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Unveiling a crystalline topological insulator in a Weyl semimetal with time-reversal symmetry
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We consider a natural generalization of the lattice model for a periodic array of two layers, A and B, of
spinless electrons proposed by Fu [Phys. Rev. Lett. 106, 106802 (2011)] as a prototype for a crystalline insulator.
This model has time-reversal symmetry and broken inversion symmetry. We show that when the intralayer
next-nearest-neighbor hoppings ta

2 , a = A,B vanish, this model supports a Weyl semimetal phase for a wide
range of the remaining model parameters. When the effect of ta

2 is considered, topological crystalline insulating
phases take place within the Weyl semimetal one. By mapping to an effective Weyl Hamiltonian we derive some
analytical results for the phase diagram as well as for the structure of the nodes in the spectrum of the Weyl
semimetal.
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I. INTRODUCTION

In recent years, it has become clear that topology plays a
crucial role in classifying the phases of matter. The prelude
of this important conceptual development took place in the
’80s with the discovery of the quantum Hall effect in two-
dimensional electron gases in strong magnetic fields [1]. The
fact that a pure magnetic field is not crucial to get a topological
state in an electron lattice was later proposed by Haldane [2].
The recent advances were triggered by the theoretical proposal
and subsequent experimental observation of two-dimensional
(2D) topological insulators. These were originally regarded as
extensions of the quantum Hall effect to time-reversal invariant
systems which are subject to a strong spin-orbit interaction
[3–5]. Since then, a number of additional topological systems
were proposed, including three-dimensional (3D) topological
insulators [6,7], topological superconductors [8–16], topo-
logical crystalline insulators (TCI) [17,18], as well as Weyl
semimetals (WSM) [19–24].

The role of crystal point symmetries, usually present in
real solids, to characterize the topological properties of the
band structure was stressed in Ref. [17], where the concept of
“topological crystalline insulator” was introduced. These are
3D systems that have fourfold (C4) or sixfold (C6) rotational
symmetries and display topologically nontrivial insulating
phases with surface protected metallic states in high-symmetry
directions. Unlike other topological insulators, spin-orbit
coupling is not a crucial ingredient to drive the TCI phase. In
fact, this phase could take place even in a spinless system. A
prototypical model supporting the TCI phase was formulated
in Ref. [17] on the basis of a tight-binding Hamiltonian for
spinless electrons. The possible realization of the TCI phase
in the compound SnTe, as well as the compounds PbTe and
PbSe under pressure was discussed in Ref. [18]. Interestingly,
the possibility of realizing 2D Dirac fermions and the “parity
anomaly” in PbTe had been previously suggested in an early
work [25].

The underlying point group symmetry was also identified
as the main ingredient to stabilize other topological properties
like the type of dispersion relation around the nodes of Weyl
semimetals [20]. Unlike the topological insulators, which

have a gap in the spectrum, WSMs are characterized by
gapless points (Weyl nodes) in the Brillouin zone. Close to
the nodes, the effective Hamiltonian is that of a 3D Weyl
fermion [20,21]. The possibility of band touching only at
special points was already suggested in Ref. [26]. As stressed
in Ref. [22], the band touching at the nodes of these 3D
systems is possible when inversion symmetry or time reversal
symmetry is broken. The WSM phase provides the scenario
for several exotic phenomena, like the so-called chiral anomaly
in the presence of electric and magnetic fields [27], and the
existence of topologically protected surfaces and Fermi arcs
in slab configurations. In Ref. [22], a model with time-reversal
symmetry based on a tight-binding Hamiltonian, containing a
spin-orbit term but broken inversion symmetry was studied
as an example of a lattice model for a Weyl semimetal.
More recently, another model containing a WSM phase
with time-reversal symmetry was analyzed [23]. This model
is the tight-binding Hamiltonian with spin-orbit interaction,
proposed by Fu, Kane, and Mele [6] as a prototype for a
topological insulator. In Ref. [23], it was considered in a 3D
diamond lattice with the additional ingredient of a staggered
on-site potential to break the inversion symmetry and the
WSM is shown to take place in the middle of two topological
insulating phases.

In the present work, we show that a natural generalization of
the model introduced in Ref. [17] as a prototype of a TCI, has a
rich phase diagram, including also a WSM phase. Actually, we
show that the latter phase can be regarded as the mother phase
of the TCI one. This model has the symmetry that corresponds
to the space group P4mm and time-reversal symmetry. The point
group is C4v and therefore inversion symmetry is lacking. The
spin-orbit interaction is absent and the model has time-reversal
symmetry.

The paper is organized as follows. We present the model in
Sec. II. It consists in a tight-binding Hamiltonian for spinless
electrons with two layers and two orbitals per unit cell, very
similar to the one proposed by Fu in Ref. [17]. The features
of the band structure in the different expected phases are
summarized in Sec. III. In Sec. IV, we consider a limit of
the model where the in-plane next-nearest-neighbor hopping
parameters vanish. In this limit, the effective low-energy model
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is a generalized Weyl Hamiltonian, which can be exactly
solved. We find the phase diagram in this limit and analyze
the structure of the spectrum in the bulk as well as in a slab
configuration. We show that within a wide range of parameters
there exist a WSM phase with nodes in 3D and Fermi arcs in
the slab, as well as a normal insulating phase. In Section V
we analyze the role of the next-nearest-neighbor hopping
parameter and find that this ingredient drives TCI phases within
the WSM one. Finally, we present a summary in Sec. VI and
we discuss which materials are candidates to realize the present
model and phases.

II. MODEL

We consider a tight-binding model associated to two
orbitals dxz and dyz or px and py in a tetragonal lattice with
two atoms as in Ref. [17]. The ensuing Hamiltonian is

H =
∑

l

(
HA

l + HB
l + HAB

l

)
, (1)

where l labels a couple of layers, A and B along the z

axis. The two layers are described by the Hamiltonians HA
l

and HB
l , respectively, while HAB

l describes the interlayer
hybridization terms. Explicitly, the terms in the ensuing
effective Hamiltonian read

Ha
l =

∑
i,j

∑
α,β

c†a,α(ri ,l)t
a
α,β (ri − rj )ca,β (rj ,l), a = A,B

HAB
l =

∑
i,j

∑
α,β

t ′α,β(ri − rj )[c†A,α(ri ,l)cB,β (rj ,l) + H. c.]

+ t ′z
∑

i

∑
α

[c†A,α(ri ,l)c
†
B,α(ri ,l + 1) + H. c.]. (2)

The parameter taα,β(ri − rj ), a = A,B denotes the intraplane
hopping matrix element between the orbitals α and β localized
at the atomic positions ri and rj , with r = (x,y), on the plane.
Keeping hopping elements up to next-nearest neighbors (i,j )
leads to the following Fourier transform of H ,

H (k) =
(

HA(k) HAB(k)

HAB(k)† HB(k)

)
,

with

Ha(k) = 2ta1

(
cos kx 0

0 cos ky

)

+ 2ta2

(
cos kx cos ky sin kx sin ky

sin kx sin ky cos kx cos ky

)

and

HAB(k) = (t ′1 + t ′ze
ikz )

(
1 0

0 1

)

+ 2

(
t ′2 cos kx + t ′′2 cos ky 0

0 t ′2 cos ky + t ′′2 cos kx

)
.

The different hopping processes are indicated in Fig. 1. The
minimal model for a TCI considered in Ref. [17] corresponds
to t ′2 = t ′′2 . Notice that because of symmetry, the hopping

FIG. 1. (Color online) Sketch of a bilayer with planes A and B

indicating the intraplane and interplane hopping elements considered
in the model. The sign convention for the dxz and dyz (or px and
py) orbitals is also indicated. The circles in the plane A indicate the
possible presence of intermediate atoms with orbitals that hybridize
with the neighboring ones, renormalizing the hopping elements.

elements along the x and y directions are nonvanishing only
for hopping processes between the same type of orbitals.
For example, dxz and dyz (or px and py) orbitals at sites
with the same y coordinates, have opposite parities under a
reflection through the xz plane. The hopping elements t ′2 and
t ′′2 correspond to the hopping between dαz (or pα) orbitals
of different z planes aligned in the α direction or in the
perpendicular one respectively. In the general case, we expect
t ′2 > t ′′2 .

We show that for such case and other parameters close or
identical to those considered in Ref. [17], the present model
exhibits a WSM phase with Fermi arcs and Weyl nodes. A
crucial ingredient is that the signs of tA1 and tB1 are opposite.
This could happen if for example in the A plane, the effective
hopping between dαz orbitals is originated by a second-order
process through intermediate occupied pα orbitals of an atom
lying in the middle, as shown in Fig. 1 (a very usual case in
perovskites of transition metals and oxygen), while in the B

plane, the intermediate occupied orbitals are s instead of the
pα ones. Further discussion on this point is deferred to Sec. VI.

III. PHASES AND SPECTRAL PROPERTIES

The band structure of H (k) indicates the existence of three
possible phases in this model, depending on the ratio between
the different hopping elements.

A. Normal insulator

The normal insulator (NI) phase is characterized by a
spectrum with a gap in all the k = (kx,ky,kz) points of the
first 3D Brillouin zone as well as a spectrum with gap for a
slab configuration with N bilayers. An example is shown in
Fig. 2.
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FIG. 2. (Color online) Band structure of the slab with N = 40
bilayers in the NI phase. Parameters are tA

1 = 1 = −tB
1 = 1, tA

2 =
0.5 = −tB

2 , t ′
1 = 3.5, t ′

z = 2, t ′
2 = 0.8, and t ′′

2 = 0.1 States of the
surfaces are shown in thick magenta lines. States of the surfaces
with energies at the boundary of the gap are shown in thick magenta
lines.

B. Topological crystalline insulator

The topological crystalline insulator (TCI) phase is the one
introduced in Ref. [17]. It is also characterized by a gapped
spectrum in the bulk but metallic surface states along the
direction (001), which preserves C4 symmetry. These states
are doubly degenerate at the high-symmetry point M = (π,π )
of the square 2D projected Brillouin zone. An example is
shown in Fig. 3.

C. Weyl semimetal

The Weyl semimetal (WSM) phase is characterized by the
existence of nodes in the bulk spectrum, where two bands
touch each other. As stressed in Ref. [22], this phase exists
in systems with broken time-reversal symmetry or broken
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FIG. 3. (Color online) Band structure of the slab N = 40 bilayers
in the TCI phase. Parameters are tA

1 = 1 = −tB
1 = 1, tA

2 = 0.5 =
−tB

2 , t ′
1 = 2, t ′

z = 2, t ′
2 = 0.8, and t ′′

2 = 0.1. States of the surfaces
with energies within or at the boundary of the bulk gap are shown in
thick lines. Magenta (dark grey) and turquoise (light grey) correspond
to states of each of the two surfaces of the slab.
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FIG. 4. (Color online) Band structure of the slab N = 40 bilayers
in the WSM phase. Parameters are tA

1 = 1 = −tB
1 = 1, tA

2 = 0.5 =
−tB

2 , t ′
1 = 2.5, t ′

z = 2, t ′
2 = 0.8, and t ′′

2 = 0.1. States of the surfaces
with energies within or at the boundary of the bulk gap are shown in
thick lines. Magenta (dark grey) and turquoise (light grey) correspond
to states of each of the two surfaces of the slab.

spacial inversion symmetry. The present model is formulated
for spinless electrons, thus time-reversal symmetry is trivially
preserved. However, spacial inversion symmetry is broken
along the z axis. In the present model, the nodes are points
located at the plane kz = 0 and kz = π of the 3D Brillouin
zone. These nodes appear in pairs and define vertices of
Dirac cones, in which neighborhood the dispersion relation
of the touching bands is, in general, linear. For nodes lying
on symmetry points, the dispersion can be also quadratic, as
discussed in the next section. This phase also support metallic
surfaces in the slab configuration. The projected Fermi surface
of these metallic state defines Fermi arcs on the 2D square
Brillouin zone, which connect the nodes of the bulk spectrum.
This feature will be further discussed in Sec. IV. An example
of the band structure in the slab is shown in Fig. 4. Metallic
surface states are clearly distinguished within the gap (see thick
lines in the figure). The existence of Fermi arcs are inferred by
simply counting the number of these surface states intersecting
the closed triangular path along the 2D projected Brillouin
zone P : {(0,0) → (π,π ) → (π,0) → (0,0)}, chosen to draw
the Fig. 4. For an energy close to zero within the bulk gap,
the number of states belonging to any of the two surfaces
of the slab intersects the path an odd number of times nF

(nF = 1 in the example of the Fig. 4). Hence, the Fermi surface
corresponding to the states of a given slab surface defines an
open arc connecting two Dirac cones of the bulk spectrum.
The two slab surfaces define arcs with different concavities.
Thus the joint states of the pair of slab surfaces define a closed
Fermi surface. Instead, within the TCI phase, nF is even for the
metallic surface states (see, for instance, Fig. 3 where nF = 2).
This is due to the fact that in the TCI phase, each slab surface
has states forming a closed Fermi surface.

IV. EFFECTIVE WEYL HAMILTONIAN FOR t A
2 = t B

2 = 0.

In order to identify the ingredients that define the nature
of the spectrum in the different phases, let us focus on
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the case with tA1 = −tB1 = t1 and in the case where the
terms proportional to tA2 ,tB2 vanish. The latter condition
is satisfied for any tA2 and tB2 if we focus on k-points
with (kx,ky) = (±π/2,π ),(π, ± π/2),(0, ± π/2),(±π/2,0).
Without such terms H (k) is blocked in two matrices, Hx(k) and
Hy(k) corresponding to the subspaces related to the dxz and dyz

(or px and py) orbitals, respectively. Hereafter, we will simply
label these orbitals with the index α = x,y, respectively. They
read

Hα(k) = gα
x σx + gα

y σy + gα
z σz, (3)

with α = x,y where σx,y,z are Pauli matrices, while

gα
x (k) = t ′1 + t ′z cos kz + 2(t ′2 cos kα + t ′′2 cos kα),

gα
y (k) = −t ′z sin kz, (4)

gα
z (k) = 2t1 cos kα,

where we have introduced the notation x = y and y = x. The
Hamiltonian (3) would coincide with Weyl Hamiltonian if
gα

j = kj , with j = x,y,z. The eigenenergies of the Hamilto-
nians Hα(k) are

εα
±(k) = ±

√(
gα

x

)2 + (
gα

y

)2 + (
gα

z

)2
. (5)

A. Nodes in the spectrum. Weyl semimetal

The Weyl semimetal phase takes place when the spectrum is
gapless for values K satisfying simultaneously gj (K) = 0. The
K points where the bands touch receive the name of nodes. We
can identify two different kind of nodes, which are described
below.

1. Nodes on symmetry points

We can easily identify four examples of such points. The
first one is K1 = (±π/2,π,π ). In that case, expressing k =
K1 + q and performing a Taylor expansion for small q, we
find

gx
x (K1 + q) = �1 − 2t ′2qx + t ′′2 q2

y ,

gx
y (K1 + q) = t ′zqz, (6)

gx
z (K1 + q) = −2t1qx,

with �1 = t ′1 − t ′z − 2t ′′2 . Hence εx
±(K1 + q) is gapless for

a combination of the hopping parameters t ′1,t
′
z,t

′′
2 satisfying

�1 = 0, instead ε
y
±(K1 + q) are gapped. The opposite situation

takes place for K′
1 = (π, ± π/2,π ), in which case

gy
x (K′

1 + q) = �1 − 2t ′2qy + t ′′2 q2
x ,

gy
y (K′

1 + q) = t ′zqz, (7)

gy
z (K′

1 + q) = −2t1qy.

Hence ε
y
±(K′

1 + q) is gapless for the combination of the
hopping parameters t ′1,t

′
z,t

′′
2 satisfying �1 = 0, while εx

±(K′
1 +

q) are gapped.
The second example corresponds to points close to K2 =

(±π/2,0,π ). Performing a Taylor expansion of the coefficients

g around these points, we get

gx
x (K2 + q) = �2 − 2t ′2qx − t ′′2 q2

y ,

gx
y (K2 + q) = t ′zqz, (8)

gx
z (K2 + q) = −2t1qx,

with �2 = t ′1 − t ′z + 2t ′′2 . Hence εx
±(K2 + q) is gapless for

a combination of the hopping parameters t ′1,t
′
z,t

′′
2 satisfying

�2 = 0, while ε
y
±(K2 + q) are gapped. Similarly, the 90◦

rotated point K′
2 = (0, ± π/2,π ) corresponds to a gapless

point for the y bands when �2 = 0.
The third case corresponds to K3 = (±π/2,π,0). Close to

this point, the Taylor expansion casts

gx
x (K3 + q) = �3 − 2t ′2qx + t ′′2 q2

y ,

gx
y (K3 + q) = −t ′zqz, (9)

gx
z (K3 + q) = −2t1qx,

with �3 = t ′1 + t ′z − 2t ′′2 , which leads to gapless states in
εx
±(K3 + q) when �3 = 0, and gapped ε

y
±(K3 + q) bands.

Instead, the latter are gapless for K′
3 = (π, ± π/2,0), when

�3 = 0.
Similarly, a Taylor expansion around K4 = (±π/2,0,0)

casts

gx
x (K4 + q) = �4 − 2t ′2qx − t ′′2 q2

y ,

gx
y (K4 + q) = −t ′zqz, (10)

gx
z (K4 + q) = −2t1qx,

with �4 = t ′1 + t ′z + 2t ′′2 , implying gapless states in εx
±(K4 +

q) when �4 = 0, and gapped ε
y
±(K4 + q) bands. The latter

bands are gapless at K′
4 = (0, ± π/2,0), for �4 = 0.

The different gapless points define nodes in the spectrum
and are indicated in Fig. 5. For parameters leading to �j =
0, j = 1, . . . ,4, the system is in a Weyl semimetal phase
with metallic surfaces in a slab geometry and Fermi arcs.

ky

kx
kx

ky

π

π π

π

FIG. 5. (Color online) Nodes in the Weyl semimetal phase in the
(kx,ky) plane. (Left) Nodes for �j = 0. Circles correspond to �1 =
t ′
1 − t ′

z − 2t ′′
2 = 0 for kz = π or �3 = t ′

1 + t ′
z − 2t ′′

2 = 0 for kz = 0
(points with coordinates kx = ±π , ky = ±π are equivalent but they
are indicated for clarity). Squares correspond to �2 = t ′

1 − t ′
z + 2t ′′

2 =
0 for kz = π , or �4 = t ′

1 + t ′
z + 2t ′′

2 for kz = π or �4 = t ′
1 + t ′

z +
2t ′′

2 = 0 for kz = 0. Dark (light) symbols correspond to the touching
of the bands with x (y) character. (Right) Nodes for �j �= 0. Each of
the nodes of the left panel splits into a pair of new nodes associated
to monopoles with positive (negative) charges, corresponding to dark
(white) symbols, respectively.
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Notice, however, that the effective Hamiltonian is not the
conventional Weyl Hamiltonian. Furthermore, the effective
dispersion relations εx

±(Kj + q) are linear in qz and qx while
they are quadratic in qy . Instead, for ε

y
±(K′

j + q), they are linear
in qz and qy while they are quadratic in qx . The latter peculiarity
is due to the fact that Kj , j = 1, . . . ,4 are invariant under
a reflection ky → −ky while K′

j , j = 1, . . . ,4, are invariant
under the operation kx → −kx . In Ref. [20], the possibility
of multiple Weyl points was proposed to take place in nodes
located at high symmetry points of the reciprocal lattice, which
remain invariant under operations of the Cn point group. In the
present case, we find that the inversion symmetry may cause
a more exotic scenario, with an anisotropic dispersion relation
changing from quadratic to linear depending on the direction.

2. Nodes away from high-symmetry points

For tA2 = tB2 = 0 and for sets of the remaining hopping
parameters that do not satisfy �j = 0, the spectrum can still
have nodes as long as �j/t ′′2 < 0, j = 1,3 or �j/t ′′2 > 0, j =
2,4. Such nodes can be actually regarded as splittings of the
nodes placed at the points Kj and K′

j described in the previous
section into pairs that displace along the symmetry lines. Hence
the number of nodes in this case is twice the number of nodes
for �j = 0.

To give a specific example, when �1 �= 0, with �1/t ′′2 < 0,
the node at K1 splits in two new nodes at the positions K1,± =
(π/2, ± k1,π ), with k1 = | arccos[|�1/(2t ′′2 )| − 1]|. The new
g parameters of the Weyl Hamiltonian are

gx
x (K1,± + q) = −2t ′2[qx ∓ sin(k1)qy],

gx
y (K1,± + q) = t ′zqz, (11)

gx
z (K1,± + q) = −2t1qx.

Interestingly, the effective Hamiltonian at the new nodes is
linear in q. This is a consequence of the fact that these nodes
lie at points which do not have any particular symmetry.

For the remaining points, a similar analysis can be made.
A sketch of the map of pairs of nodes is shown in Fig. 5.

B. Monopoles of the Weyl semimetal

One of the most interesting features associated to the Weyl
Hamiltonian is the underlying structure of monopoles associ-
ated to the nodes. This structure has remarkable consequences
in the electromagnetic response of these systems, as described
in Ref. [27]. The emergence of monopoles is associated to the
Berry curvature. The latter is the vector field

�(q) = ∇q × A(q), (12)

where

A(q) = i〈�−(q)|∇q|�−(q)〉 (13)

is the Berry connection [28,29]. The ket |�−(q)〉 corresponds
to the ground state of the Weyl Hamiltonian. For a linear
relation between g and q, the field � corresponds to a
monopole at the origin q = 0, corresponding to a charge
density ρ(q)) = sg{J }δ3(q), with [23,24,30]

J = Det

[
∂(gx

x ,gx
y ,gx

z )

∂(qx,qy,qz)

]
. (14)

It can be verified by explicitly computing J , that the charges
of each of the pairs Kj,± and K′

j,± are opposite. In fact, it is
easy to see that J ∝ ∓ sin(kj ). Hence the limit �j = 0 where
the pairs merge into the nodes Kj and K′

j corresponds to the
annihilation of the two opposite charges of the pairs of nodes.

C. Fermi arcs of the Weyl semimetal

Another remarkable characteristic of the Weyl semimetal
phase is the existence of Fermi arcs when the model is
considered in a slab configuration. As stressed in previous
works [22,23], the arcs extend on the projected 2D Fermi
surface, connecting nodes of the bulk spectrum. In Fig. 6, we
illustrate the Fermi arcs showing examples of map plots in
the slab corresponding to Fermi energies close to zero for a
value of t ′′2 > 0. The upper panel corresponds to a particular set

FIG. 6. (Color online) Map of the low-energy sector of the band
of the slab within the WSM phase with t ′′

2 > 0. (Top) tA
1 = 1 =

−tB
1 = 1, tA

2 = −tB
2 = 0, t ′

1 = 2.5, t ′
z = 2, t ′

2 = 0.8, and t ′′
2 = 0.1,

i.e., parameters satisfying 0 < t ′
z < t ′

1 < t ′
z + 2t ′′

2 . (Bottom) t ′
1 = 1

and other parameters like in the top panel (notice that in this case
0 < t ′

1 < t ′
z). Only the first quadrant of the Brillouin zone is shown.
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of parameters in the region 0 < t ′z < t ′1 < t ′z + 2t ′′2 , for which
�1 < 0. For these parameters, the nodes of the bulk are placed
in positions like the ones indicated with circles in Fig. 5. One
arc of the Fermi surface of the slab extends from one of these
nodes, say (π/2,k1) to the node (π/2, − k1) (equivalent to
the former by reflection symmetry) passing through (π/2,π ),
see Fig. 6. The other arc shown in the figure is obtained
by reflection through the line kx = ky . For t ′z = t ′1, the node
depicted with the dark circle evolving from the right of the
first quadrant by increasing t ′z coincides with the white circle
evolving from above at (π/2,π/2), while for t ′z > t ′1 the circles
of the Fig. 5 move to (kx,ky) coordinates similar to those of
the square symbols of that figure. The Fermi surfaces, thus,
cross at (π/2,π/2) as indicated in the lower panel of Fig. 6.

D. Gapped spectrum. Normal insulator

The analysis of Secs. IV A to IV C reveals the existence
of a Weyl semimetal (WSM) phase for a wide range of
parameters t ′1,t

′
z,t

′′
2 , provided that tA1 = −tB1 and tA2 = tB2 = 0,

and irrespectively of the value of t ′2. For a given t ′′2 , this phase
extends in the t ′1, t ′z plane from parameters consistent with
�j = 0, in which case the nodes lye at symmetry points (see
the left panel of Fig. 5), along a wide region where these nodes
split into pairs and displace along the different symmetry axis
(like in the right panel of Fig. 5). Nodes from different pairs
cross one another at the points (±π/2, ± π/2) and continue
their vertical or horizontal displacements, provided that the
conditions �j/t ′′2 < 0,j = 1,3 and �j/t ′′2 > 0,j = 2,4 are
satisfied. For parameters that do not satisfy this condition,
the spectrum is gapped for every k and the system becomes
a normal insulator. The boundaries separating the WSM and
NI phases are defined by the lines |t ′1| = |2|t ′′2 | + t ′z|. The full
phase diagram is shown in Fig. 7.

V. PHASE DIAGRAM FOR t A
2 = −t B

2 �= 0

The phase diagram for tA2 = tB2 = 0 under the only con-
dition tA1 = −tB1 was analyzed in the previous section and it
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FIG. 7. (Color online) Phase diagram for tA
2 = −tB

2 = 0. NI and
WSM denote, respectively, normal insulating phase and Weyl
semimetal phase.
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FIG. 8. (Color online) Phase diagram for tA
2 = −tB

2 = t2 = 0.8,
tA
1 = −tB

1 = 1, t ′
2 = 0.8, and t ′′

2 = 0.1. NI, TI, and WSM denote,
respectively, normal insulating phase, topological insulator, and Weyl
semimetal phase.

is shown in Fig. 7. The boundary between the WSM and NI
phases could be calculated analytically in that case. We now
turn to analyze the phase diagram for finite tA2 = −tB2 = t2 �= 0
on the basis of numerical calculations. In particular, we have
solved the Hamiltonian in the bulk as well as in the slab and
analyzed the structure of the spectrum. As mentioned in Sec. III
the WSM phase is identified by nodes in the bulk spectrum.
In addition, the number 2nF of intersections of the Fermi
surface with energy close to zero with the path P : {(0,0) →
(π,π ) → (π,0) → (0,0)} in the slab spectrum has nF odd.
Instead the CTI phase has gapped bulk spectrum and even nF .
As shown in Fig. 8, switching on this parameter brings about
a much richer phase diagram including topological crystalline
insulating (CTI) phases for parameters t ′1,t

′
z within the WSM

phase for t2 = 0. The nature of this topological insulator is
precisely the one discussed in Ref. [17] corresponds to a
particular case of these phases. Within these regions, there
exist surface states protected by the point symmetry like the
ones shown in Fig. 3. The WSM phase has nF = 1, (nF = 3)
for |t ′1| > |t ′z| (|t ′1| < |t ′z|). The thinner TCI phase close to
|t ′1| = |t ′z| has nF = 2, while the other TCI phase has nF = 4.

VI. SUMMARY AND DISCUSSION

We have studied the spectral properties of a tight-binding
model for spinless electrons in a double-layer 3D structure
with two type of orbitals per unit cell. This model is similar
to that considered by Fu in Ref. [17] as a prototype for a
crystalline topological insulator. We have introduced a natural
generalization for the interlayer hopping parameters that
properly takes into account the symmetry properties of the two
orbitals involved. We have shown that in the limit where the
intralayer next-nearest-neighbor hopping parameters vanish
the low-energy spectrum can be effectively described by a
generalized Weyl Hamiltonian. That model could be analyti-
cally solved, and we found that a Weyl semimetal phase takes
place for a wide range of parameters. We then showed that
the topological crystalline insulating phase proposed by Fu,
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emerges when the intralayer next-nearest-neighbor hopping is
switched on.

In conclusion, we have shown that the complete phase
diagram of the model is very rich, containing Weyl semimetal
as well as normal insulating and crystalline insulating phases.
Unlike most of the Weyl semimetal phases analyzed in the
literature, the present one does not rely nor on spin orbit
interaction neither on external magnetic fields. The spin
actually does not play any role in driving the different phases
of the present model.

A crucial ingredient leading to the description in terms
of the underlying effective Weyl Hamiltonian seems to be a
different relative sign in the two intralayer nearest-neighbor
hopping parameters tA1 and tB1 . To finalize, we would like to
comment on the scenario where such change in the sign of
the hopping ta1 , a = A,B could take place. To this end, let us
first notice that, using the sign convention of Sec. II, the direct
hopping between dαz (or pα) orbitals along the α direction
is always positive. However, if an intermediate atomic orbital
exist (like the circles in the sketch of Fig. 1) the sign could
change, depending on the symmetry and the state of charge

of the latter. A typical example can be found in planes of
perovskites, in which case the effective hopping ta1 between
dαz orbitals is originated by the hybridization (named tpd ) of
these orbitals with intermediate pα ones. As a consequence,
the effective hopping between neighboring dαz is ta1 = t2

pd/�,
where � is the charge-transfer energy between the dαz and
the intermediate pα orbital. Hence, if the intermediate orbitals
are empty, the effective hopping ta1 is negative, while it is
positive otherwise. If the intermediate orbitals were s, the
sign of ta1 would be, instead, negative or positive, depending
on whether the intermediate orbital is empty or occupied.
Therefore different physical situations can exist in which the
effective hopping ta1 has opposite sign in the two layers.
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