobiotecnológicas (INIAB); Universidad Nacional de Río Cuarto (UNRC); Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Fondo Nacional de Ciencia y Tecnología (FONCyT); Instituto de Biotecnología y Biología Molecular (IBBM); Pontificia Universidad Católica de Chile (PUC); Fondo de Equipamiento Científico y Tecnológico (FONDEQUIP), project EQM120021. R.D. acknowledges support by ANID PIA/Anillo ACT172128 and ANID PIA/BASAL FB0002 grants. FC is Researcher of CONICET at the UNRC. DT is a Postdoctoral researcher at the UNRC granted by CONICET. JG and FD are PhD student at the UNRC granted by CONICET. We would like to thank Coline Le Noir de Carlan for
 625 626 627 628 629 630 631 632 633 634 	We thank to Instituto de Investigaciones Agrobiotecnológicas (INIAB); Universidad Nacional de Río Cuarto (UNRC); Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Fondo Nacional de Ciencia y Tecnología (FONCyT); Instituto de Biotecnología y Biología Molecular (IBBM); Pontificia Universidad Católica de Chile (PUC); Fondo de Equipamiento Científico y Tecnológico (FONDEQUIP), project EQM120021. R.D. acknowledges support by ANID PIA/Anillo ACT172128 and ANID PIA/BASAL FB0002 grants. FC is Researcher of CONICET at the UNRC. DT is a Postdoctoral researcher at the UNRC granted by CONICET. JG and FD are PhD student at the UNRC granted by CONICET. We would like to thank Coline Le Noir de Carlan for her contribution in the English revision of this manuscript.

636 References

- 637 1. Glick BR, Patten C, Holguin G, Penrose D. Auxin production. *In* Biochemical and
 638 genetic mechanisms used by plant growth promoting bacteria, Imperial College
- 639 Press, London, England, 1999, p 86-133.
- 640 2. Sekine M, Ichikawa T, Kuga N, Kobayashi M, Sakurai A, Syōno K. Detection of
- 641 the IAA biosynthetic pathway from tryptophan via indole-3-acetamide in
- 642 Bradyrhizobium spp. Plant Cell Physiol 1988; 29(5):867-874.
- 643 https://doi.org/10.1093/oxfordjournals.pcp.a077574
- 644 3. Sekine M, Watanabe K, Syōno K. Molecular cloning of a gene for
- 645 indole-3-acetamide hydrolase from *Bradyrhizobium japonicum*. J Bacteriol 1989;
- 646 171(3):1718-1724. <u>https://doi.org/10.1128/jb.171.3.1718-1724.1989</u>
- 647 4. Kaneshiro T, Kwolek WF. Stimulated nodulation of soybeans by Rhizobium
- 648 *japonicum* mutant (B-14075) that catabolizes the conversion of tryptophan to
- 649 indol-3yl-acetic acid. Plant Sci 1985; 42(3):141-146.
- 650 <u>https://doi.org/10.1016/0168-9452(85)90119-0</u>
- 651 5. Thimann KV. On the physiology of the formation of nodules on legume roots. Proc
- 652 Natl Acad Sci USA 1936; 22(8):511-514.<u>https://doi.org/10.1073/pnas.22.8.511</u>
- 653 6. Taller B, Sturtevant D. Modification of cytokinin production in *Bradyrhizobium*
- cultures. J Cell Biochem Suppl 1989; 12(Part C) 274.

655	7.	Nielsen SV, Egebo LA, Jochimsen B. Bradyrhizobial indoleacetic acid metabolism
656		and its significance for root nodule development. In Molecular Genetics of
657		Plant-Microbe Interactions APS Press St Paul MN, 1988, 151-152.

- 658 8. Egebo LA, Nielsen SV, Jochimsen BU. Oxygen-dependent catabolism of
- 659 indole-3-acetic acid in *Bradyrhizobium japonicum*. J Bacteriol 1991; 173(15):

660 4897-4901. <u>https://doi.org/10.1128/jb.173.15.4897-4901.1991</u>

- 661 9. Jensen JB, Egsgaard H, Van Onckelen H, Jochimsen BU. Catabolism of
- 662 indole-3-acetic acid and 4-and 5-chloroindole-3-acetic acid in *Bradyrhizobium*
- 663 *japonicum*. J Bacteriol 1995; 177(20):5762-5766.
- 664 <u>https://doi.org/10.1128/jb.177.20.5762-5766.1995</u>
- 665 10. Leveau JH, Gerards S. Discovery of a bacterial gene cluster for catabolism of the
- plant hormone indole 3-acetic acid. FEMS MicrobiolEcol 2008; 65(2):238-250.
- 667 <u>https://doi.org/10.1111/j.1574-6941.2008.00436.x</u>
- 11. Ebenau-Jehle C, Thomas M, Scharf G, Kockelkorn D, Knapp B, Schühle K, et al.
- Anaerobic metabolism of indoleacetate. J Bacteriol 2012; 194:2894–2903.
- 670 <u>https://doi.org/10.1128/JB.00250-12</u>
- 671 12. Piccinetti C, Arias N, Ventimiglia L, Díaz Zorita M, Murua L, Sánchez H, et al.
- 672 Positive effects of inoculation of soybean on nodulation BNF and the parameters of
- 673 crop production. In Microbiología agrícola: un aporte de la investigación en
- 674 Argentina, 2nd ed, Albanesi AS (ed) Magna Publicaciones, Tucumán, Argentina,

675 2013, 283–297.

676	13. Torres D, Revale S, Obando M, Maroniche G, Paris G, Perticari A, et al. Genome
677	sequence of Bradyrhizobium japonicum E109, one of the most agronomically used
678	nitrogen-fixing rhizobacteria in Argentina. Genome Announc 2015;
679	3(1):e01566-14. https://doi.org/10.1128/genomeA.01566-14
680	14. Costacurta A, Vanderleyden J. Synthesis of phytohormones by plant-associated
681	bacteria. Crit rev microbiol 1995; 21(1):1-18.
682	https://doi.org/10.3109/10408419509113531
683	15. Torres D, Benavidez I, Donadío F, Mongiardini E, Rosas S, Spaepen S, et al. New
684	insights into auxin metabolism in Bradyrhizobium japonicum. Res microbial 2018;
685	169(6):313-323. https://doi.org/10.1016/j.resmic.2018.04.002
686	16. Nienaber A, Huber A, Göttfert M, Hennecke H, Fischer H. Three new
687	NifA-regulated genes in the Bradyrhizobium japonicum symbiotic gene region
688	discovered by competitive DNA-RNA hybridization. J Bacteriol 2000;
689	82(6):1472-1480. https://doi.org/10.1128/JB.182.6.1472-1480.2000
690	17. Alemayehu D, Gordon LM, O'Mahony MM, O'Leary ND, Dobson ADW. Cloning
691	and functional analysis by gene disruption of a novel gene involved in indigo
692	production and fluoranthene metabolism in Pseudomonas alcaligenes PA-10.
693	FEMS Microbiol Lett 2004; 239(2):285-293.
694	https://doi.org/10.1016/j.femsle.2004.08.046

695 18. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, et al.
696 Complete genomic sequence of nitrogen-fixing symbiotic bacterium

- 697 Bradyrhizobium japonicum USDA110. DNA Res 2002; 9(6):189-197.
 698 https://doi.org/10.1093/dnares/9.6.189
- 699 19. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. Small
- 700 mobilizable multi-purpose cloning vectors derived from the *Escherichia coli*
- 701 plasmids pK18 and pK19: selection of defined deletions in the chromosome of
- 702 Corynebacterium glutamicum. Gene 1994; 145 (1):69–73.
- 703 https://doi.org/10.1016/0378-1119(94)90324-7 ANTES 30
- 704 20. Newman JR, Fuqua C. Broad-host-range expression vectors that carry the
- 705 L-arabinose-inducible *Escherichia coli ara*BAD promoter and the *ara*C regulator.
- 706 Gene 1999; 227(2):197-203. <u>https://doi.org/10.1016/S0378-1119(98)00601-5</u>
- 707 21. Vincent JA. 1970. Manual for the Practical Study of Root-nodul Bacteria. Int Biol
- 708 Program Handb, Blackwell, Oxford. <u>https://doi.org/10.1093/nar/gki106</u>
- 709 22. Cassán F, Vanderleyden J, Spaepen S. Physiological and agronomical aspects of
- 710 phytohormone production by model plant-growth-promoting rhizobacteria (PGPR)
- belonging to the genus *Azospirillum*. J Plant Growth Regul 2014; 33(2):440-459.
- 712 https://doi.org/10.1007/s00344-013-9362-4
- 713 23. Glickmann E, Dessaux Y. A critical examination of the specificity of the salkowski
- reagent for indolic compounds produced by phytopathogenic bacteria. Appl
- 715 Environ Microbiol 1995; 61(2):793-796.
- 716 https://doi.org/10.1128/AEM.61.2.793-796.1995

717	24. Madden T.	Busby B	. Ye J. Reply	v to the paper	: Misunderstood	parameters of NCBI
111			, ICJ. KOPI	y to the puper	. minucipioou	purumeters of field

- 718 BLAST impacts the correctness of bioinformatics workflows. Bioinformatics 2019;
- 719 35(15):2699-2700. https://doi.org/10.1093/bioinformatics/bty1026
- 720 25. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and
- 721 interpretation of large-scale molecular data sets. Nucleic Acids Res 2012;
- 722 40(D1):109-114. <u>https://doi.org/10.1093/nar/gkr988</u>
- 723 26. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST
- 724 Server: rapid annotations using subsystems technology. BMC Genom 2008;
- 725 9(1):75. <u>https://doi.org/10.1186/1471-2164-9-75</u>
- 726 27. Notredame C, Higgins D, Heringa J. T-Coffee: A novel method for fast and
- 727 accurate multiple sequence alignment. J Mol Biol 2000; 302(1):205-217.
- 728 <u>https://doi.org/10.1006/jmbi.2000.4042</u>
- 729 28. Letunic I, Bork P. 20 years of the SMART protein domain annotation resource.
- 730 Nucleic Acids Res 2018; 46(1):493-496. <u>https://doi.org/10.1093/nar/gkx922</u>
- 731 29. Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, et al. MaGe: a
- microbial genome annotation system supported by synteny results. Nucleic Acids
- 733 Res 2006; 34(1):53-65. <u>https://doi.org/10.1093/nar/gkj406</u>
- 734 30. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, et al.
- 735 UniProt: the universal protein knowledgebase. Nucleic Acids Res 2004;
- 736 32(1):115-119. <u>https://doi.org/10.1093/nar/gkh131</u>

737	31. Mulder N, Apweiler R, Attwood T, Bairoch A, Bateman A, Binns D, et al.
738	InterPro, progress and status in 2005. Nucleic Acids Res 2005; 33(1):201-205.
739	https://doi.org/10.1093/nar/gki106
740	32. Sambrook J, Fritsch E, Maniatis T. Molecular cloning: a laboratory manual, ed 2,
741	Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989.
742	33. Mongiardini E, Quelas J, Dardis C, Althabegoiti M, Lodeiro A. Transcriptional
743	control of the lateral-flagellar genes of Bradyrhizobium diazoefficiens. J Bacteriol
744	2017; 199(15): e00253-17. https://doi.org/10.1128/JB.00253-17
745	34. Quelas JI, Mongiardini EJ, Casabuono A, López-García SL, Althabegoiti MJ,
746	Covelli JM, et al. Lack of galactose or galacturonic acid in Bradyrhizobium
747	japonicum USDA110 exopolysaccharide leads to different symbiotic responses in
748	soybean. Mol Plant-Microbe Interact 2010; 23(12):1592-1604.
749	https://doi.org/10.1094/MPMI-05-10-0122
750	35. Donoso R, Leiva-Novoa P, Zúñiga A, Timmermann T, Recabarren-Gajardo G,
751	González B. Biochemical and genetic bases of indole-3-acetic acid (auxin

- 752 phytohormone) degradation by the plant-growth-promoting rhizobacterium
- 753 Paraburkholderia phytofirmans PsJN. Appl Environ Microbiol 2016; 83(1).
- 754 <u>https://doi.org/10.1128/AEM.01991-16</u>
- 36. Burton J, Martinez C, Curley R. Methods of testing and suggested standards for
 legume inoculants and preinoculated seeds. Milwaukee, Wisconsin, USA, Nitragin
 Sales Corp, 1972.

758	37. Hoagland D, Broyer T. General nature of the process of salt accumulation by roots
759	with description of experimental methods. Plant Physiol 1936; 11:471e507.
760	https://doi.org/10.1104/pp.11.3.471.
761	38. Minamisawa K, Fukai K. Production of indole-3-acetic acid by Bradyrhizobium
762	japonicum: a correlation with genotype grouping and rhizobitoxine production.
763	Plant Cell Physiol 1991; 32(1):1-9.
764	https://doi.org/10.1093/oxfordjournals.pcp.a078042
765	39. Olesen MR, Jochimsen BU. Identification of enzymes involved in indole-3-acetic
766	acid degradation. Current Issues in Symbiotic Nitrogen Fixation. Springer,
767	Dordrecht, 1996, 143-149. https://doi.org/10.1007/978-94-011-5700-1_20
768	40. Jarabo-Lorenzo A, Perez-Galdona R, Vega-Hernandez M, Trujillo J, Leon-Barrios
769	M. Indole-3-acetic acid catabolism by bacteria belonging to the Bradyrhizobium
770	genus. In Biological Nitrogen Fixation for the 21st Century, Current Plant Science
771	and Biotechnology in Agriculture, Elmerich C, Kondorosi A, Newton WE (eds),
772	Springer, Dordrecht, 1998, vol. 31, 484-484.
773	https://doi.org/10.1007/978-94-011-5159-7_299
774	41. Donati A, Lee H, Leveau J, Chang W. Effects of indole-3-acetic acid on the
775	transcriptional activities and stress tolerance of Bradyrhizobium japonicum. PloS

776 one 2013; 8(10). <u>https://doi.org/10.1371/journal.pone.0076559</u>

35

42. Scott J, Greenhut I, Leveau J. Function	nal characterization of the bacterial <i>iac</i> gene	S

- for degradation of the plant hormone indole-3-acetic acid. J Chem Ecol 2013;
- 779 39(7):942-951. <u>https://doi.org/10.1007/s10886-013-0324-x</u>
- 43. Shu HY, Lin LC, Lin TK, Chen HP, Yang HH, Peng KC, et al. Transcriptional
- 781 regulation of the *iac* locus from *Acinetobacter baumannii* by the phytohormone
- 782 indole-3-acetic acid. Anton Leeuw Int J G 2015; 107(5):1237-1247.
- 783 <u>https://doi.org/10.1007/s10482-015-0417-3</u>

777

- 44. Laird T, Leveau J. Finished Genome Sequence of the Indole-3-Acetic
 Acid-Catabolizing Bacterium *Pseudomonas putida* 1290. Microbiol. Resour.
 Announc 2019; 8(28), <u>https://doi.org/10.1128/MRA.00519-19</u>.
- 787 45. Sadauskas M, Statkevičiūtė R, Vaitekūnas J, Meškys R. Bioconversion of
- 788 Biologically Active Indole Derivatives with Indole-3-Acetic Acid-Degrading
- 789 Enzymes from *Caballeronia glathei* DSM50014. Biomolecules 2020; 10(4).
- 790 https://doi.org/10.3390/biom10040663
- 791 46. Collino D, Salvagiotti F, Perticari A, Piccinetti C, Ovando G, Urquiaga S, et al.
- Biological nitrogen fixation in soybean in Argentina: relationships with crop, soil,
- and meteorological factors. Plant Soil 2015; 392:239–252
- 794 <u>https://doi.org/10.1007/s11104-015-2459-8</u>
- 47. Mengucci F, Dardis C, Mongiardini E, Althabegoiti M, Partridge J, Kojima S, et al.
- 796 Characterization of FliL Proteins in *Bradyrhizobium diazoefficiens*: Lateral FliL

797	Supports Swimming Motility, and Subpolar FliL Modulates the Lateral Flagellar
798	System. J Bacteriol 2020; 202(5):e00708-19. https://doi.org/10.1128/JB.00708-19
799	48. Bronstein P, Marrichi M, Cartinhour S, Schneider D, De Lisa M. 2005.
800	Identification of a twin-arginine translocation system in <i>Pseudomonas syringae</i> pv.
801	Tomat DC3000 and its contribution to pathogenicity and fitness. J. Bacteriol.
802	187:8450-8461. https://jb.asm.org/content/187/24/8450
803	
804	Legends to figures
805	Fig. 1. Evolution of IAA concentration (μ g.ml ⁻¹) measured along time (h) in (A) YEM

cultures modified by the exogenous addition of IAA to a final concentration of 40 μ g.ml⁻¹. (**B**) Supernatants and heat denatured supernatant of *Bj*E109 modified by the

808 μ g.ml⁻¹. (**B**) Supernatants and heat denatured supernatant of *Bj*E109 modified by the 809 exogenous addition of IAA to a final concentration of 40 μ g.ml⁻¹. Values shown are 810 mean ± SD (n = 3). Where not shown, the SD was smaller than the symbol.

(Yeast Extract Mannitol) culture medium, BjE109, BdUSDA110 and BeSEMIA5019

811

806

807

Fig. 2. IAA concentration (μ g.ml⁻¹) measured along time (h) in *Bj*E109 cultures modified by the exogenous addition of IAA to a final concentration of 0, 20, 40, 80, 120 and 160 μ g.ml⁻¹ of IAA (μ g.ml⁻¹) per tube. Values shown are mean \pm SD (n = 3). Where not shown, the SD was smaller than the symbol.

817	Fig. 3. IAA concentration (μ g.ml ⁻¹) measured along time (h) in supernatants of <i>Bj</i> E109
818	cultures obtained from early exponential (EE) or late exponential (LE) growth phase
819	modified by the addition of an IAA solution to a final concentration of 40 μ g.ml ⁻¹ .
820	Values shown are mean \pm SD (n = 3). Where not shown, the SD was smaller than the
821	symbol.

822

Fig. 4. IAA concentration (μ g.ml⁻¹) measured along time (h) in *Bd*USDA110 wild type, *Bd*USDA110 Δ *iac*A and *Bd*USDA110 Δ *iac*C mutant modified by exogenous addition of IAA to a final concentration of 40 μ g.ml⁻¹. Values shown are mean \pm SD (n = 3). Where not shown, the SD was smaller than the symbol.

827

Fig. 5. IAA concentration (μ g.ml⁻¹) measured along time (h) in *Bj*E109 wild type and *Bj*E109 Δiac C mutant modified by exogenous addition of IAA to a final concentration of 40 μ g.ml⁻¹. Values shown are mean \pm SD (n = 3). Where not shown, the SD was smaller than the symbol.

832

Fig. 6. Metabolic products identified after heterologous expression of the *iac*CD construct in *C. pinatubonensis* JMP134. The figure represents the putative degradation pathway in *Bj*E109 in relation of the identified metabolites (blue color) and the ones expected (red color) in our experiments.

1

Strains, plasmid and primers	nd primers Relevant characteristics	
Strains		
B. japonicum E109 (BjE109)	degrade IAA	
B. diazoefficiens USDA110 (BdUSDA110)	degrade IAA	
B. japonicum E109 ∆iacC (BjE109∆iacC)	unable to degrade IAA	
<i>B. diazoefficiens</i> USDA110 $\triangle iacC$ (<i>Bd</i> USDA110 $\triangle iacC$)	unable to degrade IAA	
B. diazoefficiens USDA110 spc4 (BdUSDA110∆iacA)	degrade IAA	
B. elkanii SEMIA 5019 (BeSEMIA5019)	produce IAA, unable to degrade IAA	
B. japonicum E109 ∆iacC/pJN105 iacC	degrade IAA	This study
Cupriavidus pinatubonensis JMP134 Plasmids	unable to use IAA as a sole carbon and energy source	[35]
pK18mobSacB	$lacZ\alpha \operatorname{Km}^{r} sacB$	[19]
pK18Sac:: <i>iacCBd</i>	<i>lacZ</i> α Kmr sacB carrying the internal fragment of <i>iac</i> C from <i>Bd</i>	
pK18Sac::∆iacCBd	lacZa Kmr sacB carrying the internal fragment of iacC from Bd deleted in SalI sites	
pK18SacB:: <i>iacCBj</i>	lacZa Kmr sacB -iacC carrying the internal fragment of iacC from Bj	
pK18Sac::∆ <i>iac</i> CBj	lacZa Kmr sacB -iacC carrying the internal fragment of iacC from Bj deleted in SalI sites	
pJN105 (pBBR)	Gm ^r	
pBS1	broad host range gateway destination vector, araC-P _{BAD} , Gm ^R	[48]
Primers		
FWiacCE (EcoRI)	AAAAgaattcGCTGGGTCTATGTCGGGC	This study
RViacCH (Hind III)	AAAaagcttGACCTGCCACTGCATCGT	
FWext	TCCTCAGCGACGACGAGA	This study
RVext	TTCAGGAGCAGGAGCAGGTCC	This study

2 ^(a) IMYZA-Instituto de Microbiología y Zoología Agrícola. Castelar. Argentina

Table 2. Effects of inoculation with BjE109, BdUSDA110 and *iac*C mutants on soybean seedlings growth and nodulation. Different letters represent significant differences according to Tukey test p< 0.05. Numbers in **bold** represent the difference percentages between mutants and wild type strain.

MRN	SRN	RN	SDW	RDW
nd	nd	nd	0.21 ± 0.007^{d}	0.048 ± 0.009^{d}
11.68±0.29 ^b	9.14±0.62 ^a	20.83±0.61 ^b	0.33±0.008 ^a	0.073±0.004 ^b
8.68±0.38 ^c	7.64±0.83 ^{ab}	16.32±0.91°	0.27 ± 0.009^{b}	0.057±0.011 ^c
<i>∆lac</i> € -25.6%	-16.4%	-21.6%	-18.05%	-21.9%
22.66±0.3 ^a	3.22±0.71 ^b	25.88±0.34ª	0.29±0.004 ^b	0.080 ± 0.007^{a}
USDA110 12.94±0.47 ^b	2.09±0.57 ^b	15.04±0.52 ^c	0.23±0.003°	0.072±0.015 ^b
12 80/	-35.0%	-40 4%	-20.6%	-8 75%
	MRN nd 11.68 ± 0.29^{b} 8.68 ± 0.38^{c} -25.6% 22.66 ± 0.3^{a} 12.94 ± 0.47^{b}	MRN SRN nd nd 11.68±0.29 ^b 9.14±0.62 ^a 8.68±0.38 ^c 7.64±0.83 ^{ab} -25.6% -16.4% 22.66±0.3 ^a 3.22±0.71 ^b 12.94±0.47 ^b 2.09±0.57 ^b	MRN SRN RN nd nd nd 11.68±0.29 ^b 9.14±0.62 ^a 20.83±0.61 ^b 8.68±0.38 ^c 7.64±0.83 ^{ab} 16.32±0.91 ^c -25.6% -16.4% -21.6% 22.66±0.3 ^a 3.22±0.71 ^b 25.88±0.34 ^a 12.94±0.47 ^b 2.09±0.57 ^b 15.04±0.52 ^c	MRNSRNRNSDWndndnd 0.21 ± 0.007^d 11.68 ± 0.29^b 9.14 ± 0.62^a 20.83 ± 0.61^b 0.33 ± 0.008^a 8.68 ± 0.38^c 7.64 ± 0.83^{ab} 16.32 ± 0.91^c 0.27 ± 0.009^b -25.6% -16.4% -21.6% -18.05% 22.66 ± 0.3^a 3.22 ± 0.71^b 25.88 ± 0.34^a 0.29 ± 0.004^b 12.94 ± 0.47^b 2.09 ± 0.57^b 15.04 ± 0.52^c 0.23 ± 0.003^c

Root nodules.plant⁻¹; **SDW**: Shoot dry weight.plant⁻¹; **RDW**: Root dry weight.plant⁻¹ (36). nd: not determined.

Figure 2

Figure 3

Figure 4

Figure 6

