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Abstract: Ostrea puelchana d’Orbigny, 1842 is a common species of commercial interest in Patagonia and is distributed from Rio Grande 
do Sul (Brazil) to San Matías Gulf (SMG, Argentina). In SMG, the species develops natural banks that provide irregular surfaces suitable for 
colonization of organisms. We studied the composition and frequency of encrusting and associated species on O. puelchana shells as well as 
the preferential settlement of epibionts on different areas within left and right valves. A total of 55 taxa were identifi ed. The dominant groups 
were Annelida, Foraminifera, Bryozoa and Mollusca in two different oyster banks. The lifestyle of the oyster favors a preferential settlement 
of epibionts on different valves and areas within the valves. Substratum heterogeneity, reproductive cues, gregarious behavior, protection 
against predation and/or brooding care could be responsible for this differential settlement. The left valve was more encrusted than the right 
one. Spirorbinae, Cirratulidae, Foraminifera, juvenile O. puelchana, Bryozoa and Hydrozoa showed preferential settlement in different areas 
on the external left valves. On the external right valves, the same taxa except for Hydrozoa showed a nonrandom distribution between areas.
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Colonization of hard substrates is a well-known phenom-
enon in marine environments since the Archaean (Taylor and 
Wilson 2003). In such environments, availability of stable sub-
strate for the settlement of sessile organisms is a main re-
source in the colonization process (Wahl 1989). However, in 
soft bottoms, a wide variety of biogenic, abiogenic and even 
anthropogenic surfaces are often occupied and provide avail-
able substrate for settlement and shelter of benthic inverte-
brates (Taylor and Wilson 2003).

Epibiosis is defi ned as a spatial and non-symbiotic associa-
tion in which a living organism is used as substrate (basibiont) 
by a sessile organism (epibiont). Trophic exchange with the sub-
strate organism, if present, is facultative (Wahl 1989). Usually, 
this interaction is not specifi c (Barnes and Clarke 1995, Cook 
et al. 1998, Wahl and Mark 1999, Williams and McDermott 
2004) and both organisms may experience advantages and 
disadvantages depending on the species involved in the asso-
ciation and on the environmental variables (Wahl 2009). In con-
sequence, the nature of the effects of epibionts on basibionts 
is often context-specifi c (Hay et al. 2004, Wahl 2008). 

Oysters are ubiquitous and provide stable substrates for 
settlement and development of benthic communities (Dauer 
et al. 1982, Zimmerman et al. 1989, Rosell et al. 1999). In soft 
bottoms, oyster larvae or spat settle on adult oysters, shell 
fragments, rhizomes and stems of Spartina Schreb or consoli-
dated sediment (M.V. Romero pers. obs., Escapa et al. 2004, 

Borges 2006, Kochmann et al. 2008). Thus, they generate ag-
gregates or clusters on adult oysters resulting in large accu-
mulations that can modify the environment with their own 
physical structure and create different habitats available for 
colonization (Gristina et al. 1996, Barnes 2001, Zuschin and 
Baal 2007).

Oyster reefs and associated fauna also play an important 
role in carbon, nitrogen and phosphorus cycles, allowing the 
mineralization of organic carbon and the release of nitrogen 
and phosphorus available to primary producers (Parras and 
Casadío 2006). They can modify the speed and turbulence of 
water fl ow as a consequence of growth in aggregates, causing 
changes in the availability of resources that affect other or-
ganisms (Lenihan 1999). Finally, reefs may offer protection 
against predation and physical stress generated by wave ac-
tion (Kochmann et al. 2008). These changes in structure and 
performance of an ecosystem caused by certain species have 
been included in the conceptual framework of ecosystem en-
gineering (see Jones et al. 1994, 1997).

Numerous recent papers have focused on key issues such 
as distribution, diversity, management, conservation and res-
toration of oyster reefs and coastal marine estuarine systems 
throughout the world (7th International Conference on Shellfi sh 
Restoration 2005, Carranza et al. 2009). Most knowledge avail-
able about changes in diversity of benthic communities asso-
ciated with oysters compare the macrofauna composition 
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between exploited and unexploited reefs or between reefs and 
surrounding habitats or substrates (de Grave et al. 1998, Escapa 
et al. 2004, Hosack et al. 2006, Rodney and Paynter 2006, 
Markert et al. 2010, Lejart and Hily 2011). However, few 
studies have examined the shell surfaces of oysters and associ-
ated epifauna collected from natural reefs, banks or beds.

Ostrea puelchana d’Orbigny, 1842, often known as 
“puelche” or “Patagonian oyster”, is a common species in 
Patagonia that belongs to the family Ostreidae, subfamily 
Ostreinae (Stenzel, 1971). The shell is inequivalve; right valve 
tends to be fl at and smooth whereas the left valve is convex 
and rough with pronounced ribs and scarce lamellae. The 
right valve is covered by many conchiolinous growth squa-
mae (i.e., lamellae) that develop from the center of valve to-
ward the labrum, reaching thicknesses greater than 1.5 cm. 

Ostrea puelchana is an endemic/native species (Sacco, 
1897) widely distributed from Rio Grande do Sul (27º–35ºS, 
Brazil) to San Matías Gulf (SMG) (40º–42ºS, Argentina), 
where major banks with commercial interest are reported 
(Castellanos 1957, Rios 1970). Recently, Oehrens Kissner et al. 
(2011) recognized the development of small banks in San 
José Gulf (42º20′S, 64º20′W). Ostrea puelchana can reach a 
commercial height of 120 mm, although fi shery is not estab-
lished in the market (Borges 2006). The species develops nat-
ural extensive banks that provide highly irregular surfaces 
suitable for colonization of other organisms. However, infor-
mation about the biota associated with its shells is scarce and 
refers to particular infestations (Mauna 2003, Cremonte et al. 
2005, Rodríguez 2007, Diez et al. 2011). We studied the com-
position, frequency and distribution of encrusting and asso-
ciated species on the shells of O. puelchana in SMG. The 
preferential settlement of epibionts on different areas within 
left and right valves was evaluated. 

MATERIALS AND METHODS

Study area
SMG is located between 40º42′–42º41′S and 63º45′–

65º09′W and presents important biological and fi shery pro-
duction (Morsan 2002, Narvarte et al. 2011). This is a 
semi-enclosed area within the Argentinian shelf with par-
ticular oceanographic features (Guerrero and Piola 1997), 
maximum depths near 200 m in the central area (Parker et al. 
1997) and a macrotidal regime (Servicio de Hidrografía 
Naval 2010). The average salinity is high (33.84) and the av-
erage annual temperature is 13.25 ± 0.20 ºC with strong 
thermal stratifi cation mainly in summer (Rivas 1990). The 
bottom type is dominated by sands with high contents of silt 
and clay (Parker et al. 1997). Oyster banks are located on 
sand or sand-gravel facies deeper than 10 m depth (Escofet 
et al. 1978). 

Sampling
Oysters (N = 142) were collected in February 2009 in two 

natural banks located at northwest of SMG (Fig. 1), called El 
Buque (EB, 40º50′S, 65º10′W) and Zona de Colectores (ZC, 
40º56′S, 65º06′W), at 12 and 18 m depth at low tide, respec-
tively. Samples were taken randomly within the most densely 
packed zone of each bank. Oysters were placed in tanks with 
circulating sea water. To avoid loss of macrofauna associated 
to the valve, each oyster was stored individually in a plastic 
bag. Oyster samples were fi xed in 5% seawater formalin and 
15 days later they were stored in 70% alcohol.

The epibionts and associated fauna of each left/right 
valve and internal/external shell surface were identifi ed. Both 
surfaces were mainly considered because an edge along the 
internal left valve was often available to organism settlement 
due to breakage of young lamellae of right valves. 

Areas were defi ned on each valve to test preferential col-
onization. Zonifi cation maps of both valves were used in or-
der to recognize the frequency and distribution of encrusting 
taxa. This map refl ects dissimilar morphological features of 
the valves that may infl uence the settlement of different ma-
rine larvae and could be used to identify those areas where 
epibionts may affect the development of the oyster. The exter-
nal left valve was divided into six areas: apex (10%), platform 
(5%), anterior margin (15%), ventral margin (25%), poste-
rior margin (15%) and center (30%). There is no platform in 
the right valves, so the areas were: apex (10%), anterior mar-
gin (15%), ventral margin (30%), posterior margin (15%) and 
center (30%). Presence/absence, abundance (i.e., number of 
individuals) and/or coverage (i.e., percentage of the area en-
crusted) data were recorded in standardized maps of each 
valve (Fig. 2). In the internal left valve, the total available sur-
face to be colonized by epibionts was attributed to edge of 

Figure 1. Location of the two oyster banks (EB and ZC) in San 
Matías Gulf (SMG, Argentina).
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valve. This surface was divided into fi ve areas: apex (15%), plat-
form (15%), anterior margin (20%), ventral margin (30%) 
and posterior margin (20%). In the internal right valve, the 
preferential settlement was not evaluated due to the very low 
observed frequencies.

The percentages were assigned arbitrarily and were esti-
mated for each taxon, following Ward and Thorpe (1991) 
and Mauna et al. (2005). Coverage data were registered for 
those taxa with colonial forms and for epibionts that can be 
counted as individuals but can occupy large areas of the 
valves.

Data analysis
Richness of associated fauna and epibiota on the oyster 

shells were compared using Multivariate Nonparametric Anal-
ysis (PRIMER 6.1.10, see Clarke 1993, Clarke and Warwick 
2001). Multidimensional Scaling (MDS), Similarity Percent-
age (SIMPER) and Analysis of Similarities (ANOSIM) tests 
were applied to make comparisons between EB and ZC banks 
(presence/absence data, Jaccard similarity index). MDS and 
SIMPER analysis were applied to compare right/left valves 
and their external/internal surfaces using abundance (fourth 
root transformed data, Bray-Curtis index) and/or cover-
age (percentage data, Bray-Curtis index). The arithmetic 
mean of abundances was calculated to identify if right or left 
valves and external or internal surfaces were more frequently 
colonized. 

Goodness of fi t test and exact confi dence intervals for the 
binomial distribution were performe d in order to assess pos-
sible preference of epibionts on different areas of the valves. 
When more than 20% of the expected frequencies were less 
than fi ve, valve areas were grouped to avoid inaccuracies. 

Yates’s correction for continuity was applied in those cases 
with only one degree of freedom, and relatively small sam-
ples (Zar 1999). The null hypothesis was that the distribution 
of epibionts on valves is at random on the signifi cance level 
α = 0.05. 

RESULTS

Epibionts were present in all the oyster specimens (N = 
142) collected in EB and ZC banks. A total of 55 taxa belong-
ing to 12 taxonomic groups were identifi ed (Table 1). The 
highest percentage of occurrence in both banks (EB = 96.5% 
and ZC = 77.9%) corresponds to polychaetes of the family 
Cirratulidae, represented by 11 taxa. Other epibionts, includ-
ing associated fauna, boring and encrusting organisms (i.e., 
ctenostome bryozoans, skeletons of calcareous algae and bar-
nacle basal plates) occurred only occasionally. Gnawing traces 
possibly made by the radulae of chitons on the external sur-
faces of both valves were recognized, most frequently in left 
(EB = 91% and ZC = 87%) than right valves (EB = 46% and 
ZC = 35%).

The MDS plot showed a clustering of samples from EB 
and ZC banks (stress = 0.19) and ANOSIM test indicated no 
difference in community composition (global R = 0.099, P = 
0.1). SIMPER procedure (Table 2) revealed that Spirorbinae, 
Bryozoa, Cirratulidae and Ostrea puelchana were the taxa that 
contributed most to the average similarity within every bank 
(> 62%). 

In EB and ZC, MDS between external and internal sur-
faces of both oyster valves showed two groupings of samples 
with abundance (stress = 0.12) and coverage (stress = 0.11) 
data. SIMPER results (Table 2) showed high percentages of 
average dissimilarity between external and internal surfaces 
(

coverage
 = 88.02%, 

abundance data 
= 79.18%), being Spirorbinae, 

Ostrea puelchana, Bryozoa, Cirratulidae, Hydrozoa, Fora-
minifera and byssate mytilids the main taxa that c ontributed 
to differences. The external surface was more colonized than 
the internal one (Fig. 3).

Regarding epibiosis in left and right valves, MDS plots 
based on coverage (stress = 0.15) and abundance (stress = 0.13) 
data indicated a weak grouping of samples. SIMPER results 
(Table 2) showed average dissimilarities higher than 63 % 
between left and right valves of Ostrea puelchana (

coverage
 = 

63.37%, 
abundance data 

= 64.70%). The taxa that most contributed 
to the differences were Cirratulidae, Spirorbinae, Foraminifera 
and O. puelchana. The left valve was, in general, more colo-
nized than the right one (Fig. 4).

The preferential settlement of epibionts on different ar-
eas of left and right valves is shown in Figs. 5 and 6, respec-
tively. On the left valve, Spirorbinae preferably colonized the 
platform and the center of the external surface; while the 

Figure 2. Zonifi cation maps with areas selected in left valves (A) and 
right valves (B) of Ostrea puelchana (external surface). A, apex, AM, 
anterior margin, C, center, P, platform, PM, posterior margin, VM, 
ventral margin. Coverage percentage is indicated in each area. Scale 
bars = 1 cm.
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Table 1. List of epibionts and associated taxa found on Ostrea puelchana sampled at EB and ZC (SMG, Argentina). 

Taxa

Algae
calcareous skeletons

Foraminifera
Miliolinella subrotunda (Montagu, 1803)
Quinqueloculina d’Orbigny, 1826 
Quinqueloculina lamarckiana d’Orbigny, 1839
Quinqueloculina angulata (Williamson, 1858)
Discorbina valvulata (d’Orbigny, 1839) 
Bolivina doniezi Cushman and Wickenden, 1929
Cibicides fl etcheri Galloway and Wissler, 1927
Lobatula lobatula (Walker and Jacob, 1798)
Discorbis Lamarck, 1804
Planorbulina variabilis (d’Orbigny, 1826) 
Trochammina Parker and Jones, 1859 
Pyrgo Defrance, 1824 
Pyrgo ringens (Lamarck, 1804)

Porifera
Cliona celata Grant, 1826

Cnidaria
Anthozoa unidentifi ed
Hydrozoa (hydrocauli)

Nematoda
Nematoda unidentifi ed

Annelida
Serpulinae tubes
Spirorbinae
Phyllochaetopterus Grube, 1863 
Lumbrineridae
Eunice argentinensis (Treadwell, 1929) 
Phyllodocidae
Syllidae
Maldanidae
Spionidae
Monticellina Laubier, 1961 
Caulleriella Chamberlin, 1919 
Tharyx Webster and Benedict, 1887 
Cirratulus Lamarck, 1801 
 Cirratulus sp. 1
 Cirratulus sp. 2
Cirratulidae unidentifi ed 1
Cirratulidae unidentifi ed 2
Cirriformia Hartman, 1936 
Chaetozone Malmgren, 1867 
Aphelochaeta Blake, 1991 
Cirratulidae (multitentaculate)

Sipunculida
Sipunculida unidentifi ed

Brachiopoda
Juvenile Brachiopoda

Mollusca
Ostrea puelchana d’Orbigny, 1842
Crepidula Lamarck, 1799 
Leiosolenus patagonicus (d’Orbigny, 1842)

Taxa

Mytilus edulis Linnaeus, 1758 
Aulacomya atra (Molina, 1782) 
Chaetopleura Shuttleworth, 1853 

Arthropoda
Cirripedia (basal plates)

Bryozoa
Escharoides Milne Edwards, 1836 
 Escharoides sp. 1
 Escharoides sp. 2
Microeciella Taylor and Sequeiros, 1982
Copidozoum Harmer, 1926 
Cyclostomatida unidentifi ed
Ctenostomatida unidentifi ed
Bugula Oken, 1815 

Chordata
Ascidiacea unidentifi ed

more settled areas of the internal surface were the platform 
and the posterior margin. Cirratulidae were found on the ex-
ternal surface, preferentially on the ventral margin. Ostrea pu-
elchana recruits occurred preferentially on the platform and 
the anterior margin of the external left valve and, on the inter-
nal one, their frequency was signifi cantly higher than expected 
only on the platform. Furthermore, the platform was preferen-
tially colonized by Bryozoa in both surfaces and only the poste-
rior margin on the internal left valve. Hydrozoa showed 
preferential location in the platform, apex and margins on the 
external left valve and only in platform and apex on internal 
left valve. On the external surface of left valves Foraminifera 
preferentially settled on the apex, platform and center. On the 
internal surface of left valves, observed frequencies of Phyllo-
chaetopterus Grube, 1863 were signifi cantly higher than expect-
ed on the platform and apex. In the external right valve, 
Spirorbinae, Foraminifera, Cirratulidae, O. puelchana recruits 
and Bryozoa showed a nonrandom distribution between areas. 
Spirorbinae encrusted preferentially the apex and center, 

Foraminifera bored on the apex and Cirratulidae were 
preferentially distributed on the margins. Ostrea puelchana 
recruits showed a preferential settlement on the center. Par-
ticularly, Bryozoa showed differential settlement only on the 
ventral margin with observed frequencies lower than the ex-
pected ones.

DISCUSSION

In this study, all the specimens of Ostrea puelchana exam-
ined showed epibionts. Oysters were associated with 55 taxa of 
sedentary and free-living organisms recorded on both valves. 
The dominant groups were Annelida (20 taxa), Foraminifera 
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(13 taxa), Bryozoa (7 taxa) and Mollusca (6 taxa) in both oyster 
banks. Within a local biodiversity framework, the present in-
ventory largely extends the knowledge about benthic species 
richness in SMG. Previous records of macro and micro-fauna 
associated with O. puelchana in natural habitats include a few 
mollusks (Mytilus platensis d’Orbigny, 1842, Aulacomya atra 
(Molina, 1782) and Calyptraeidae), together with polychaetes 
(Spirorbis Daudin, 1800), crustaceans (Balanus Costa, 1778), 
echinoderms, epizoic bryozoans, ascidians and foliculinid Pro-
tozoa (Castellanos 1957). In San José Gulf, seven similar taxa 
colonized O. puelchana but in very low percentages (Cremonte 

et al. 2005). In a study of the role of chitons in the settlement of 
O. puelchana recruits on conspecifi c adults, Pascual (1997) re-
ported that ascidians were the most conspicuous epibionts in 
the absence of grazers at natural oyster banks in SMG. Regard-
ing composition and frequency of epibionts on oyster shells, 
other studies worldwide give similar results and show the pres-
ence of similar epibiotic and endolithic organisms in different 
marine environment from all geographic regions (Barnes 2001, 
Guenther et al. 2006, Smyth and Roberts 2010).

Boring organisms and bioerosional structures produced 
by boring activity upon the shells were also recorded on valves 

of Ostrea puelchana. Bioerosion 
traces attributed to Porifera—
e.g., Cliona celata Grant, 1826, 
Foraminifera, Bryozoa Ctenosto-
matida, Polychaeta Spionidae and 
Bivalvia, e.g., Leiosolenus pata-
gonicus (d’Orbigny, 1842)—as well 
as byssal etchings produced by 
the anchoring of bivalves to the 
substrate and parallel sets of 
straight to curved scrape marks 
representing gnawing traces at-
tributed to radulae of chitons were 
recognized in this study. Due to 
the commercial value of O. puel-
chana, few studies aim to inves-
tigate the infestation produced 
by Polydora rickettsi Woodwick, 
1961, C. celata and L. patagonicus 

Table 2. Dissimilarity percentages between banks (EB/ZC), kind of surfaces (external/internal) and valves (left/right). Contributions percent-
ages of each taxa higher than 3% were considered.

DISSIMILARITY PERCENTAGES

Taxa

EB vs. ZC External vs. Internal Surface Left vs. Right Valves

Presence/Absence Coverage Abundance (transformed data) Coverage Abundance (transformed data)

Spirorbinae - 37.69 34.12 19.85 26.78
Cirratulidae 6.3 - 26.65 - 30.25
Ostrea puelchana 8.58 21.55 14.88 26.62 14.65
Foraminifera 11.73 - 11.62 - 13.4
Bryozoa 9.87 20.61 - 24.85 -
Hydrozoa (hydrocauli) 9.08 5.42 - 6.34 -
byssate mytilids 8.68 5.18 - 8.36 -
Phyllochaetopterus sp. 8.41 - - 4.59 -
Sipunculida unid. 5.6 - - - -
Crepidula sp. 4.64 - - - -
Cliona celata 4.32 - - - -
Lumbrineridae 3.34 - - - -
Leiosolenus patagonicus 3.3 - - - -

Figure 3. Arithmetic mean (AM) of abundance of taxa registered on the external and internal surface. 
A, More frequent taxa and B) uncommon taxa. The error bars indicate the standard deviation of 
the data.
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(Mauna 2003, Cremonte et al. 2005, Rodríguez 2007, Diez 
et al. 2011). These taxa were frequently reported in different 
species of oysters (Doroudi 1996, Wesche et al. 1997, da Silva 
et al. 2010, Sabry et al. 2011).

Marine organisms that colonize both biogenic and abio-
genic hard substrates often exhibit a pattern of uneven distribu-
tion between exposed and less exposed or cryptic surfaces 
(Palmer and Fürsich 1974, Ward and Thorpe 1991, Nebelsick 
et al. 1997, Glasby and Connell 2001, Schejter and Bremec 2007a, 
2007b). On the “puelche oysters”, the external surface of valves 
supported a high coverage of epibionts. Particularly, recruits of 
Ostrea puelchana showed greater percentage of coverage on ex-
ternal than on internal surfaces, although higher numbers were 
recorded on the internal surface, mainly in the platform and an-
terior margin of left valves. Considering that the oysters were 
collected in breeding season, the preferential settling of juveniles 
probably refl ects the carriage of dwarf males by adult females, as 
described only in O. puelchana (Calvo and Morriconi 1978, 
Pascual 1997). The non-random distribution of these juveniles was 
attributed to some kind of chemical interaction female-epibionts 
(Calvo and Morriconi 1978, Pascual and Zampatti 1995). Be-
sides, Pascual (1997) proposed that this non-random distribu-
tion, at least in part, is a consequence of the increased survival 
rate of epibionts settled on the platform of adult females, which 
operates as a refuge from grazing by chitons. In this study, al-
though chitons were occasionally found, gnawing traces were 
registered at high frequencies, mostly on the external surfaces of 
left shells. Left valves of O. puelchana exhibited a greater coverage 
and number of epibionts than right valves. Nevertheless, some 
taxa (Anthozoa, Nematoda, Sipunculida, Bryozoa, Polychaeta 
Spirorbinae and Cirratulidae) were most conspicuous on right 
valves, most of them in the shell margins and associated to 
lamellae. Rosso and Sanfi lippo (1991) report similar results in 
the scallop Zygochlamys patagonica (King and Broderip, 1832) 
from the Beagle Channel, with increased coverage of epibionts 
on the left valves and a greater colonization of epibionts and as-
sociated fauna on the margins of right valves, without contact 

with the substrate. In contrast, 
Smyth and Roberts (2010) re ported 
similar degree of epibiosis in both 
valves of Ostrea edulis Linnaeus, 
1758, probably because the oysters 
settled at nearly 45º on the bottom. 
The life position of O. puelchana 
provides stability in a highly hydro-
dynamic environment as it lies 
with the right valve in contact with 
the substrate (Pascual 1993). The 
lifestyle of the “puelche oyster” 
favors a preferential settlement of 
epibionts on different valves and 
areas within the valves.

Additionally, the texture of a colonized surface is an im-
portant factor that can infl uence the settlement of larvae of 
benthic invertebrates (Eckman 1990, Hoover and Purcell 
2009). The preferential settlement in cryptic habitats is com-
mon to most marine invertebrate larvae and may primarily 
be an evolutionary adaptation to prevent mortality by solar 
radiation, and secondly, to avoid mortality by sedimentation 
and predation (Svane and Dolmer 1995). Rough and irregu-
lar surfaces are more attractive than smooth surfaces for the 
settlement of organisms (Warner 1997). This would explain 
the greater coverage and number of epibionts, not susceptible 
to grazing, on the rough left valves than on the smooth right 
valves. Small scale substratum heterogeneity (e.g., 1 mm) af-
fects the larval settlement and subsequent development of 
epibenthic community (Lapointe and Bourget 1999) and 
habitats of great complexity will increase the biodiversity of 
the assemblages that occur within them (Huston 1997, Tilman 
et al. 1997, Tilman 1999). The imbricate concentric lamellae 
on right valves of Ostrea puelchana seem to be a good example 
at individual scale. Lamellae form a fringe around the margin 
of the shell and generate microhabitats available for coloniza-
tion. These microhabitats harbored 11 taxa of Cirratulidae 
and others less abundant. In accordance with these results, 
Kalyanasundaram et al. (1974) found that protected areas 
and cavities on valves of Ostreidae were habitats of Cirratulus 
cirratus (Müller, 1776). Liñero-Arana and Diaz (2006) also 
indicated the presence of polychaetes Cirratulidae and Sabel-
lidae on the mollusk Spondylus americanus Hermann, 1781, 
which build their galleries with the sediment accumulated be-
tween the spines of the mollusk. Similarly, lamellae developed 
in right valves seem to be used as habitats that give refuge from 
predators and brooding care. Brooding care behavior, like the 
deposition of eggs in mucus on rocks and shells, is a usual 
strategy in Cirratulidae (Petersen 1999).

The gregarious behavior of settled organisms on ma-
rine hard substrates is a common phenomenon. Aggrega-
tion is a pattern that shows a variety of different processes, 

Figure 4. Arithmetic mean (AM) of abundance of taxa registered on left and right valves. A) More 
frequent taxa and B) uncommon taxa. The error bars indicate the standard deviation of the data.
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including differential early mortality of those individuals 
that settle more distantly from others, variations in the to-
pography of the substrate surface which attract larvae, lim-
ited substrate availability and active larval selection of sites 
close to adults of the same species (Taylor and Wilson, 

2003). Oyster larvae exhibit a gregar-
ious behavior in response to water-
soluble signals produced by conspecifi c 
adults and congeners (Hidu et al. 1978, 
Tamburri et al. 2008). Also, Bryozoa 
larvae (Wendt and Woollacott 1999, 
McKinney and McKinney 2002) and 
Serpulidae larvae (Knight-Jones 1951, 
James and Underwood 1994) settle 
on shadowy areas and show a gregari-
ous behavior. Moreover, protection 
against predation and turbulence is 
one of the reasons for the endolithic 
behavior of Foraminifera (Vénec-Peyré 
1996, Bromley and Heinberg 2006), 
drilling preferably fl at areas on shells 
of gastropods (Smith 1988). These ar-
guments could explain the preferential 
colonization on the oyster right valves. 

Most of the taxa associated with 
Ostrea puelchana were selective sus-
pension and deposit feeders. Selective 
deposit feeders were mainly associated 
with the ventral margin (e.g., Cir-
ratulidae), while selective suspension 
feeders (e.g., Bryozoa, Spirorbinae and 
O. puelchana recruits) were preferably 
distributed on the dorsal areas of both 
valves. This differential colonization 
of functional groups in the areas of the 
valves supports the assumption that 
ventral margins are frequently covered 
by sediment.

In conclusion, this study extends 
the knowledge about benthic species 
richness at a local scale and shows 
that Ostrea puelchana possesses bio-
genic engineering qualities. In soft 
bottom environments, subjected to 
current action and resuspension of 
sediments, the substrate and micro-
habitats provided by O. puelchana in-
crease species richness and allow the 
establishment and protection of mobile 
small individuals. Epibionts include bor-
ing and encrusting organisms, and to-
gether with other associated taxa, show 

a variety of living habits and trophic guilds. The lifestyle 
and substratum heterogeneity (i.e., rough/smooth surfaces 
and lamellae) of “puelche oyster” favor a preferential set-
tlement of epibionts on different valves and areas within 
the valves. 

Figure 5. Preferential settlement of epibionts on different areas within external and internal 
surfaces of left valves. Asterisks indicate signifi cant differences between expected frequencies 
(ef) and observed frequencies (of) for each area. A, apex, AM, anterior margin, C, center, 
MARGINS, includes anterior margin, posterior margin and ventral margin grouped, P, plat-
form, PM, posterior margin, VM, ventral margin.
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