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The exact solution to the problem of a hydrogen atom confined in a spherical well (CHA) is

discussed; the standard results for the unconfined hydrogen atom (UHA) are recovered as the

sphere size becomes large compared to the Bohr radius. The solutions are characterized by a set of

three quantum numbers N (¼ 1, 2, 3,…), L (¼ 0, 1, 2,…), and M (¼ � L, � Lþ 1,…, L� 1, L), and

the energy eigenvalues, in contrast to the situation in the UHA, depend on both N and L. All

members of a given family n¼NþL, however, evolve asymptotically toward the same energy

level in the large-sphere limit, recovering the typical n2 degeneracy of the UHA. Besides

numerically exact solutions for arbitrary sphere sizes, rigorous analytical approximations are

provided for the physically relevant strong- and weak-confinement regimes. A conjecture

concerning the ordering of the energy levels is rigorously confirmed. The validity of the virial

theorem, Kato’s cusp condition, and the role played by the density as an alternative basic variable

for the case of the CHA are discussed. VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4820244]

I. INTRODUCTION

The quantum-mechanical problem of a hydrogen atom
with the nucleus clamped at the center of a sphere of radius
R, with infinite potential energy outside the sphere, was
introduced by Michels et al. to model the effect of pressure
on the states of hydrogen atoms in stars and gaseous planets.1

The model was interesting enough to attract Sommerfeld’s2

attention and was further elaborated on by DeGroot et al.3

More recently, the same model has been analyzed using a va-
riety of perturbative and variational techniques.4–11

Besides its importance in atomic physics and astrophysics,
the confined hydrogen atom (CHA) is relevant to bulk and
nano-structured semiconductors (i.e., quantum dots), as
according to the effective-mass theory of Luttinger and
Kohn12 the behavior of donor and acceptor impurities in a
host semiconductor can be approximated by an extra charge
(electron or hole) orbiting around the ionized parent impu-
rity. This hydrogen-atom type of model (with some refine-
ments related to details of the band structure of the host
semiconductor) forms the basis of our present understanding
of shallow impurities in bulk and confined semiconduc-
tors.13,14,30 The physics of the CHA may be also useful as a
simple model of ionized plasma properties15,16 and for atoms
encapsulated in fullerene.17

We provide here numerical and limiting analytical exact
results for the CHA, using the rigorous mapping of its radial
Schr€odinger equation with the second-order differential
equation satisfied by the so-called Kummer functions (Ref.
18, p. 504). While this approach has been already used for
the calculation of some selected electronic states,19–22 here,
we extend this approach to essentially the full relevant spec-
trum of the CHA. With these results at hand, we obtain more
complete insight on the CHA electronic spectrum and its de-
pendence on pressure or confining sphere size. The main
results are as follows: (i) the issue of the quantum numbers
and the ordering of the energy levels of the CHA have been
clarified; (ii) the size dependence of the lowest electronic
states of the CHA has been found numerically and displayed

in Fig. 1; (iii) rigorous analytical approximations have been
derived in the physically relevant limits of weak and strong
confinement; and (iv) the application of a modified version
of the virial theorem, valid for confined systems, has been
exemplified, together with a discussion of Kato’s cusp condi-
tion and the essential role played by the electronic density
alone as an alternative basic variable.

II. EXACT SOLUTION IN TERMS OF KUMMER

FUNCTIONS

Owing to the wide disparity of the nuclear and electron
masses, we start by writing the Schr€odinger equation for an
electron in the field of a nucleus of charge Ze and infinite
mass, both confined within a sphere of radius R, with the nu-
cleus located at the center of the sphere:

Fig. 1. Eigenenergies of the compressed hydrogen atom as a function of the

atom size, for the four lowest-lying families corresponding to NþL¼ 1, 2,

3, 4. To leading order, the asymptotic limits for ~ENLðkÞ are a2
NL=ð2k2Þ for

k! 0, and �1=½2ðN þ LÞ2� for k� 1 (see text). The asymptotic values for

k� 1 are �1/2, �1/8, �1/18, and �1/32.
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½T̂ þ V̂ �WðrÞ ¼ � �h2

2m
r2 � Ze2

r

� �
WðrÞ ¼ EWðrÞ: (1)

Here T̂ and V̂ are the kinetic- and potential-energy operators,
respectively. The boundary conditions on WðrÞ are that it
must remain finite at r¼ 0 and that WðRÞ ¼ 0 (hard-wall
boundary condition). This last condition distinguishes the
CHA from the standard unconfined hydrogen atom (UHA),
where one imposes the requirement that the eigenfunction be
bounded at infinity.23

Both the Coulomb and confining potentials are spherically
symmetric, so Eq. (1) can be separated in spherical polar
coordinates. Let r, h, and / be the coordinates of the elec-
tron. Proposing a separable solution of the type WðrÞ
¼ ½uðrÞ=r�YM

L ðh;/Þ (YM
L being the spherical harmonic identi-

fied by the usual angular momentum quantum numbers L
¼ 0, 1, 2,… and M¼� L, � Lþ 1,…, L� 1, L), we arrive at
the well-known differential equation for the radial functions

1

2

d2

d~r2
þ Z

~r
� LðLþ 1Þ

2~r2
þ ~E

� �
uð~rÞ ¼ 0; (2)

written in terms of dimensionless variables ~r ¼ r=a0 and
~E ¼ E=Ha, where a0 ¼ �h2=me2 and Ha ¼ e2=a0 ¼ me4=�h2.
(For semiconductors in the effective mass framework, we
would replace e2 ! e2=e and m! m�, e and m� being the
static dielectric constant and effective electron mass, respec-
tively, for the host semiconductor.)

Finally, defining q ¼ 2Z~r=a, with a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Z2=2 ~E

q
(assum-

ing that ~E < 0), and uð~rÞ ¼ uðqÞ ¼ e�q=2q1þLwðqÞ, we
obtain

d2

dq2
þ �1þ 2þ 2L

q

� �
d

dq
� 1þ L� a

q

" #
wðqÞ ¼ 0;

(3)

whose two independent solutions are the regular Mða; b; qÞ
and irregular Uða; b; qÞ confluent hypergeometric or
Kummer functions, with a ¼ 1þ L� a, b¼ 2þ 2L (Ref. 18,
p. 504). Because the irregular solution Uð1þ L� a; 2þ
2L; qÞ ! Cð1þ 2LÞ=Cð1þ L� aÞq�ð1þLÞ as q! 0; uðqÞ
remains finite at the origin, but WðrÞ diverges as r�1 when
r! 0. In other words, Uð1þ L� a; 2þ 2L; qÞ is not a per-
missible solution of Eq. (3) as it leads to an unphysical
eigenfunction; accordingly, the (unnormalized) eigenfunc-
tion is simply wðqÞ ¼ Mða; b; qÞ.

Imposing the hard-wall boundary condition wð2ZR=aa0Þ
¼ 0, we obtain the eigenvalue equation for negative energies

Mð1þ L� a; 2þ 2L; 2ZR=aa0Þ ¼ 0: (4)

What happens if ~E > 0? The quantity a is now purely imagi-

nary: a ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2=2 ~E

q
¼ ib (b real and negative) and conse-

quently the eigenvalue equation becomes Mð1þ L� ib;
2þ 2L;�2iZR=ba0Þ ¼ 0. However, to avoid the cumbersome
task of working with complex magnitudes, it is convenient to
exploit the following equivalence between the confluent
hypergeometric and Coulomb functions (Ref. 18, p. 538):

FLðg;qÞ¼CLðgÞq1þLe�iqMð1þL� ig;2þ2L;2iqÞ; (5)

with CLðgÞ ¼ 2Le�pg=2jCð1þ Lþ igÞj=Cð2þ 2LÞ.

From Eq. (5), it is clear that the eigenvalue equation for
positive ~E is

FLðb;�ZR=ba0Þ ¼ 0; (6)

where b < 0 and b2 ¼ Z2=2 ~E. Equations (4) and (6) provide
the exact energies ~ENLðR=a0Þ of the CHA. We will proceed
now with their numerical and analytical (in limiting cases)
analysis. From here on, we set Z¼ 1.

III. NUMERICAL AND ANALYTICAL RESULTS

The numerical solution of Eqs. (4) and (6) yields the
lowest-lying eigenenergies ~ENLðR=a0Þ of the compressed
hydrogen atom displayed in Fig. 1, as a function of the size
R. Each energy level is characterized (in principle) by a set
of three quantum numbers: N, L, M. As in the case of the
UHA, the energy levels are independent of M; this independ-
ence has its origin in the fact that all directions in space enter
on equal terms and leads to a degeneracy of 2Lþ 1 for each
(N, L) pair. An important difference with respect to the UHA
is that the energy levels of the CHA do depend on the quan-
tum number L: the so-called “accidental degeneracy” of the
UHA is a special property of the exact Coulomb potential
Z/r, which is lifted when one adds the confining potential.

The quantum number N is a radial quantum number that
enumerates the different solutions of Eqs. (4) and (6) corre-
sponding to the same set of R and L values. For example,
N¼ 1 denotes the lowest-energy solution corresponding to a
given L (the absolute ground-state corresponding to N¼ 1,
L¼ 0); N¼ 2 denotes the next-lowest-energy state for the
same L; and so on. In the limit k ¼ R=a0 � 1, the solutions
of the UHA with quantum numbers n, l, m and energies
�1=ð2n2Þ are recovered, as expected. More to the point,
~EN;Lðk!1Þ ! �1=½2ðN þ LÞ2� and Mð1þ L� a; 2
þ2L; qÞ ! Mð1þ L� n; 2þ 2L; qÞ � L2Lþ1

n�1�LðqÞ, with
LðaÞn ðxÞ the generalized Laguerre polynomials, which are the
well-known exact radial eigenfunctions of the UHA.24

Based on these results, the following equivalence can be
established between the CHA and the UHA quantum
numbers: as k!1; N þ L! n and L ! l, while M¼m
for all k.

It is instructive to calculate the number of radial nodes to
the UHA quantum numbers in the R ! 1 limit. For any R,
we known that the number of radial nodes is N� 1. As
k ¼ R=a0 !1; N � 1! n� L� 1! n� l� 1, which is
the well-known counting of radial nodes of the UHA. One
can easily check than the number of members for each
“family” Nþ L¼ n of the CHA is equal to n2, the degeneracy
associated with each energy level of the UHA. Within a
given family, and for any finite k, the eigenenergies obey the
inequalities ~EN¼1;L¼n�1ðkÞ< ~EN¼2;L¼n�2ðkÞ< …< ~EN¼n;L¼0

ðkÞ.25 This feature is easily explained by the fact that as N
increases, the number of radial nodes also increases, so the
state becomes more widely distributed inside the spherical
well and consequently feels more the presence of the con-
finement barrier whose effect is always to increase the
energy. It is important to note that no link exists between N
and L in the CHA; in particular, as shown in Fig. 1, it is per-
missible to have states where L is equal to or greater than N.

The exact value of k for which the energy ~E changes sign
can be determined from Eq. (4) or Eq. (6), by putting ~E ¼ 0
and solving for k.2 If we employ Eq. (4), as ~E ! 0�; a!1,
but the product of the first and third arguments of M remains
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finite and equal to �2k. This suggests that from the series
expansion of M,

Mða; b; qÞ ¼ 1þ a

b

q
1!
þ aðaþ 1Þ

bðbþ 1Þ
q2

2!
þ � � � ; (7)

as a! �1 but aq remains finite, one can approximate the
series by retaining (only) terms like ðaqÞn. Proceeding in this
way, it is not difficult to prove that the zeros of Eq. (4) are
given by the zeros of J1þ2Lð2

ffiffiffiffiffi
2k
p
Þ, with J�ðzÞ the cylindrical

Bessel function of order � (Ref. 18, p. 358). For instance, the
first zero of J1ðzÞ ðL ¼ 0Þ corresponds to z1 ’ 3:832
¼ 2

ffiffiffiffiffi
2k
p

! k ’ 1:835, in agreement with the results of Fig.
1. This property can be used to determine, without any calcu-
lation, the number of “bound” states for a given size k: it is
enough to count the number of zeros of cylindrical Bessel
functions smaller than zmax ¼ 2

ffiffiffiffiffi
2k
p

.
Next let us analyze the strong-confinement limit of small

sizes (k! 0) and the opposite limit of weak confinement
corresponding to the large sizes (k!1), where analytical
results are available.

In the strong-confinement approximation (SCA), we con-
sider the Coulomb interaction, which goes like 1=k, to be a
small perturbation to the confinement effect (kinetic energy)
which goes like 1=k2 in the k! 0 limit.26 To prove this, it
will be convenient to express the Coulomb wavefunction as
(Ref. 18, p. 540)

FLðb;�k=bÞ ¼ �ð1þ 2LÞ!! k
b

CLðbÞ
X1
k¼L

bk jkð�k=bÞ;

(8)

where ð1þ 2LÞ!! ¼ 1 � 3 � 5 � � � ð1þ 2LÞ; jkðqÞ ¼ ðp=2qÞ1=2

Jkþ1=2ðqÞ are the spherical Bessel functions, bL ¼ 1; bLþ1

¼ ½ð3þ 2LÞ=ðLþ 1Þ�b, and

bk ¼ ck � 2bbk�1 �
ðk � 1Þðk � 2Þ � LðLþ 1Þ

2k � 3
bk�2

� �
;

(9)

for k > Lþ 1; ck ¼ ð2k þ 1Þ=½kðk þ 1Þ � LðLþ 1Þ�. As
k! 0; ~E !1, and consequently b! 0, we can simplify
Eq. (8) in this limit by keeping the leading terms in powers
of b. Proceeding in this way, we obtain

FL b! 0;
�k
b

� �
� jL

�k
b

� �
þ 2b

X1
k¼0

ð�1Þkck0 jk0
�k
b

� �
;

(10)

where k0 ¼ 2k þ Lþ 1.27 The eigenvalue equation is, as
always, FLðb! 0;�k=bÞ ¼ 0.

To order b0, the eigenvalue equation reduces to
jLð�k=bÞ ¼ 0, whose solutions are �k=b ¼ aNL, with aNL

the Nth zero of the spherical Bessel function of order L. To
this order, we obtain for the eigenvalue 1=ð2b2Þ ¼ ~ENLðkÞ
’ a2

NL=ð2k2Þ; that is, we recover the characteristic R�2 de-
pendence for the energy levels of a particle confined in a
spherical box, as a consequence of the confinement-induced
increase of the kinetic energy.26

The presence of the nucleus is apparent at the next
order in b: assuming a solution of the type �k=b ’ q0

þ q1 ¼ aNL þ q1ðq1 	 aNLÞ and expanding Eq. (10) around

aNL, we obtain an equation for q1, whose solution is q1

¼ bfLðaNLÞ, where

fLðaNLÞ ¼ �
2

j0LðaNLÞ
X1
k¼0

ð�1Þkck0 jk0 ðaNLÞ: (11)

The eigenvalue equation (correct to order b) is �k=b
¼ aNL þ bfLðaNLÞ, whose solution is

1

2b2
¼ ~ENLðkÞ ’

1

2

aNL

k

� �2

� fLðaNLÞ
k

: (12)

The whole physics of the CHA in the small-size limit is con-
tained in this equation: while the term that goes like k�2

reflects the effect of the confinement on the electron kinetic
energy, the term proportional to k�1 results from the effect
of confinement on the Coulomb interaction.

The case L¼ 0 turns out to be particularly simple:
xN0 ¼ Np, and

f0ðxN0Þ ¼ 3þ 7

6
1� 15

ðNpÞ2

" #

þ 11

15
1� 105

ðNpÞ2
þ 945

ðNpÞ4

" #
þ � � � : (13)

For N¼ 1, f0ðx10Þ ’ 2:439, which compares quite well with
the “exact” result obtained from first-order perturbation
theory where f0ðx10Þ ¼ Cinð2pÞ ’ 2:438.28

The exact numerical results of Fig. 1 are compared with
the SCA just discussed in Fig. 2 and Table I. The SCA is an
excellent approximation throughout the shaded upper region
of the figure. This region is defined by the criterion that the
SCA should be valid when the size R is smaller than the
characteristic atom size. Using the average distance of the
electron from the nucleus of the UHA29,30 to quantify this
atom size, we obtain 1:5a0 for the 1s state; 6a0 and 5a0 for
the 2s and 2p states, respectively; 13:5a0; 12:5a0, and 10:5a0

Fig. 2. Comparison of the exact eigenvalues of Fig. 1 (lines) with those

obtained from the strong- and weak-confinement approximations (discrete

points). The inset (corresponding to the rectangle marked at the lower left

corner of the figure) shows the accuracy of the weak-confinement approxi-

mation given by Eq. (13), as applied to the ground state. The shaded upper

and lower areas represent the regions of applicability of the SCA and the

WCA, respectively.
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for the 3s, 3p, and 3d states, respectively; and so on. The pre-
ceding analysis can be stated in a slightly different form: for
a fixed size R, the SCA works better as one moves to increas-
ingly excited states. The explanation is quite simple—for a
given size, higher-energy states (due to their larger exten-
sion) feel more the spherical boundary than the lower-energy
states, and consequently the accuracy of the SCA improves.

An interesting feature of the SCA, displayed in Table I, is
the relevance of the first-order correction in Eq. (12), even
for the smallest sizes analyzed. The size of the correction
runs from about 4% for the (3,0) CHA electronic level at
k ¼ 0:5, to about 400% for the same state at k ¼ 10. Clearly,
both contributions to Eq. (12) are absolutely needed for a
semi-quantitative description of the CHA electronic levels,
in their region of applicability. In the context of semiconduc-
tor quantum dots, the remarkable success of the SCA applied
to the problem of a centered impurity as displayed in Fig. 2
gives a solid basis to the application of the same approxima-
tion to the problem of an arbitrarily located (off-centered)
impurity, for which no exact solution is available.28

Next, we turn to the weak-confinement approximation
(WCA). We use the following analytical strategy to analyze
this regime. First, we note that since ~E ! �1=ð2n2Þ when
k!1; a2 ¼ �1=ð2 ~EÞ ! n2 in the same limit. That means
that the first argument of M in the eigenvalue Eq. (4)
approaches asymptotically the value 1þL� n; for the partic-
ular case n¼ 1þ L, the argument becomes arbitrarily small
as k!1. We exploit this feature to simplify the series
expansion of Eq. (7), keeping just linear terms in the small
parameter a! 1þ L� n. Under these conditions, Eq. (7)
can be approximated by

Mða! 0; b; q!1Þ ! 1þ a CðbÞ eq

qb
; (14)

using the asymptotic expansion Mða; b; q!1Þ ! CðbÞeq

qa�b=CðaÞ of the hypergeometric function. Solving the
eigenvalue equation Mða! 0; b; q!1Þ ¼ 0 for D ~E1LðkÞ,
with ~E1LðkÞ ¼ �1=½2ð1þ LÞ2� þ D ~E1LðkÞ, one obtains in a
few steps the result D ~E1LðkÞ ¼ A1Lk

2ð1þLÞ e�2k=ð1þLÞ, with
the coefficient A1L being defined below Eq. (16). All the
remaining n 6¼ 1þ L cases can be treated similarly by using
the recurrence relations of the hypergeometric function. For
example, the case a ¼ 1þ L� a, with a! n ¼ 2þ L,
can be treated by using the exact recurrence relation (Ref.
18, p. 506)

Mða; b; qÞ ¼ Mðaþ 1; b; qÞ � q
b

Mðaþ 1; bþ 1; qÞ:

(15)

Taking the asymptotic limit of this equation and considering
now that the first argument of the M’s on the right-hand side

Table I. Numerical values of ~ENLðkÞ, for the six lowest-lying electronic lev-

els of the CHA, in Hartree units. For each k, the first row (numbers in bold)

corresponds to the exact (numerical) solution of Eq. (4) ( ~ENLðkÞ < 0), or Eq.

(6) ( ~ENLðkÞ > 0). The second and third rows correspond to the SCA as given

by Eq. (12), and as given by the zero-order approximation
~ENLðkÞ ’ a2

NL=ð2k2Þ, respectively. For the ground state (1,0), the results of

the WCA as given by Eq. (16) have also been included (numbers in italics).

k [R=a0] (1,0) (1,1) (2,0) (1,2) (2,1) (3,0)

0.50 14.748 36.659 72.672 63.160 114.643 170.585

14.864 36.671 72.728 63.156 114.651 170.620

19.739 40.374 78.957 66.424 119.351 177.653

1.00 2.374 8.223 16.570 14.967 27.474 40.863

2.497 8.242 16.625 14.972 27.487 40.897

4.935 10.093 19.739 16.606 29.838 44.413

1.50 0.437 3.231 6.644 6.285 11.679 17.362

0.568 3.252 6.696 6.291 11.694 17.395

2.193 4.486 8.773 7.380 13.261 19.739

�0.052

2.00 �0.125 1.576 3.327 3.327 6.269 9.314

�0.207 1.597 3.377 3.334 6.284 9.345

2.523 4.935 4.152 7.459 11.103

2.50 �0.335 0.852 1.865 1.996 3.818 5.670

�0.332 0.874 1.912 2.003 3.834 5.700

1.614 3.158 2.657 4.774 7.106

3.00 �0.424 0.481 1.112 1.293 2.516 3.735

�0.411 0.504 1.155 1.300 2.532 3.763

1.121 2.193 1.845 3.315 4.935

3.50 �0.464 0.271 0.682 0.881 1.748 2.595

�0.455 0.295 0.721 0.889 1.764 2.621

0.824 1.611 1.356 2.436 3.626

4.00 �0.483 0.143 0.420 0.621 1.261 1.873

�0.479 0.168 0.455 0.629 1.277 1.897

0.631 1.233 1.038 1.865 2.776

4.50 �0.492 0.062 0.252 0.449 0.935 1.389

�0.490 0.087 0.282 0.457 0.951 1.412

0.498 0.975 0.820 1.473 2.193

5.00 �0.496 0.004 0.141 0.329 0.708 1.053

�0.495 0.166 0.337 0.723 1.073

0.789 0.664 1.194 1.777

5.50 �0.498 �0.029 0.064 0.243 0.543 0.811

�0.497 0.086 0.252 0.559 0.829

0.652 0.549 0.986 1.468

6.00 �0.499 �0.055 0.015 0.180 0.421 0.632

�0.498 0.029 0.189 0.437 0.648

0.548 0.461 0.829 1.234

6.50 �0.500 �0.074 �0.024 0.133 0.329 0.495

�0.500 0.142 0.345 0.510

0.393 0.706 1.051

7.00 �0.500 �0.087 �0.051 0.097 0.258 0.397

�0.500 0.105 0.273 0.404

0.339 0.609 0.906

7.50 �0.500 �0.097 �0.071 0.068 0.202 0.314

�0.500 0.077 0.217 0.321

0.295 0.530 0.790

8.00 �0.500 �0.104 �0.085 0.046 0.157 0.246

�0.500 0.055 0.172 0.254

0.259 0.466 0.694

8.50 �0.500 �0.110 �0.095 0.028 0.122 0.195

�0.500 0.038 0.136 0.201

0.230 0.413 0.615

9.00 �0.500 �0.114 �0.103 0.014 0.092 0.153

�0.500 0.023 0.107 0.158

0.205 0.368 0.548

Table I. (Continued).

k [R=a0] (1,0) (1,1) (2,0) (1,2) (2,1) (3,0)

9.50 �0.500 �0.117 �0.108 0.002 0.069 0.118

�0.500 0.083 0.122

0.331 0.492

10.00 �0.500 �0.119 �0.113 �0.007 0.049 0.091

�0.500 0.063 0.092

0.298 0.444
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is such that aþ 1 ¼ 2þ L� a! 0, one can continue as
explained below Eq. (14).

Proceeding in this way, we have obtained the following
general result in the limit k!1:

~ENLðkÞ ’ �
1

2ðN þ LÞ2
þ ANL k2ðNþLÞ e�2k=ðNþLÞ; (16)

where ANL ¼ 22ðNþLÞ=½ðN � 1Þ!ð2Lþ NÞ!ðN þ LÞð3þ2ðNþLÞÞ�.
In particular ~E10ðkÞ ¼ �0:5þ 4k2e�2k, which coincides with
the ground-state analysis of this regime in Refs. 8 and 31. The
inset of Fig. 2 compares the WCA to the exact results.

Several features of this result are worth noting. First, the
leading correction to the unconfined result �1=½2ðN þ LÞ2� is
a non-analytical function of k, which means that no series
expansion in powers of the small parameter k�1 exists in this
regime. Physically, the exponentially small correction reflects
the quite small effect that the hard-wall boundary exerts on
the exponentially decaying hypergeometric radial functions.
Second, all the members of a family NþL¼ n have the same
functional dependence on k; they differ from each other only
in the numerical factor ANL.32 And third, the result given by
Eq. (16) is just the leading term, following (next-order) terms
differing from the one written by having smaller powers of k,
and being consequently less important in the large-k limit.

As a last interesting point, we note that all of the difference
between the CHA and the UHA can be traced back to the dif-
ference in boundary conditions: hard-wall at the outer sphere in
the first case, but bounded at infinity in the second case. This
means that whenever one of the nodes of the radial eigenfunc-
tions of the UHA coincides with the sphere boundary, the hard-
wall boundary condition is automatically satisfied and the solu-
tions of the CHA and UHA are equivalent (apart from a nor-
malization factor that accounts for WCHAðRÞ ¼ 0). A question
remains, however, about how these special points are distrib-
uted among all possible solutions of the compressed hydrogen
atom; we provide the answer in Fig. 3. Thus, the 2s state of the
UHA with energy �1/8¼�0.125 becomes the ground state
N¼ 1, L¼ 0 of the CHA for the special size k ¼ 2, where the
unique 2s node and boundary coincide. As a general rule, when
k coincides with the first radial node of the nl state of the

UHA, this hydrogenic function becomes the N¼ 1, L¼ l solu-
tion of the CHA; the second node is found related to the first-
excited N¼ 2 state for the same L, and so on. In the Appendix,
we give some applications of these particular UHA solutions
that are also solutions of the CHA for special values of R.

IV. CONCLUSIONS

In summary, we have fully analyzed the exact solution to
the problem of a hydrogen atom confined in a spherical well.
The standard unconfined three-dimensional solution
becomes a limiting case of our solution, corresponding to the
sphere boundary going to infinity. Based on our exact numer-
ical results for the electronic spectra of the CHA, we have
given a rigorous discussion of the quantum number issue and
the ordering of the confined electronic levels. We have vali-
dated the physically relevant weak- and strong-confinement
limits, where rigorous analytical approximations are avail-
able. The results presented here provide a rigorous basis for
the important problem of doping with impurities of semicon-
ductor heterostructures such as quantum dots.
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APPENDIX: PARTICULAR UHA SOLUTIONS AS

CHA SOLUTIONS

For all discrete points in Fig. 3, analytical expressions for
the eigenstates of the CHA are available by exploiting the
explicit expressions for the hydrogenic wavefunctions, as
found in most textbooks on quantum mechanics.24 For exam-
ple, for N¼ 1 and L¼M¼ 0, the exact solution of the con-
fined hydrogenlike atom with k ¼ 2=Z is given by

WCHA
100 ð~rÞ ¼

WUHA
2s ð~rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 7e�2
p

¼ 1

4
ffiffiffiffiffiffi
2p
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 7e�2
p Z3=2ð2� Z~rÞe�Z~r=2; (A1)

with 0 
 ~r 
 2=Z. Note the presence of the extra factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 7e�2
p

in the denominator, which accounts for the dif-
ference between the extent of the radial normalization inte-
gral of the UHA ([0,1]), and the CHA with k ¼ 2=Z ([0, 2/Z]).
With these analytical expressions at hand, one can apply
them to illustrate several concepts of the physics of the quan-
tum mechanics of confined systems, as follows.

(a) Virial theorem for confined systems.33 With the
explicit expression in Eq. (A1), it is a standard exercise of
quantum mechanics to check that hT̂i þ hV̂i ¼ �Z2=8 as it

should be. Here, hT̂i ¼ hWCHA
100 jT̂ jWCHA

100 i ¼ Z2ð1� 3e�2Þ=
½16ð1� 7e�2Þ� and hV̂i¼hWCHA

100 jV̂ jWCHA
100 i¼�Z2ð1�5e�2Þ=

½8ð1�7e�2Þ� are the kinetic- and potential-energy expectation
values, evaluated with the state in Eq. (A1). Moreover, since

2hT̂i þ hV̂i ¼ 1

2

Z2e�2

1� 7e�2
; (A2)

Fig. 3. Special sphere sizes (discrete points) for which certain CHA and

UHA solutions coincide. Only the negative part of Fig. 1 is shown, follow-

ing the same line convention. For example, the three black dots at ~ENLðkÞ
¼ �1=18 � �0:056 correspond to the UHA solutions with n¼ 3, l¼ 0 (first

node, at k ¼ 3ð6�
ffiffiffiffiffi
12
p
Þ=4 � 1:902), n¼ 3, l¼ 1 (unique node, at k ¼ 6),

and n¼ 3, l¼ 0 (second node, at k ¼ 3ð6þ
ffiffiffiffiffi
12
p
Þ=4 � 7:098).
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one finds that the usual expression for the quantum virial the-
orem, 2hT̂i þ hV̂i ¼ 0, is only fulfilled up to exponential ac-
curacy. On the other side, the result in Eq. (A2) nicely agrees
with the result of the virial theorem for systems with bounda-
ries, 2hT̂i þ hV̂i ¼ 3 p X, with p being the pressure and X
the volume of the confined system.34 From Eq. (A2), one
obtains pðk ¼ 2=ZÞ ¼ Z5e�2=½64pð1� 7e�2Þ�. For Z¼ 1,
this result was first obtained in Ref. 33.

(b) Kato cusp condition for confined systems. It has been
long recognized that the many-electron wavefunction of any
atom or molecule has a cusp at the nucleus position(s), which
is a consequence of the singularity in the electron-nucleus
Coulomb interaction, as the relative coordinate goes to zero.
This exact condition on the many-electron wavefunction was
first formulated in Ref. 35; it was later formulated in terms
of the electronic density in Ref. 36. Because Kato’s cusp
condition usually refers to unconfined atoms and molecules,
the question naturally arises about its validity for confined
systems (like the CHA). The answer is again a didactic exer-
cise of quantum mechanics: defining the density nCHA

100 ð~rÞ
¼ WCHA

100 ð~rÞ
2
, one can prove the following identity using

Eq. (A1):

Z ¼ � 1

2nCHA
100 ð~rÞ

dnCHA
100 ð~rÞ
d~r

����
~r!0

; (A3)

which shows that Kato’s cusp condition is also valid for con-
fined systems, as expected.

(c) The electron density as a basic variable: elementary
argument for confined systems. Equations (A1) and (A3)
illustrate the far-reaching fact that a knowledge of the elec-
tron density is enough to determine the CHA Hamiltonian, by
following the next steps: (i) integration of the density over all
space yields the number of electrons (one in this case); (ii)
from Kato’s cusp condition [Eq. (A3)] one obtains the value
of Z; (iii) from the position of the cusp (~r ¼ 0), one obtains
the nucleus position; and (iv) since nCHA

100 ð~rÞ ¼ 0 if ~r > 2=Z,
this determines the size of the CHA. With all this information
one can “reconstruct” the Hamiltonian of the CHA as given
in Eq. (1). Under much more general conditions, the same
statement is essentially true for non-Coulombic potentials,
but in this case only for the ground-state density. This is one
of the basic pillars of the elaborated calculation scheme
known as density functional theory, which is now the method
of choice for the calculation of electronic properties in quan-
tum chemistry and solid state physics.37,38

a)Electronic mail: jferreyra64@gmail.com
b)Electronic mail: mail:proetto@cab.cnea.gov.ar
1A. Michels, J. de Boer, and A. Bijl, “Remarks concerning molecular inter-

actions and their influence on the polarizability,” Physica (Amsterdam) 4,

981–994 (1937).
2A. Sommerfeld and H. Welker, “K€unstliche Grenzbedingungen beim

Keplerproblem,” Ann. Phys. (Leipzig) 424, 56–65 (1938).
3S. R. DeGroot and C. A. Ten Seldam, “On the energy levels of a model of

the compressed hydrogen atom,” Physica 12, 669–682 (1946).
4S. Yngve, “The compressed hydrogen atom,” Am. J. Phys. 54, 1103–1106

(1986).
5W. Wilcox, “A formula for energy displacements for the confined hydro-

gen atom,” Am. J. Phys. 57, 526–528 (1989).
6J. L. Marin and S. A. Cruz, “On the use of direct variational methods to

study confined quantum systems,” Am. J. Phys. 59, 931–935 (1991).
7J. L. Marin, R. Rosas, and A. Uribe, “Analysis of asymmetric confined

quantum systems by the direct variational method,” Am. J. Phys. 63,

460–463 (1995).

8D. Djajaputra and B. R. Cooper, “Hydrogen atom in a spherical well:

Linear approximation,” Eur. J. Phys. 21, 261–267 (2000).
9M. L. Glasser and D. Bousquet, “Shooting for the stars: The spherically

confined H-atom redux,” Am. J. Phys. 71, 574–576 (2003).
10F. M. Fern�andez, “The confined hydrogen atom with a moving nucleus,”

Eur. J. Phys. 31, 285–290 (2010).
11H. E. Montgomery, Jr., “Variational perturbation treatment of the confined

hydrogen atom,” Eur. J. Phys. 32, 1275–1284 (2011).
12J. M. Luttinger and W. Kohn, “Motion of electrons and holes in perturbed

periodic fields,” Phys. Rev. 97, 869–883 (1955).
13W. Kohn, “Shallow impurity states in Silicon and Germanium,” Solid

State Phys. 5, 257–320 (1957).
14G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures

(Les Ulis, Les Editions de Physique, 1988).
15J. C. Stewart and K. D. Pyatt, Jr., “Lowering the ionization potentials in

plasmas,” Astrophys. J. 144, 1203–1211 (1966).
16O. Ciricosta et al., “Direct measurements of the ionization potential

depression in a dense plasma,” Phys. Rev. Lett. 109, 065002 (2012).
17J.-P. Connerade, V. K. Dolmatov, and S. T. Manson, “A unique situation

for an endohedral metallofullerene,” J. Phys. B 32, L395–L403 (1999).
18M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions

(Dover, New York, 1970). The (free) online version of this book is at

<http://dlmf.nist.gov>.
19S. Goldman and C. Joslin, “Spectroscopic properties of an isotropically

compresed hydrogen atom,” J. Phys. Chem. 96, 6021–6027 (1992).
20S. H. Patil and Y. P. Varshni, “Properties of confined hydrogen and helium

atoms,” Adv. Quantum Chem. 57, 1–24 (2009).
21B. L. Burrows and M. Cohen, “Exact solutions for confined model systems

using kummer functions,” Adv. Quantum Chem. 57, 173–201 (2009).
22N. Aquino, G. Campoy, and H. E. Montgomery, Jr., “Highly accurate solu-

tions for the confined hydrogen atom,” Int. J. Quantum Chem. 107,

1548–1558 (2007).
23Using a more precise mathematical terminology, the UHA wavefunction

obeys a Neumann-type boundary condition, while the CHA wavefunction

obeys a Dirichlet-type boundary condition.
24L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics

(McGraw-Hill, New York, 1935).
25This finding validates a conjecture formulated in Ref. 5, about the ordering

of the CHA eigenvalues.
26L. Brus, “Electron-electron and electron-hole interactions in small semi-

conductor crystallites: The size dependence of the lowest excited elec-

tronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).
27In order to pass from Eq. (8) to Eq. (10), it is enough to calculate a few bL

values, using Eq. (9) and then keep only the linear contributions in b.
28J. M. Ferreyra and C. R. Proetto, “Strong confinement approach for impur-

ities in quantum dots,” Phys. Rev. B 52, R2309–R2312 (1995); C. R.

Proetto, “Comment on ‘Screening in Semiconductor Nanocrystallites and

its Consequences for Porous Silicon,’” Phys. Rev. Lett. 76, 2824 (1996).

Cin(x) refers to the Cosine integral function (Ref. 18, p. 231).
29Defined as �rnlm ¼ hWUHA

nlm jrjWUHA
nlm i. The explicit expression is

�rnlm ¼ n2a0f1þ ½1� lðlþ 1Þ=n2�=2g=Z, as given in Ref. 24, p. 144.
30L. B�anyai and S. W. Koch, Semiconductor Quantum Dots (World

Scientific, Singapore, 1993).
31Y. Kayanuma, “Quantum-size effects of interacting electrons and holes in

semiconductor microcrystals with spherical shapes,” Phys. Rev. B 38,

9797–9805 (1988).
32Within a given family, n¼NþL and ANL ¼ AN;n�N . Since

AN;n�N < ANþ1;n�N�1, this implies that ~EN;n�N < ~ENþ1;n�N�1 [see Eq.

(16)], in agreement with the discussion above on the ordering of the

energy levels in Fig. 1.
33N. H. March and M. P. Tosi, “Caged H atom and H2 molecule in relation

to Monte Carlo study of molecular dissociation at constant volume”, Il

Nuovo Cimento D, 18, 1061–1067 (1996).
34G. Marc and W. G. McMillan, “The virial theorem,” Adv. Chem. Phys.

58, 209–361 (1985).
35T. Kato, “On the eigenfunctions of many-particle systems in quantum

mechanics,” Commun. Pure Appl. Phys. 10, 151–177 (1957).
36E. Steiner, “Charge densities in atoms,” J. Chem. Phys. 39, 2365–2366

(1963).
37R. G. Parr and W. Yang, Density-Functional Theory of Atoms and

Molecules (Oxford U.P., New York, 1989).
38R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer,

Berlin, 1990).

865 Am. J. Phys., Vol. 81, No. 11, November 2013 J. M. Ferreyra and C. R. Proetto 865

 This article is copyrighted as indicated in the abstract. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

200.0.233.52 On: Mon, 21 Oct 2013 19:06:45

mailto:jferreyra64@gmail.com
mailto:mail:proetto@cab.cnea.gov.ar
http://dx.doi.org/10.1016/S0031-8914(37)80196-2
http://dx.doi.org/10.1002/andp.19384240109
http://dx.doi.org/10.1016/S0031-8914(46)80096-X
http://dx.doi.org/10.1119/1.14724
http://dx.doi.org/10.1119/1.15989
http://dx.doi.org/10.1119/1.16674
http://dx.doi.org/10.1119/1.17912
http://dx.doi.org/10.1088/0143-0807/21/3/309
http://dx.doi.org/10.1119/1.1544502
http://dx.doi.org/10.1088/0143-0807/31/2/005
http://dx.doi.org/10.1088/0143-0807/32/5/015
http://dx.doi.org/10.1103/PhysRev.97.869
http://dx.doi.org/10.1016/S0081-1947(08)60104-6
http://dx.doi.org/10.1016/S0081-1947(08)60104-6
http://dx.doi.org/10.1086/148714
http://dx.doi.org/10.1103/PhysRevLett.109.065002
http://dx.doi.org/10.1088/0953-4075/32/14/108
http://dlmf.nist.gov
http://dx.doi.org/10.1021/j100193a069
http://dx.doi.org/10.1016/S0065-3276(09)00605-4
http://dx.doi.org/10.1016/S0065-3276(09)00609-1
http://dx.doi.org/10.1002/qua.21313
http://dx.doi.org/10.1063/1.447218
http://dx.doi.org/10.1103/PhysRevB.52.R2309
http://dx.doi.org/10.1103/PhysRevLett.76.2824
http://dx.doi.org/10.1103/PhysRevB.38.9797
http://dx.doi.org/10.1007/BF02457672
http://dx.doi.org/10.1007/BF02457672
http://dx.doi.org/10.1002/9780470142820
http://dx.doi.org/10.1002/cpa.3160100201
http://dx.doi.org/10.1063/1.1701443

