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Energy loss and Z oscillations of atomic beams in plasmas
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We apply a semiclassical partial-wave-scattering method based on the Wentzel-Kramers-Brillouin approxi-
mation to study the transport cross section and the energy loss of neutral or ionized atomic beams in plasmas.
This approach reproduces the exact quantum result in a satisfactory manner, even in several extreme conditions
of plasma densities and temperatures, and agrees with the results of linear or perturbative calculations for bare
ions in the appropriate limits. We pay special attention to low projectile speeds where strong oscillations in the
transport cross section and energy loss—as a function of projectile’s atomic number—are observed. We study
these oscillatory phenomena varying the projectile speed and its ionization degree and the plasma temperature
and density. We analyze in physical terms these effects and present a diagram of plasma conditions showing the
regions where these oscillations may occur for both neutral and ionized beams.
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I. INTRODUCTION

The interaction and the ensuing energy loss of neutral or
ionized particles in plasmas are problems of central interest
for studies on plasma physics. In particular, they are of
great interest for current studies on nuclear fusion along the
two main research lines: inertial and magnetic confinement,
where the interaction with ionized or neutral particles must be
considered [1–5].

These two approaches to controlled nuclear fusion are very
far in terms of plasma densities and technological aspects. In
the first case, inertial confinement fusion (ICF) using either
lasers or ion beams, an accurate knowledge of the energy and
momentum transfer to small pellets containing the nuclear
fuel is required, as well as of the electron and ion transport
processes involved. In the second case, magnetic confinement
fusion (MCF), neutral beam injection is considered as an
important method to deliver energy and momentum to a
Tokamak plasma. In addition, the behavior of neutral or ionized
impurities in a Tokamak is important to model the behavior
and efficiency of the system [6]. Hence, accurate values of
transport coefficients and energy transfer between different
types of particles and the plasma are a basic requirement for
studies concerning both ICF and MCF methods.

Quantitative comparisons between theoretical models and
experiments with fusion-plasma targets are rather scarce due to
experimental difficulties in producing well-defined conditions
for determinations of stopping or transport coefficients through
beam-plasma interactions. On the other hand, an accurate
knowledge of those coefficients, for different type of ions and
plasma conditions, is of great interest for the development
of computational codes aiming at describing the effects of
impurities and fusion products in the plasma or the injection
of neutral or ionized beams. Besides the relevant cases
related to the main projects of nuclear energy production
previously mentioned, the interactions of ions with dense
and dilute plasmas are also of scientific interest for solar and
astrophysical studies [7].

Over the years most of the studies of the interaction of
ionized particles with plasmas assumed either a pointlike
particle or introduced an “effective charge” to represent the test
particle, producing in this way a simplification of the problem

that eases the theoretical description but does not consider the
influence of the internal structure of the particles on the precise
magnitude of the interaction coefficients.

Earlier studies of this problem include the cases of dilute
and dense media with different theoretical approaches, in
particular, collisional [8–10] and dielectric models [11–16].

In the case of cold media, experiments on various solid
targets have revealed a strong oscillatory dependence of
the stopping coefficients with the projectile atomic number
Zp [17,18], which cannot be described by the theoretical mod-
els quoted before. The theoretical description of these effects
requires a quantum mechanical approach [19–21] in which the
main ingredient is the transport cross section, calculated by
means of scattering theory. In a recent work, Mu et al. [22]
have shown that similar effects may be obtained in the case of
plasmas, but the calculations were restricted to neutral atoms,
so the effects of projectile ionization were not considered.

In this work, we provide a more extensive study of the
conditions in which strong oscillatory effects in the transport
and stopping coefficients as a function of Zp can be expected
to occur. Since the results in this case differ so much from
those predicted by most commonly used theoretical models,
the knowledge of these conditions remains as an important and
not yet well-known aspect of ion-plasma interactions, which
may have strong influence on the behavior of impurities in
fusion plasmas or in ion-plasma experiments using heavy ion
beams. The range of applicability of the present study includes
the cases of dense conduction electrons in metals, dense and
hot plasmas of interest for ICF, and dilute plasmas such as
those of interest for MCF, besides several other cases of interest
for astrophysical studies. Some of these cases correspond to
strongly coupled plasmas [23,24], like in particular the case of
solid-state plasmas [19–21,25,26].

The theoretical approach used in this study relies on a recent
development of the semiclassical method to treat the problems
of electron-ion scattering and energy loss of ions in matter [27].
As will be described in the following, this approach is simple to
implement and conserves the accuracy of more sophisticated
quantum mechanical methods. Hence, this method is proposed
here as a more exact way to describe the interaction of ions
and atoms with fusion plasmas.
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FIG. 1. Schematic diagram of typical plasmas, including cases
found in nature or produced in laboratory. MCF refers to mag-
netic confinement fusion and ICF refers to inertial confinement
fusion. The line θ = 1 separates classical (nondegenerate) and
quantum (degenerate) plasmas. Here the temperature is given
in energy unit, i.e., T [eV] = kBT [K], where kB is Boltzmann’s
constant.

A. Plasma parameters

In Fig. 1 we show a scheme of plasma conditions for specific
types of plasmas found in nature or produced in the laboratory.
The figure includes cases from dilute low-temperature plasmas
such as the ionosphere to the opposite extreme of high-density
and hot plasmas as required for ICF. The present description
is limited to the nonrelativistic range, which corresponds to
densities lower than 1028 cm−3 and electron temperatures
below 30 keV. In this work the plasma temperature values
are give in eV.

The purpose of this paper is to formulate a method of
calculation of the energy loss of neutral or ionized atoms
that can be applied on the whole range of plasma conditions
illustrated in this figure. The range of applicability of the
present approach includes in particular the cases of fusion
plasmas with temperatures T ∼ 104 eV (including those
of interest for MCF, with densities n ∼ 1015 cm−3, and
ICF, with n ∼ 1025 cm−3) as well as the stellar interiors,
and in the opposite limit, cold plasmas such as those in
metals (n ∼ 1023 cm−3) or the ionosphere (n ∼ 105 cm−3).
Therefore, the coverage of the approach allows us to study
the transition from highly degenerate (solid-state plasmas) to
classical (maxwellian) systems. The range of parameters that
characterize these systems are described in Fig. 1. The line θ =
1 in this figure separates the domains where classical (θ � 1)
or quantum-mechanical (θ � 1) descriptions are appropriate.
The parameter θ = kBT /EF yields the ratio between thermal
and Fermi energies. To carry out this study we describe

the electrons in the plasma by the Fermi-Dirac distribution
function, considering a homogeneous, isotropic and free of
field plasma (see Appendix A).

The neutrality condition of a plasma requires at least two
species, so, in principle, we must consider plasma ions and
electrons. However, since the ion mass is much larger than the
electron mass, the corresponding response time is also much
larger. (A simple analysis comparing the relevant response
times is given in Appendix B). Because of this condition,
the regions where the electronic and ionic contributions to the
energy loss are most important are well separated in energy [9].
Since the ionic contribution is fully classical [10], we will
restrict this analysis to the electronic stopping term, which
is the dominant energy loss channel over a wide range of
particle speeds. Moreover, since the electronic and nuclear
energy losses are independent processes, an addition of both
may be applied in the low-energy range where both could be
important.

The paper is organized as follows. In Sec. II we present
the semiclassical scheme that we apply to study the problem.
In Sec. III we describe the interaction potential and approx-
imations used to cover a wide range of projectile energies
and plasma conditions; in Secs. IV to VI we show the results
of calculations for several cases of interest, we analyze the
results for various plasma and beam-interaction scenarios and
we determine the regions where important oscillatory effects
appear. Finally, in Sec. VII, we summarize the results and
conclusions of this work.

II. THEORETICAL SCHEME: TRANSPORT CROSS
SECTION METHOD

As indicated before, our method is based on the semiclas-
sical [Wentzel-Kramers-Brillouin (WKB)] approximation to
describe the interaction between the plasma electrons and
the external atom or ion through the methods of quantum
scattering theory. The central quantity in this description is the
transport cross section (TCS), given by [28,29]

σtr =
∫

(1 − cos θ )dσ (θ ), (1)

which may be written in terms of the scattering phase shifts
δl as

σtr = 4π

k2

∑
l

(l + 1) sin2(δl − δl+1). (2)

where k is the wave vector corresponding to the scattered
electron with relative velocity vr = h̄k/me, with me being the
electron mass.

To calculate the values of δl in an exact way one should solve
the Schrödinger equation by numerical methods. However, the
number of phase shifts required to obtain a convergent result in
most of the cases of interest (Fig. 1) is prohibitively large; for
this reason we adopt the semiclassical WKB approach which
allows a much faster and usually very accurate solution [27].
In this scheme the phase shifts are calculated by the following
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integral [28]:

δl =
∫

dr

√
k2 − (l + 1/2)2

r2
− 2me

h̄2 V (r)

−
∫

dr

√
k2 − (l + 1/2)2

r2
. (3)

The integrals go over the range where the corresponding
integrand functions are positive. This scheme has been shown
to reproduce successfully the exact quantum calculations in a
wide range of cases [27]. In the following the present approach
will be referred to as the semiclassical partial-wave scattering
(SPWS) model.

In particular, perturbative solutions can be obtained using
the first-order approximation

δ
pert
l = −me

h̄2

∫ ∞

r0

V (r)dr√
k2 − (

l + 1
2

)2
/r2

, (4)

which yields the perturbative approximation to the transport
cross section

σ
pert
tr ≈ 4π

k2

∑
l

(l + 1)�2
l (5)

with �l = δl − δl+1. For instance, for a screened point nucleus
with charge Zpe, it can be seen that the Zp dependence of
the transport cross section in the perturbative approximation is
simply quadratic. In an improved treatment of close collisions,
an additional but weaker Zp dependence appears in the
“collision logarithm” [10]. In particular, this yields the correct
Bethe-Bloch limit for bare ions at high energies.

To obtain the stopping power S ≡ −〈dE/dx〉 in the
scattering theory we must integrate over all relative velocities
vr (between the electrons and the moving ion) and then, over
the plasma distribution function, as follows [10]:

S(vp,Zp) ≡ −
〈
dE

dx

〉

= πmen

v2
p

∫ ∞

0
dve vefFD(ve)I (vp,ve,Zp) (6)

with

I (vp,ve,Zp) =
∫ vp+ve

|vp−ve |
dvrv

4
r σtr(vr,Zp)

(
1 + v2

p − v2
e

v2
r

)
. (7)

Here vp stands for the projectile speed, ve represents the
electron velocities in the plasma, fFD(ve) is the Fermi-Dirac
distribution given in the Appendix A, vr is the relative velocity,
given by vr = |ve − vp|, and n is the electron density.

III. INTERACTION POTENTIALS

Since we are interested in studying the energy loss of atomic
projectiles with arbitrary ionization degrees, we describe here
the model used for the interaction potential in the various cases
of interest. We consider the following cases: (a) bare ions,
(b) neutral projectiles, and (c) ions with arbitrary ionization
degree.

A. Bare ions

When a static point charge Zpe is introduced in a plasma,
the potential produced by the interaction with plasma electrons
is well represented by a Yukawa potential [30,31],

V (r) = −Zpe

r
exp(−r/λs), (8)

where λs is the static screening length [32]

λs = vs

ωp

, (9)

where ωp is the plasma frequency and vs is a typical electron
speed (see Appendix A).

As discussed in Appendix A, in the limits of low and high
temperature the screening length takes the well-known expres-
sions corresponding to Thomas-Fermi and Debye screening,
namely λTF = vF /

√
3ωp and λD = vth/ωp, respectively. Here

vF refers to the Fermi velocity and vth = √
kBT /me refers to

the thermal electron speed.
In the case of swift ions (those moving with velocities

much larger than vs) the screening becomes anisotropic and
the range of the screening cloud increases. The effective
interaction range in this case is given by the adiabatic screening
distance λad = vp/ωp and to a good approximation the average
interaction may still be described by Eq. (8), where λs is
replaced by λad [32].

The extension of the previous cases to arbitrary (non-
relativistic) projectile speeds may be done using a simple
ansatz, which interpolates between the previous limits. In this
approach, the model potential for bare ions has the form or
Eq. (8), where the dynamical screening length is given by

λ(v) =
√

λ2
s + λ2

ad(v). (10)

This approximation is based on the model description of
Ref. [10], where it was shown to yield very good results for
the energy loss of bare ions.

While these approximations may be considered appropriate
for the case of bare ions, they are not applicable to the more
general case of partially ionized or neutral atoms. Hence, we
have to introduce a more comprehensive scheme to deal with
ionic or neutral projectiles.

B. Neutral atoms

In this case we may approximate the interaction potential by
the well-known Molière potential, which provides an accurate
fit to the Thomas-Fermi model for atoms. This potential
has been widely used to describe the interactions in dense
media [33], as well as to calculate the energy loss of atomic
projectiles in various conditions [21,34]. The Molière potential
is given by

V (r) = −Zpe

r

3∑
j=1

Aj exp(−αj r/aTF), (11)

where Aj = {0.1; 0.55; 0.35}, αj = {6; 1.2; 0.3}, and aTF =
0.8853a0Z

−1/3
p is the Thomas-Fermi radius (where a0 is the

Bohr radius). We can interpret each contribution in the Molière
potential, i.e., j = 1,2 and 3, as representing an inner, medium,
and external screening density, respectively.
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C. Arbitrary ionization degree

To extend this study to any degree of projectile ionization,
we use the model proposed in Ref. [34] where the ion potential
is represented by two terms,

V (r) = Vc(r) + Vs(r), (12)

where Vc yields the “ion core contribution,” which represents
the field of the nucleus with the screening provided by its Ne

bound electrons, while Vs yields the “external screening” of
the ion charge q produced by the plasma electrons.

We define the ionization degree of the projectile by

η = q

Zp

, (13)

where q is the net charge of the projectile and Zp its atomic
number. Then, for a given value of η, we adjust the parameters
Aj in the Molière potential (Aj → Ãj ) and introduce at the
same time an external screening component to compensate the
ion charge, so we have [34]

V (r,vp) = −Zpe

r

3∑
j=1

Ãj exp{−αj r} − qe

r
exp{−r/λ(vp)},

(14)

where
∑

j Ãj = 1 − η and λ(v) is given by Eq. (10). By
changing the values of the coefficients Ãj in a continuous way,
as described in Ref. [34], we can represent ions with arbitrary
degrees of ionization. We can note that for η = 0 (Ãj = Aj ),
V (r,vp) yields the potential of neutral atoms, Eq. (11), while
for η = 1 (Ãj = 0) we retrieve the case of bare ions, Eq. (8).

IV. TRANSPORT CROSS-SECTION CALCULATIONS

We begin this analysis by showing some examples of
quantum mechanical effects in the transport cross section
which are beyond the possibility of descriptions based on
classical or linear response theories. In the following, atomic
units (a.u.) will be used to express some of the results or the
calculation parameters.

A first set of calculations is shown in Fig. 2, where we plot
the values of the TCS as a function of the ion atomic number for
a plasma with density 1016 cm−3 and temperature of 20 eV for
ionization degrees varying from η = 0 (neutral) to η = 1 (full
ionization). Here we observe a strong oscillatory dependence
for neutral atoms, while for the other cases a dependence of
the type Zα

p (with α ∼ 1.7) is obtained. This approaches the
Z2

p dependence of the perturbative models. In order to show all
the curves in the same figure the curves for η = 0, 0.25, and
0.5 have been multiplied by factors 150, 3, and 2, respectively.

In this case (dilute plasma) the oscillatory behavior is
observed only for neutral atoms. However, for dense plasmas,
where the screening length becomes much smaller, similar
effects can be observed also for ionized projectiles. This is
illustrated in Fig. 3 (with density n = 3.9 × 1023 cm−3), where
strong oscillations are observed both for neutral and ionized
atoms.

This oscillatory phenomenon is a pure quantum effect,
produced by the interference of partial waves in Eq. (2). The
condition to have large oscillatory effects is that only a few

FIG. 2. (Color online) Transport cross section with SPWS model
for atomic projectiles interacting with plasma electrons, as a function
of atomic number Zp . The relative velocity here is 1 a.u. The plasma
density and temperature are 1 × 1016 cm−3 and 20 eV, respectively.
The figure shows the disappearance of the oscillatory behavior when
the degree of ionization η increases.

phase shifts with significant values dominate the sum in Eq. (2).
Figure 3 shows also a clear change in the behavior when the
relative velocity vr increases, consisting in an attenuation or

FIG. 3. (Color online) Transport cross section calculated with
the SPWS model as a function of atomic number Zp , for neutral
(η = 0) and bare (η = 1) ions. The results show the attenuation of
the oscillations when the relative velocity vr increases.
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disappearance of the oscillations. It may be shown that for
large values of vr the perturbative approximation works well
and in such case the dependence on Zp becomes a smooth
function (in particular, one expects a quadratic dependence on
Zp in first-order perturbation theory, although in these cases
we are very far from such behavior).

As we will show later in more detail, the oscillatory
effects are more important at low relative velocities and
depend on plasma temperature and density, as well as on
projectile properties such as its degree of ionization. A more
complete analysis will be made in the following sections,
where the conditions required to observe these effects will
be characterized.

V. ENERGY LOSS CALCULATIONS

We start this set of calculations by showing briefly that the
present method is not restricted to low velocities but can be
applied in a general way to any velocity in the nonrelativistic
range. Figure 4 shows the stopping power of bare ions (η = 1)
with nuclear charges Zp = 1 and 20, calculated from Eq. (6)
with the present SPWS model, versus the projectile speed.
This figure corresponds to plasma conditions given by n = 1 ×
1018 cm−3 and T = 100 eV.

FIG. 4. (Color online) Stopping power as a function of the
projectile velocity vp for two projectile atomic numbers Zp . In both
cases T = 100 eV and n = 1 × 1018 cm−3. We compare the SPWS
model with a previous dielectric model (PMtV) [16] and with the
Bethe and Bohr limits for high energies. In case (a) Zp = 1 and,
hence, the Bethe formula gives the correct high-energy limit. In case
(b) Zp = 20 and then the correct behavior is given by the Bohr limit.

We compare these results with those obtained from the Peter
and Meyer-ter-Vehn’smodel [16] (curves denoted “PMtV”),
which was developed for bare projectiles using plasma kinetic
theory and dielectric models. In addition, we show in these
figures the Bohr and Bethe limits appropriate for high energies.

In Fig. 4(a) the projectile charge is Zp = 1 and, hence, the
correct behavior at high speeds is given by the Bethe limit
(which applies when Zp/vp < 1) [35]. On the other hand,
Fig. 4(b) corresponds to a higher projectile charge, Zp = 20,
and in this case (where Zp/vp > 1 for the energy range
considered) the high-energy behavior agrees with the Bohr
limit [35]. In both cases we observe a very good agreement
between the semiclassical (SPWS) and the PMtV models and
also a good convergence to the corresponding high-energy
limits. Notice that when using the PMtV model one must
choose the appropriate limit for the cutoff value (kmax) in the
wave-vector integral, whereas the SPWS model contains it
automatically [27].

These examples serve to illustrate the behavior for bare ions
and relatively large speeds, where a contact with dielectric
or perturbative models is achieved, and we notice also that
these models are contained as particular limits of the present
description. Since we are interested here in the description of
the stronger quantum effects that arise for neutral or ionized
beams at intermediate or low energies, where perturbative
methods fail, the following discussion will be concentrated
on these cases.

VI. QUANTUM OSCILLATIONS IN THE ENERGY
LOSS (Zp OSCILLATIONS)

One of the most interesting features of the energy loss of
slow projectiles in matter is the oscillatory dependence on
the atomic number Zp; the discovery of this behavior was
a surprising result observed with solid targets [17,18]. More
recently, similar effects were predicted for neutral atoms in
plasmas [22]. These effects cannot be explained by any of the
perturbative or dielectric models [11–16] since it is a typical
quantum-mechanical effect.

An explanation of these oscillations was first given by
Finneman and Lindhard [19] and studied in more detail by
Briggs and Pathak [20,21]. From these works one can see that
the oscillations are due to (a) the contribution of few phase
shifts usually involved in low-velocity collisional process and
(b) the strong dependence of the phase shift values on the
projectile atomic number. To explain this in simple terms,
we can estimate the maximum value of angular momentum
relevant for the scattering of electrons in a screened field,

lmax ∼ mevrλ/h̄, (15)

where λ represents the range of the interactions (given, in this
case, by the screening length) and vr is a typical value of the
relative electron-ion speed. It may be shown that for large
values of lmax the interferences between many different partial
waves in the sum of Eq. (2) produce a phase-average effect
that tends to wash out the oscillations. For this reason, the
strongest oscillatory effects are obtained when only few wave
components are significant. This effect has been described in
previous works for solid targets [19–21].
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In fact, in the case of solid targets, one can approximate
the stopping power at low velocities (vp � vF ) by the
expression [19,25]

S = nmevpvF σtr(vF )

and, taking into account that σtr ∼ ∑
l(l + 1) sin2 �l , one can

expect an oscillatory behavior as a function of Zp, provided
that lmax is not large [20,21].

The studies in solids may be taken as limiting cases of
calculations for cold and dense systems (solid-state plasmas),
and so the question that arises is as follows: What is the
behavior of these oscillations when the plasma temperature is
increased or the density is decreased? It may be expected that
these oscillations will gradually fade away as the conditions
of dilute classical plasmas are approached.

In this section we show that the present scheme may be used
to cover in a continuous way the transition between the pre-
viously described limits of quantum, perturbative, or classical
behaviors. In particular, we study the oscillatory effects of the
stopping power as a function of the projectile atomic number
Zp, varying the projectile’sspeed and ionization degree and
the plasma density and temperature.

A. Zp oscillations for cold media

As a first test of this approach we consider the interaction
of slow ion beams with a carbon target (representing a limit
of a cold plasma system) with normal density, n = 3.9 ×
1023 cm−3. This is the case where the first evidences of strong
oscillatory effects were experimentally obtained [17,18]. In
the low velocity range of these experiments (below the
Bohr velocity) the electronic energy loss is produced by
the excitation of the valence electrons of carbon, which can be
represented as a degenerate free electron gas [34].

The results of the present calculations using the SPWS
model are shown and compared with experimental data
[17,18,36] in Fig. 5. In addition, we show the results of exact
quantum scattering theory (obtained by numerical integrations
of the Schrodinger equation) [34].

FIG. 5. (Color online) Comparison of stopping power values
calculated with the SPWS model, using a Molière potential, with
previous quantum mechanical calculations using Thomas-Fermi (TF)
and Molière (M) potentials. The experimental values (points) from
Refs. [17,18,36] are also shown.

FIG. 6. (Color online) Attenuation of quantum oscillations when
the projectile velocity, vp , increases (vp/vth = 1, 2, and 3). The
plasma density is n = 3.9 × 1023 cm−3 and vth = √

T/me is the
classical thermal velocity. These calculations correspond to neutral
projectiles (η = 0).

The previous calculations in Ref. [34] were done using both
a Thomas-Fermi potential (TF) and a Molière potential (M) to
represent the interactions, showing only small differences. The
present calculations were made using the Molière potential.
We observe a very good agreement of the SPWS model with the
exact quantum mechanical results for the same potential. We
also find that the present calculations reproduce successfully
the oscillations observed in the experimental data, with some
discrepancies for Zp values around 30. The same behavior
is observed in the exact results. An explanation of these
discrepancies was given earlier by Calera-Rubio et al. [37]
by considering the effect of inhomogeneities in the electron
density of real solids.

B. Attenuation of the Zp oscillations with increasing v p

The studies in cold solid targets show that these oscil-
lations are gradually attenuated when the projectile speed
increases [34]. We can understand this attenuation considering
that when the projectile velocity increases there is a transition
from the strong interaction to the perturbative regime. In fact,
we observe that the number of phase shifts required for an
accurate calculation of the transport cross section increases
with ion speed, producing a “mixing” of phase-shift terms in
Eq. (2) which gradually attenuates the oscillatory behavior.

This effect is shown in Fig. 6 where we present the results
for three ion velocities in a plasma target with the normal
carbon density, n = 3.9 × 1023 cm−3 and with a temperature
T = 10 eV (in order to show the three cases in the same figure
we use here a logarithmic scale for the energy loss).

C. Attenuation with increasing temperature

Switching now from solids to plasma targets, we can
study the changes in the oscillatory phenomenon by varying
the plasma temperature. To illustrate these effects we show
in Fig. 7 the variation of the stopping power curves with
increasing plasma temperature. In these cases the projectile
speed is vp = 0.5 a.u.
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FIG. 7. (Color online) Attenuation of quantum oscillations for
slow neutral atoms when the plasma temperature increases (T = 10,
100, and 1000 eV). For temperatures larger than 1 keV the Fermi-
Dirac function converges to Maxwell-Boltzmann. These calculations
correspond to vp = 0.5.

We note in this figure that the oscillatory behavior dis-
appears when the temperature increases; this effect may be
explained by taking into account the dependence of the
transport cross section σtr on the relative speed vr [cf. Eq. (7)]
and the sampling of larger electron speeds when the plasma
temperature increases.

We note also as an interesting effect the similarity of the
stopping curve for T = 10 eV with those in Fig. 5 for a
cold target (although the absolute values are different). It is
important to note that the details of the oscillations for neutral
ions depend on the projectile’s structure; this relation has also
been noticed in previous theoretical studies [19,20,22,34].
Here we additionally observe that these oscillations are
very sensitive to the projectile speed and to the plasma
temperature and that these effects attenuate as a result of a
transition from the strong quantum regime to the perturbative
regime.

Therefore, the oscillatory behavior of the energy loss as
a function of the atomic number is a consequence of (a) the
few phase shifts relevant at low speeds and (b) the size and
structure of the projectile.

D. Calculations varying the ionization degree

The fact that the oscillations depend on the projectile
structure may be illustrated by considering the variation of the
stopping curves when the ionization degree η is changed, while
maintaining the other parameters fixed. In this case, the plasma
screening must be taken into account (in addition to the ion core
screening); the range of the screening cloud becomes another
important parameter and this confers a different “structure” to
the ion.

The effect of the outer screening is to compensate the charge
q of the ion by an equal screening charge −q. This effect
occurs over a distance λ whose value depends on the plasma
density and temperature (static screening) and on the ion speed
(dynamical screening).

FIG. 8. (Color online) Oscillations of the stopping power for
slow ions (vp = 0.5 a.u.) when the ionization degree varies, going
from neutral (η = 0) to bare projectiles (η = 1). For these plasma
conditions (n = 3.9 × 1023 cm−3 and T = 10 eV) the oscillations
occur for any projectile ionization degree.

To illustrate this effect, we show in Fig. 8 the changes in
the oscillatory pattern when the projectile’s ionization degree
η varies from 0 (neutral) to 1 (bare ion). For the plasma
conditions of this figure (n = 3.9 × 1023 cm−3, T = 10 eV)
the oscillatory phenomenon is observed for all ionization
states.

However, one can make these oscillations disappear by ap-
propriate changes in the plasma parameters. Quite surprisingly,
this effect may be produced in two opposite ways: either by
reducing or increasing the density.

A couple of examples are shown in Fig. 9 for chosen
densities of (a) n = 1 × 1021 cm−3 and (b) n = 1 × 1025 cm−3.
The temperature in both cases is 10 eV and the projectile
speed is vp = 0.5 a.u. It is also surprising to observe here two
opposite effects: In the first case one observes oscillations for
neutral atoms but not for ionized projectiles, while just the
opposite occurs in case (b). We give now an explanation of
these seeming paradoxical results.

The explanation stems from the competing roles of two
relevant scale lengths: the screening length λs (representing
the interaction range) and the de Broglie length λB = h̄/mevs.

As is well known from quantum scattering theory, possible
interference effects may arise in the interaction of electrons
with a screened potential when these two lengths have similar
values. These effects disappear when the interaction range
λs is much larger than the de Broglie length λB [notice that
this argument is similar to that discussed in connection with
Eq. (15)].

In case (a) of Fig. 9, the density of the plasma is relatively
low (in an atomic scale) and, hence, the corresponding
screening length, for bare ions, is comparatively large (λs ∼
14 a.u. while λB ∼ 1 a.u.). Therefore we do not see oscillations
in the case of ions. However, if we consider neutral atoms, the
plasma screening distance λs is no longer relevant and it must
be replaced by the atomic screening distance λatom ∼ 1 a.u.
Therefore, for neutral atoms we are in the conditions where
λB ∼ λatom and so important oscillations are obtained.
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FIG. 9. (Color online) Zp dependence of the stopping power of
slow ions and for two plasma densities. Case (a) shows oscillations
for neutral projectiles but not for ionic projectiles. Case (b) shows
oscillations for ionic projectiles and not for neutral projectiles. See
the text for discussions. In both cases T = 10 eV and vp = 0.5 a.u.

In case (b) of Fig. 9, since the density is very high, the
Fermi velocity vF (which yields the typical electron velocity
in this case) is also large, and so the de Broglie length becomes
smaller (λB = h̄/mevF ∼ 0.5 a.u.). Additionally, because the
density is high, the screening distance becomes rather small
(λs ∼ 0.5 a.u.). Therefore in this case we have a situation
where λB ∼ λs , which explains why some oscillations are
observed for ions. Instead, in the case of neutral atoms, we find
that λB < λatom so no oscillations are observed for neutrals.

We may notice, however, that the latter situation of
considering neutral atoms in a very high density plasma
may not be physically plausible due to the phenomenon of
“pressure ionization” which may produce the ionization of the
atoms [38].

In the case of low densities, where the Fermi-Dirac
distribution converges to the Maxwell-Boltzmann function,
the stopping power for neutral projectiles becomes simply
proportional to the electron density n; hence, the ratio S/n

for neutral atoms becomes independent of n. Figure 10 shows
the results for various plasma densities. We can note that,
for the whole range where the Maxwell-Boltzmann regime is
dominant (up to n ∼ 1 × 1023 cm−3 in this figure), the curve
S/n shows almost no change, while for higher densities a
gradual damping of the oscillations is observed.

FIG. 10. (Color online) Variation of the Zp dependence of the
stopping power with increasing plasma density for neutral atoms. The
curves for densities in the range n ∼ 1016 cm−3 to n ∼ 1023 cm−3 are
almost coincident, since the plasma degeneracy is low. The curves
for higher densities correspond to partially degenerate plasmas.

E. Summary of cases of interest

To summarize our study of oscillatory phenomena in
the transport cross section and energy loss of slow atoms
or ions, we show in Fig. 11 a temperature-versus-density
diagram, indicating the regions where those oscillations can
be expected. As discussed before, for ionic projectiles, the
“structure” or size parameter is given by the plasma screening,
while for neutral projectiles the corresponding parameter
is the atomic size. Therefore, the matching conditions that
delimit these regions for ionized and neutral projectiles are

FIG. 11. (Color online) Regions of oscillations diagram for
stopping power and transport cross section. The lines show the
oscillation conditions for ionic (λs = λB ) and neutral (λB ∼ 1 a.u.)
projectiles. In both cases we find a high-density limit (n ∼ 1.2 ×
1024 cm−3, for atoms and n ∼ 1.3 × 1025 cm−3 for bare ions), where
λB and λs become independent of the plasma temperature (degenerate
plasma region). We show with letters A to E some cases studied in
this work (Figs. 5 to 10). The θ = 1 line separates the classical and
quantum regions.
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given by

λB ∼ λs (bare ions), (16)

λB ∼ 1 a.u. (neutral atoms), (17)

where λB = h̄/mevs and λs = vs/ωp. These conditions are
represented by the dash-dot lines in Fig. 11 and the regions en-
closed below these lines are those where important oscillatory
effects take place.

The dots marked with letters A to E indicate the particular
cases studied in the previous sections. The distribution of dots
in this figure serves to explain why we choose such plasma
conditions. Since the main oscillation phenomenon takes place
at low projectile speeds, we considered only slow particles
(vp ∼ 0) to produce this diagram.

To further explain the conditions illustrated in Fig. 11 we
consider the two limits given by Eqs. (16) and (17) in the
following cases:

(i) When θ � 1 (i.e., EF � T ), then vs → vTF/
√

3 (cf.
Appendix) and the matching conditions become independent
of plasma temperature, giving a high-density limit. In this
regime we obtain for neutral projectiles n ≈ 1.2 × 1024 cm−3,

while for bare projectiles we get n ≈ 1.3 × 1025 cm−3.
(ii) In the classical Maxwell-Boltzmann regime, θ � 1

(i.e., T � EF ), the typical electron speed is vs → vth =√
T/me (independent of plasma density). Therefore, in this

region, in the case of neutral atoms the matching condition
yields a temperature limit T ≈ 27 eV, which is independent
of the density. Instead, in the case of bare ions, the rele-
vant screening distance is λs → λD = vth/ωp, while λB ≈
h̄/mevth; therefore, the matching condition gives v2

th = ωp

(in a.u.), which yields a straight line with slope 1/2 in the
logarithmic scale. This explains the shape of the curves for
atoms and bare ions shown in Fig. 11.

As a case of special interest here, we mention the case of
ICF experiments, where a transition from a cold target case
to a very hot and dense plasma (i.e., a transition through the
points A, B, and C in Fig. 11) occurs.

VII. CONCLUSIONS

We applied the SPWS method to study the interaction of
heavy ions with plasmas. Using this approach we explore
very different conditions of beam energies and ionization
degrees as well as plasma density and degeneracy. The present
semiclassical approach reproduces the exact quantum result in
a satisfactory manner, even in some extreme cases.

We studied the oscillatory behavior of the energy loss
of ion beams (Zp oscillations) in plasmas for a wide range
of plasma conditions. We performed extensive numerical
calculations to illustrate the oscillatory phenomenon varying
the projectile’s ionization degree and its velocity, as well as
the plasma density and temperature covering a very wide
range of conditions that include the type of plasmas of interest
for magnetic- and inertial-confinement fusion research. The
oscillatory effects are explained and characterized in terms of
the projectile-structure parameters, the screening length, and
the de Broglie wavelength associated to plasma electrons. The
regions where such oscillatory phenomena may be observed

are condensed in a diagram that covers all the cases of interest
for the usual laboratory and fusion plasmas, as well as cases
of astrophysical interest.

Due to the general character of the method and its extended
range of applicability, we propose it as a convenient method to
represent in a more accurate way the interaction of atoms and
ions with plasmas for a very wide range of conditions.
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APPENDIX A: DISTRIBUTION FUNCTIONS

We summarize here the usual description of the plasma
properties in terms of the velocity-distribution function. We
consider an isotropic and homogeneous plasma with density n

and temperature T in the absence of magnetic fields and with
arbitrary degree of degeneracy, so the electrons behave as a free
electron gas with a distribution of velocities v corresponding
to the Fermi-Dirac statistics, namely

fFD(v) = C(n,T )

e( 1
2 mev2−μ)/kBT + 1

, (A1)

where C(n,T ) is a normalization coefficient that is determined
by the condition ∫

fFD(v) d3v = 1. (A2)

The chemical potential μ is calculated from the normalization
condition as follows [14]. First, we define the degeneracy
parameter ζ by

ζ ≡ θ−1 = EF /kBT , (A3)

where EF = mev
2
F /2 is the Fermi energy, with vF = h̄kF /me

and kF = (3π2n)1/3. The degeneracy parameter serves to
characterize the conditions of classical (θ � 1) or quantum
(θ � 1) behavior of the plasma.

From the normalization condition (A2) we obtain the
relation [

2
3F (μ/kBT )

]2/3 = ζ = EF /kBT , (A4)

where the function F (s) is defined by

F (s) =
∫ ∞

0

x1/2

1 + ex−s
dx, (A5)

with s = μ/kBT . These equations determine the chemical
potential by μ = skBT as a function of the degeneracy
parameter ζ.

The screening of an external point charge in the plasma is
given, for arbitrary values of the plasma degeneracy, by the
screening length [14]

λs = vs

ωp

, (A6)
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where ωp = (4πne2/me)1/2 is the plasma frequency and vs is
a particular average of the electronic speed defined by

1

v2
s

=
〈

1

v2

〉
= 4π

∫ ∞

0
fFD(v)dv. (A7)

It may be shown that this expression reproduces two well-
known limits [14]: For T → 0 we obtain the Thomas-Fermi
limit λs → λTF = vF /

√
3ωp, whereas for high temperature

plasmas (kBT � EF ) we retrieve the well-known Debye limit
λs → λD =

√
kBT /4πne2. These limits correspond to vs �

vF /
√

3 (degenerate plasma) and vs � √
kBT /me (classical

plasma), respectively.

APPENDIX B: RESPONSE TIME

A simplified estimation of the velocity range where the
contribution of plasma ions to the total energy loss may be
significant can be obtained by considering the response times
of the ions and electrons, in relation with the interaction time
with moving projectiles. In the following we use subscripts i

and e to refer to ions and electrons, respectively.
On one hand, the interaction time of such collisions can be

estimated by [39]

�t ∼ b

vp

, (B1)

where b is the impact parameter in the collision between
the projectile, with velocity vp, and the target particle (either
electron or ion). The relevant range of impact parameters at
low projectile speed is given by the screening length

λs,e = vth,e/ωp,e (electrons), (B2)

whereas for the interaction with plasma ions the corresponding
value is

λs,i = vth,i

ωp,i

= 1

Z
1/2
i

vth,e

ωp,e

(ions), (B3)

where Zi is the charge of plasma ions (we consider a
neutral plasma such that n = ne = Zini), vth,e = √

T/me is
the already-defined electron thermal speed and vth,i = √

T/mi

is the corresponding ion speed. λs,i is the ion contribution to
the Debye screening length [31].

On the other hand, the response time of each plasma
species can be associated to its contribution to the total plasma
frequency ωp,α , where α refers to such plasma specie (i.e.,
either electrons or ions), given by [31]

ω2
p,e = 4πne2

me (B4)

ω2
p,i = 4πni(Zie)2

mi

= me

mi

Ziω
2
p,e.

FIG. 12. (Color online) Nuclear and electronic stopping power
contributions [10]. We consider a projectile with Zp = 1. The
maximum of each curve corresponds to vp � vth,i and vp � vth,e,
respectively.

Hence, the relation of times

λs,α

vp

∼ 1

ωp,α

(B5)

gives a condition for which the energy transfer should be
important (matching of the interaction time with a typical
response time of each species). That is to say, one may expect a
significant contribution to the energy transfer when the product
λs,αωp,α is close to vp.

It should be noted that the product λs,αωp,α yields the
corresponding thermal speed, namely

λs,eωp,e = vth,e, (B6)

λs,iωp,i =
√

me

mi

vth,e = vth,i . (B7)

Therefore, the criterion here exposed agrees with the so-
called Bohr matching condition in the context of atomic
excitations [40], which yields an estimation of the velocity
at which the corresponding process reaches a maximum, that
is, when the projectile velocity matches the orbital speed of
the target electrons.

To illustrate this matching condition, we show in Fig. 12 the
ionic and electronic contributions to the stopping power for a
hydrogen plasma with density n = 1016cm−3 and temperature
T = 1 keV, calculated with the de Ferrariis and Arista
formulas [10]. Hence, for projectile velocities larger than
1 a.u. the ionic contribution to the stopping power may be
neglected.
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