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Abstract
In this paper, we theoretically address the photoemission from image potential states (IPS)
around nanotubes. The relevance of this process is related to the fact that this particular kind of
IPS has been experimentally detected for carbon nanotubes by means of femtosecond-resolved
two-photon photoemission (Zamkov et al 2004 Phys. Rev. Lett. 93 156803). The quantum
interaction between the bound electron and the incident radiation field is considered within the
dipolar approximation, and the transition matrix for the process is obtained using a first-order
Born expansion. For a linearly polarized photon with the polarization vector perpendicular to
the nanotube’s axis, electrons are found to be emitted with a polar angle that is determined by
the initial parallel momentum of the bound electron.

PACS numbers: 61.46.Fg, 33.80.Eh

(Some figures may appear in colour only in the online journal)

1. Introduction

Image potential states (or IPS) have concentrated interest
in the scientific community in recent years due not only to
the variety of systems in which they occur [1–12], but also
to the ability of these states to probe the properties of the
hosting system at the nanometric scale [13–23]. IPS form
in front of surfaces locally polarized by the presence of an
external electron: the competition between the Coulomb-like
attractive image force experienced by the charge and the
repulsive surface results in a potential well where weakly
bound electrons can accommodate on a quantized series of
states below the vacuum level.

Although IPS were first observed in liquid He by
conductivity techniques [24, 25], it was metallic surfaces that
provided the most favourable setting for their early study.
The successful multiple reflection model of Echenique and
Pendry [26] was followed by extensive theoretical work [27]
while the development of k-resolved inverse photoemission
spectroscopy and two-photon photoemission spectroscopy
(2PPES) allowed for the first conclusive experimental
evidence of IPS in these systems [1, 28]. The state of the
art is the combination of 2PPE with ultrafast laser pulses,

a femtosecond resolution technique that has made direct
measurements of IPS lifetimes possible [13, 16, 29–31].

A particular kind of IPS has been predicted to form
around freely suspended linear molecular conductors or
dielectrics, e.g. carbon nanotubes, by Granger et al [32]. The
centrifugal barrier resulting from their non-zero quantized
angular momentum prevents the excited electrons from
collapsing into the surface of the tube, thereby substantially
increasing their lifetimes at low temperatures, when compared
with the ones in planar systems. Experimental evidence
of their existence around multiwalled carbon nanotubes
(MWNTs) was recently provided by Zamkov et al [9], who
measured their binding energies and followed their dynamics
by means of femtosecond time-resolved photoemission. The
use of MWNTs instead of single-walled ones (SWNTs) is
due to the tendency of the latter to form bundles [33].
MWNTs constitute an experimentally viable alternative,
yielding large quantities of isolated tubes. The observation
of IPS in suspended SWNT networks seems to be the future
perspective [34].

In this paper, we obtain the cross sections for the emission
of photoelectrons occupying an IPS around an isolated,
metallic nanotube. Note that the potential on the vacuum
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side of an MWNT will have the same analytic form as
that of an SWNT and, therefore, theoretical predictions on
SWNTs could be contrasted to MWNTs experimental data.
We consider the case in which the incident photon is linearly
polarized, with its wave vector running perpendicular to the
nanotube’s axis. In this scenario, the relevant interaction
for the process is that between the photon and the bound
electron, while we regard the photon–nanotube interaction as
playing only a minor role and do not take it into account.
We make use of the first-order Born approximation, the
dipole approximation and the orthogonalized plane wave
approach to obtain the transition matrix corresponding to
the photoemission from an IPS. Our results show that when
the polarization vector is perpendicular to the nanotube’s
axis, photoelectrons are emitted in a polar direction that is
determined by the parallel momentum of the bound electron.
The complementary case of the polarization vector parallel to
the axis yields null photoemission.

The paper is organized as follows. In section 2, a
theoretical description of the ionization process is presented.
In section 3, results for the cross sections are portrayed and
discussed. In section 4, the main conclusions reached in this
work are summarized. Unless otherwise stated, atomic units
are used throughout this paper.

2. Theory

In this work, we follow a procedure analogous to the one
presented in a previous paper [35], where the ionization of
image electrons by incident free electrons was addressed. The
radial wave functions are obtained by numerically solving the
Schrödinger equation with an effective potential obtained as
the sum of the image potential induced by the bound electron,
and the centrifugal potential term [32, 36].

The process to be considered now is that in which an
electron occupying an image state around a nanotube is
ionized as a result of its interaction with an incident radiation
field. The differential probability per unit time for this process
to occur is, according to the Fermi Golden Rule,

(Pt )i→f =
2π

h̄
|Tif|

2 δ (Ef − Ei − h̄ω0) , (1)

where Ei and Ef are the electron’s initial and final energy,
ω0 = c k0 is the energy of the incident photon and Tif is the
transition matrix element which, within a first-order Born
approximation, reads

Tif = 〈F | Hint |I 〉 . (2)

The initial and final states for the system are

|I 〉 =
∣∣1k̄0,α

〉
|9i〉 ,

|F〉 = |0〉 |9f〉 , (3)

where the first and second ket factors on the right represent
the photon (initially one photon with wave vector k̄0 and
polarization state α) and electron state, respectively.

The photon–bound electron interaction potential is

Hint = −
e

mc
p̄ · Ā, (4)

where p̄ is the momentum operator, and the electromagnetic
field operator Ā is given by

Ā (r̄) =
c

√
V

∑
k̄,εi

√
2π h̄

ωk̄

(
ak̄,εi

eik̄.r̄ + a†
k̄,εi

e−i k̄.r̄
)
ε̂i,

(5)

with V the normalization volume and ε̂i the polarization
vector, which is assumed to be linear.

Substituting equations (5), (4) and (3) into equation (2),
we obtain the following expression for the transition matrix:

Tif =
i e h̄

m

√
4π h̄

2ω0

1
√

V
χif, (6)

where

χif ≡ 〈9f| ei ω0
c k̂0r̄ ε̂0∇̄ |9i〉 . (7)

The cross section for a given transition is related to
equation (1) via

σ
(
k̄0, ε̂0

)
i→ f

=
(Pt )i→ f

jphoton
(8)

with jphoton = c nk̄0,ε̂0
/V the incident photon flux and nk̄0,ε̂0

the number of incident photons in state (k̄0, ε̂0). In our case,
nk̄0,ε̂0

= 1. Substituting equations (1) and (6) into equation (8),
we obtain the total cross section for a given initial state,

σ(k̄0, ε̂0)=

∑
k̄f

(2π)3

c

e2h̄2

m2ω02π
δ (Ef − Ei − h̄ω0) |χif|

2

= V
∫

e2h̄2

c m2ω02π
δ (Ef − Ei − h̄ω0) |χif|

2 dk̄f,

(9)

as well as the differential cross section, which reads [37]

dσ
(
k̄0, ε̂0

)
d�f

= V
1

2π

e2

mc

kf

ω0
|χif|

2 . (10)

We set ẑ parallel to the nanotube’s axis and the incident
photon’s wave vector, k̂0 = x̂ , perpendicular to it, as is shown
in figure 1.

The bound electron is fully delocalized in ẑ. Its initial
state is

9n,l,ki z = fnl(ρ) ei l ϕ φki z (z)

=
ψn,l(ρ)
√

2πρ
ei l ϕ ei ki z z

√
L
, (11)

with L a normalization length in ẑ.
The tubular image potential, although long-range in

character (Vim ≈ 1/(ρ logρ) [32]), presents a slightly milder
behaviour than the Coulomb potential. As shown by previous
work [38], a first-order Born treatment of the transition matrix
elements based on plane waves for the continuum states
provides a correct description of the scattering amplitude even

2



Phys. Scr. 87 (2013) 065602 G A Bocan et al

Figure 1. System’s geometry. The bound electron is delocalized in
the ẑ-direction. ρ0 is a characteristic electron–nanotube distance.
The incident photon wave vector is k̄0 = k0 x̂ and its polarization
state ε̂0 is perpendicular to the nanotube’s axis.

for a pure Coulombic potential. Therefore, we assume that it
also applies as a first-order approximation to our system. Our
ionized state is then a plane wave, orthogonalized with respect
to the initial bound state as in [35],

|OPWf〉 = |PWf〉 − |9i〉 〈9i |PWf〉 . (12)

The last bracket can be readily evaluated as follows:

〈PWf |9i〉 =

∫
e−ik̄f.r̄

√
V

ψn, l (ρ)
√

2πρ
ei l ϕ ei ki z z

√
L

dr̄

= δkfz ,ki z

2π
√

A
ei l (ϕf−π/2) I1

(
kf‖

)
, (13)

where A = V/L and we have used the Jacobi–Anger
identity [39] to integrate over ϕ. The integral in ρ is

I1
(
kf‖

)
≡

∫
ψn, l (ρ)
√

2πρ
ρ Jl

(
kf‖ρ

)
dρ, (14)

with Jl(kf‖ ρ) the Bessel function of order l and k̄f‖ the
projection of k̄f to the xy-plane.

Finally, note that [32, 35]

ρ0 ∼ 102 au,∣∣En, l

∣∣ ∼ 10−4 au, (15)

where ρ0 is a characteristic electron–nanotube distance. The
energies ω0 of interest are

ω0 ∼
∣∣En, l

∣∣ � 1, (16)

and so we are entitled, in equation (7), to consider the dipole
approximation (c = 137 au)

ω0

c
k̂0 · r̄ ∝

ω0

c
ρ0 � 1,

ei ω0
c k̂0·r̄ ≈ 1. (17)

Combined with the OPW approximation (equation (12)), this
leads to

χOPW
if = 〈OPWf| ε̂0.∇̄ |9i〉

= 〈PWf| ε̂0.∇̄ |9i〉 − 〈PWf |9i〉 〈9i| ε̂0.∇̄ |9i〉

= χ PW
if − 〈PWf |9i〉 〈9i| ε̂0.∇̄ |9i〉 . (18)

The expression obtained for the matrix element
(equation (18)) is valid for any fixed polarization vector ε̂0.
For the case considered (k̄0 ‖ x̂ , as shown in figure 1), there
are two independent directions for ε̂0, namely parallel to
the nanotube’s axis (ε̂0 = ẑ), or perpendicular to it (ε̂0 = ŷ).
The former case does not contribute to the photoionization
process: no electrons are to be emitted when the incident
electric field points in the ẑ-direction, along which image
electrons can move freely.

When the polarization is perpendicular to the tube’s axis,
the matrix element (18) can be evaluated in a straightforward
way (see appendix A). In this case, the orthogonalization term
is identically zero and we obtain

χOPW
if = χPW

if

= i δki z ,kfz

2π
√

A
ei l (ϕf−π/2) sinϕf R1

(
kf‖

)
(19)

with

R1
(
kf‖

)
≡

∫ [
l fnl (ρ)− ρ

∂ fnl (ρ)

∂ρ

]
J(l+1)

(
kf‖ ρ

)
dρ. (20)

Regarding this result note that: (i) it does not depend
on the function chosen to model ψn,l(ρ); (ii) if we do not
consider the dipole approximation, we obtain χOPW

if ≈ χPW
if ;

and (iii) there is a marked contrast between the negligible
OPW correction obtained here, with the central role it played
in our previous work on ionization by electron impact [35].

3. Results

In order to obtain the differential cross section, we substitute
equation (19) into equation (10) and obtain

dσ

d�f
= (2π)3

e2 kf

2π mcω0
δ (kfz − ki z)

∣∣R1
(
kf‖

)∣∣2
sin2 ϕf,

(21)

where we find a simple sin2ϕf dependence for the azimuthal
angle and a fully localized distribution (cos θf = kiz/kf) in the
polar angle θf. The total cross section reads

σ = (2π)3
e2

mcω0 2

∣∣∣∣R1

(√
2

(
En, l +ω0

))∣∣∣∣2

, (22)

where we have used the energy conservation equation En,l +
k2

i z/2 +ω0 = k2
f /2. In figure 2, σ is plotted as a function of the

incident radiation energy ω0 for initial electronic states {n =

1, l}, with l = 5, . . . , 8; the corresponding binding energies
are given in table 1, along with the position ρ0 at which the
squared radial wave function presents its maximum values for
a nanotube of radius 0.68 nm.

3



Phys. Scr. 87 (2013) 065602 G A Bocan et al

Table 1. Binding energies and maximum probability radius ρ0 for
the first four bound image potential states for a nanotube of 0.68 nm
radius.

l E1,l (meV) ρ0 (nm)

5 −14.005 6.66
6 −7.651 10.16
7 −4.845 15.50
8 −3.294 21.89

10 100
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Figure 2. Total ionization cross sections for initial electronic states
{n, l} with n = 1 and l = 5, . . . , 8. The incident photon is polarized
perpendicular to the nanotube’s axis. The interaction is treated
within the dipole approximation. The OPW is used to represent the
ionized state. In the inset, the cross section is plotted as a function
of the variable qβ, as suggested from equation (24).

In addition to the usual ionization threshold at ω0 =∣∣En,l

∣∣, the curves present a peaked maximum at ω0 ≈ 2
∣∣En,l

∣∣.
The amplitudes of these peaks decay with a power law as
a function of the absolute value of the binding energy, with
an exponent of ≈ 1.2 (i.e. σmax ∝ E−1.2

n,l ). In comparison with
the photoionization of the hydrogen atom, for which cross
section values are of the order of 1 Mb for the 1s state near
the ionization threshold, we observe that the probability of
extracting an electron from an image-potential state is at least
103 times larger.

In order to discuss the marked features of the calculated
cross sections, we use an analytical form to describe the radial
part of the wave function,

ψn,l ≈

√
ρα−1 e−ρ/β

βα0(α)
, (23)

where 0(x) is the usual Gamma function; for each set {n, l},
the parameters α and β are chosen so that it reproduces
the numerical eigenfunctions [35, 36]. We substitute this
expression into the radial integral R1 in equation (20) and
obtain

R1 (q) ≈

∫ √
ρα−1 e−ρ/β

βα0 (α)

1
√

2πρ

(
−
α

2
+
ρ

2β
+ l + 1

)
× Jl+1 (q ρ) dρ

≈
1√

2π (qβ)α 0 (α)

∫ +∞

0
e−t/(2qβ)tα/2 Jl(t) dt,

(24)

where we have made the substitution t = ρ q , and applied
some well-known properties of Bessel functions and of
integrals involving them [39].

It is clear from equation (24) that the radial integral R1

can be expressed as R1α(qβ), that is, it is a function of qβ with
α being a parameter. The variable qβ is dimensionless with
q =

√
2(En, l +ω0) and β playing the role of a characteristic

distance. Furthermore, it could be shown that the ionization
cross section is itself a function of qβ, and we can see in
the inset of figure 2 that its maximum occurs when qβ ≈ 0.5.
This result is analogous to what one finds, for example, in
the photoionization of the hydrogen atom when using a plane
wave for the ejected electron [37].

The present cross section calculations allow us to give an
estimate for the mean lifetime of an IPS due to its interaction
with ambient (solar) radiation. Considering the flux of solar
radiation reaching the terrestrial surface [40], we obtain a
lifetime of τ = 0.7 s for the state n = 1, l = 7 and a photon
energy of 10 meV (for which σ1,7 is maximum). This is
considerably larger than the lifetime obtained from other
decay mechanisms cited by Granger et al, such as the collapse
of image state electrons into the bulk due to tunnelling through
the centrifugal barrier.

Finally, it is important to recall that photoionization is the
basis of 2PPE spectroscopy, the main technique used in the
detection of IPS. Although quantitative comparisons would be
difficult to accomplish, our calculations could be applied in a
qualitative analysis of measured spectra, e.g. for determining
the relative height of the detected peaks corresponding to
different IPSs. The procedure described here is general and
can be applied using different forms of the bound wave
functions such as the low angular momentum states detected
by Zamkov et al [9].

4. Summary

This paper presents a quantum theoretical description of the
emission of photoelectrons occupying image potential states,
with thorough calculations of differential and total cross
sections. The study yields a series of predictions that may
be subject to experimental tests. First, the process presents a
null cross section if the incident radiation is polarized parallel
to the nanotube’s axis. For the perpendicular case, emission
occurs at a polar angle that is determined by the initial parallel
momentum of the bound electron. The ionization cross section
presents a peaked maximum, reaching very high values for
photon energies of the order of the ionization threshold, and
going rapidly to zero afterwards.

The OPW term introduces no sensitive change to the
plane wave result. This is in contrast with our previous work
on ionization of image electrons by electron impact, where
this correction was central for obtaining the correct behaviour
of the cross section for high impact energies.

Given the general character of the present formulation,
we expect this work to be useful in relation to current
experimental efforts to detect and characterize the properties
of these states, and to provide new insights regarding image
electron emission from cylindrical nanostructures.
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Appendix A. Matrix elements

In equation (18), we take ε̂0 = ŷ and evaluate separately the
PW and the correction contributions. We begin with the plane
wave term

χPW
if =

∫
e−ik̄f.r̄

√
V

∂

∂y
9i (r̄) dr̄

=

∫
e−ik̄f.r̄

√
V

ei l ϕφki z (z)

×

[
sinϕ

∂ fnl (ρ)

∂ρ
+

cosϕ

ρ
i l fnl (ρ)

]
dr̄ .

(A.1)

We integrate over z, make use of the Jacobi–Anger identity to
integrate over ϕ, do some more algebra and obtain

χPW
if = (−1) δkfz ,ki z

2π
√

A

1

2
ei l (ϕf−π/2)

×
{
e−iϕf R2

(
kf‖

)
− eiϕf R1

(
kf‖

)}
(A.2)

with

R1(q)≡

∫ [
l fnl (ρ)− ρ

∂ fnl (ρ)

∂ρ

]
J(l+1) (qρ) dρ,

R2(q)≡

∫ [
l fnl (ρ)+ ρ

∂ fnl (ρ)

∂ρ

]
J(l−1) (qρ) dρ.

(A.3)

Finally, we make use of the result R1(q)= R2(q)
(see appendix B) and obtain

χPW
if = i δki z ,kfz

2π
√

A
ei l (ϕf−π/2) sinϕf R1

(
kf‖

)
. (A.4)

Regarding the second term in the matrix element (18), we
note that

〈9i| ŷ.∇̄ |9i〉 =

∫
9i (r̄)

∂

∂y
9i (r̄) dr̄

=

∫
f ∗

nl (ρ)
∂ fnl (ρ)

∂ρ
ρ dρ

∫
sinϕ dϕ

+
∫

f ∗

nl (ρ)
i l

ρ
fnl (ρ) ρ dρ

∫
cosϕ dϕ

= 0 (A.5)

and the orthogonalization correction is therefore null.

Appendix B. R1 and R2

In this appendix we will prove the identity R1 = R2, used in
equation (A.4). We use the recurrence relation [39]

Jl+1(qρ)=
2 l

qρ
Jl(qρ)− Jl−1(qρ) (B.1)

to substitute in the definition of R1 given in equations (A.3),

R1(q)=

∫
∞

0

{
l

fnl(ρ)

ρ
−
∂ fnl

∂ρ

}

×

(
2l

qρ
Jl(qρ)− Jl−1(qρ)

)
ρ dρ

= −

∫
∞

0

{
l

fnl(ρ)

ρ
−
∂ fnl

∂ρ

}
Jl−1(qρ) ρ dρ

+ 2l2
∫

∞

0
fnl(ρ)

Jl(qρ)

qρ
dρ

− 2l
∫

∞

0

∂ fnl

∂ρ

Jl(qρ)

qρ
ρ dρ. (B.2)

The last integral can be solved by parts and, assuming that fnl

is a well-behaved function in the limits of integration, we can
write

R1(q)= −

∫
∞

0

{
l

fnl(ρ)

ρ
−
∂ fnl

∂ρ

}
Jl−1(qρ) ρ dρ

+ 2l2
∫

∞

0
fnl(ρ)

Jl(qρ)

qρ
dρ

+ 2l
∫

∞

0
fnl(ρ)

∂ Jl(qρ)

∂(qρ)
dρ. (B.3)

Now we use the identity J ′

l (x)= Jl−1(x)−
l
x Jl(x) and obtain

R1(q)=

∫
∞

0

(
l

ρ
fnl(ρ)+

∂ fnl

∂ρ

)
Jl−1(qρ) dρ

= R2(q). (B.4)
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