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ABSTRACT
The behaviour of damping and dynamic shear modulus in 
polypropylene charged with either different volume fraction or size 
of magnetite (Fe3O4) particles, as a function of the applied magnetic 
field at 318, 353 and 403  K; has been studied. An increase of the 
alternating magnetic field oscillating with 50 Hz, leads to an increase 
of the damping. In addition, during the subsequently decreasing 
alternating magnetic field, the damping decreases, but a hysteretic 
behaviour appeared. The behaviour of the damping and the elastic 
modulus under the application of an alternating magnetic field 
was explained by the development of a magnetic fatigue damage 
occurring around the particle interface due to oscillation of magnetite 
particles. In contrast, during the increase of a direct magnetic field, the 
damping decreases and the elastic modulus increases. Measurements 
performed at 353 and 403 K allowed observing the interaction process 
among the particles of magnetite in the polymer matrix. After the 
decrease in the direct magnetic field, from the maximum reached 
value, damping and modulus remain smaller and higher, respectively; 
giving rise to a memory effect. In addition, a mesoscopic description 
of magnetite filled polymer composite materials has been performed 
in the continuous media by considering the interaction between 
magnetic and mechanical forces. Theoretical predictions of here 
developed model were qualitatively applied with good success for 
explaining the memory effect in magnetite filled polypropylene under 
the application of a direct magnetic field.
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1.  Introduction

Polymer matrix composites (PMC) offer improved physical chemical properties regarding 
those of the matrix materials, covering a wide range of requirements of stiffness and damp-
ing.[1–5] For instance, filler particles like CaCO3 and Fe3O4 in polypropylene (PP) matrix 
composites may improve thermal, mechanical or magnetic properties and influence the 
activation energies of α′, α and β-peaks of the damping spectra.[6–9]

Regarding the magnetic properties of such composites, the isolation of the magnetic 
particles by the polymer leads to a decrease of power losses in the medium- and high-
frequency region compared to classical magnetic materials.[10] Furthermore, a complex 
shaping of these kind of materials, for example, by injection moulding or other typical plastic 
processing methods is possible. Thus, magnetic particles embedded in polymeric matrices 
are used as an electromagnetic interference shield,[11] as power transformers,[12] magnetic 
cores,[13] stators or other applications,[14] in which alternating magnetic fields are used.

In this work, dynamic mechanical analysis studies conducted under the application of 
alternating and direct magnetic field have been performed in magnetite charged polypro-
pylene composites. The effects of the alternating and direct magnetic fields on the dynamic 
response of composite samples were determined. The alternating field leads to a damage of 
the particle interface, giving rise to a zone of different rheological properties in the PMC 
around the particles. In contrast, the direct field leads to a movement of the magnetite 
particle which finally achieves its retention in a metastable state, giving rise to a PMC with 
modified modulus and damping properties. This effect was here called, the memory effect.

It should be noticed that the magnetite-charged PP composite arise as a damping and 
stiffness magnetically controllable PMC.

The memory effect involved in this work is different to those in shape memory polymers, 
where the memory comes from configurational changes at level of the polymer chains.[15]

In order to explain the memory effect in magnetite-charged PP composites, we have 
developed a model at mesoscopic scale which describes the interaction mechanisms between 
magnetic particles embedded in polymeric matrix.

2.  Experimental

2.1.  Materials

As matrix material the polypropylene grade Moplen EP F 31 H (Basell B.V., Klundert, 
Netherlands) with crystalline melting temperature of TM = 441 K was chosen. The magnet-
ite grade MagniF25 was supplied by Minelco B.V (Rotterdam, Netherlands) with irregular 
shaped particles with mean diameter of d = 22 μm and a wide particle size distribution up to 
200 μm.[7,9,16] Polymer and magnetite were mixed in a twin screw extrusion compounder 
of D = 25 mm diameter and a length of 40D (ZE25-CL, Berstorff, Germany). Polymer 
pellets were fed gravimetrically (FlexWall 33, Brabender Technologie, Germany) into the 
feed throat. At the fifth zone of the extruder, a side feeder was mounted which received the 
magnetite from another gravimetric dosing system (Soder T20, K-Tron, Germany) and fed 
it into the molten polymer. The compound left the extruder passing a plate with two holes 
of 4 mm diameter. The strands were cooled in a water bath and pelletized afterwards. Final 
samples were prepared using an injection moulding machine (Allrounder 320C 600-250, 
Arburg, Germany).
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The polypropylene samples were charged with 30, 50 and 60 volume percentage of 
magnetite (Fe3O4) particles. Composite samples with 50% vol. magnetite containing par-
ticles of mesh 40–63 μm and mesh 63–80 μm were also studied.

2.2.  Characterization methods

Dynamic mechanical analysis studies (also called mechanical spectroscopy studies),[17–19] 
which involve the simultaneous measurement of loss tangent, tan(ϕ) and dynamic shear 
modulus, G′, were performed as a function of the magnetic field strength; in a mechanical 
spectrometer which was developed and assembled at the laboratory.[20–22] The dynamical 
response of a linear viscoelastic material is usually described in terms of the complex mod-
ulus G* (or complex compliance J*) as a function of the circular frequency ω (ω = 2πf) and 
temperature. The complex modulus is generally presented in terms of its real and imaginary 
parts, that is, G* = G′ + i G′′, where G′ is the storage modulus, G′′ is the loss modulus and 
i is the imaginary unit. Consequently, tan(ϕ), also called damping or internal friction, is 
defined as the quotient between the imaginary and real part of the complex modulus. In 
addition, a proportionality between G′ and the squared natural oscillating frequency can be 
established. The proportionality constant involves the moment of inertia of the oscillating 
system and the dimensions of the sample.[23,24]

The spectrometer was operated in torsion, in forced oscillations mode at resonant fre-
quencies of around 10 Hz, under Argon at atmospheric pressure; at three different tem-
peratures: 318, 353 and 403  K (±0.25  K). Damping was determined by measuring the 
relative half width of the squared resonance peak for a specimen driven into forced vibration 
using:[17,25,26]

 

where ω0 is the resonant frequency and ω1 and ω2 are the frequencies at which the amplitude 
of oscillation has fallen to 1/√2 of the maximum value. Indeed, (1) can be related to the 
usual expressions for damping, tan(ϕ) = G′′/G′ ≈ δl/π, where δl is the logarithm decrement, 
by working mathematically the mechanics equations of the movement of the spectrometer 
and sample.[25,27–29] The use of (1) considering that amplitude of oscillation has fallen to 
1/√2 of the maximum value is particularly important when amplitude dependent damping 
behaviour appears (doubling the stress does not lead to doubling strain). In fact, the meas-
ured value by means of (1) corresponds to the damping value which would be calculated 
in a specimen when the deformation in space is uniform.[30] So, the contribution to the 
damping from the spatially inhomogeneous strain distribution in a measured sample at 
the spectrometer is corrected, i.e., the measured value by (1) corresponds to the intrinsic 
damping value.[26,30–32] In addition, in mechanical spectrometers working both at reso-
nant frequencies and damping values higher than 10−2, the use of (1) can lead to a increase 
in the accuracy of the measured value.[26,31,32]

The errors of tan(ϕ) and G′, being proportional to the squared oscillating frequency, are 
less than 2 and 1%, respectively.

The magnetic field was produced by a water-cooled coil device, provided with an electri-
cal heater of compensated windings (Thermocoax, Philips), positioned at the place of the 
sample. The direction of the applied magnetic field was parallel to the torsion axis.

(1)tan(�) =
�

2
− �

1

�
0
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The maximum amplitude of the used alternating magnetic fields (50  Hz) was 
HAC  =  30  kA/m, while the value of the maximum used direct magnetic field was 
HDC = 21 kA/m.

Samples were parallelepiped of about 2 mm × 2.2 mm × 30 mm and the maximum oscil-
lating strain on the surface of the sample was 5 × 10−5.

The measurement of each point of tan(ϕ) as a function of the intensity of the magnetic 
field involves around 1.5  min, whereupon each value of tan(ϕ) was measured, at least, 
twice at each field strength. For instance, measuring tan(ϕ) dependent on the magnetic 
field strength from HDC = 0 kA/m to the maximum field strength of HDC = 21 kA/m needs 
around half an hour. Decreasing the magnetic field strength is similar time consuming.

3.  Theoretical background

3.1.  The model

Our here presented model describes the interaction mechanisms between magnetic particles 
embedded in a polymeric matrix and it uses the following assumptions:

(1) � �  The magnetic particles can be considered as magnetic dipoles. The position of 
the magnetite particles in the polymeric matrix is fixed and the only freedom of 
movement is a rotation. In fact, the particles can rotate around their dipole cen-
tres (geometric centres) for an alignment in the direction of the applied external 
magnetic field, Figure 1.

(2) � �  Elastic forces are acting on each dipole caused by elastic properties of the matrix, 
by magnetic fields of neighbouring magnetic dipoles and by the external mag-
netic field. Consequently, it is either possible that a dipole returns to the original 
direction or it remains in a new direction when the external magnetic field is 
switched off.

Figure 1. Schematic description of magnetic particles (circles) as magnetic dipoles (arrows) embedded 
in a material matrix subjected to a magnetic field H. The (I) particle is already aligned in the direction of 
the external field H. The (II) particle is still rotating around its centre for alignment into the direction of 
the external magnetic field H. The broken arrow indicates the rotation direction.
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3.2.  Magneto-mechanical interactions

In this model, we consider three interacting magnetic and mechanical forces whereof two 
are intrinsic of the material and not dependent on the external magnetic field. The first 
magneto-mechanical interaction is caused by the magnetic forces between two adjacent 
particles trying to align them. Secondly, as a consequence of the fixed positions of the centres 
of the particles, we have to take the deformation of the matrix during the rotation of the 
dipoles into account. Thus, the second interaction is promoted by an elastic deformation of 
the matrix. As it can be inferred intuitively, the first and second contributions are counter-
acting. If the magnetic force tries to rotate a particle into a new position, the force caused 
by the elastic deformation of the matrix will work against the magnetic force. Finally, the 
third interaction is caused by the external magnetic field acting on the magnetic particle. 
The final direction of the particles is reached when all forces are in equilibrium.

3.2.1.  Intrinsic moments
3.2.1.1.  Magnetic moment contribution.  Figure 2 shows a schematic representation of the 
interaction behaviour of two magnetic particles (I and II) as a function of their geometric 
arrangement. The particles are lying in two different planes. One particle (I) is assumed to be 
fixed in a given arbitrary direction and the second one (II) is turning to the same direction 
due to the magnetic interaction between them. The initial misorientation is θ0, the distance 
between the centres of the dipoles is (2r + d0) and the gap between the dipoles is d0.

Due to higher attractive than repulsive forces (Figure 2), we will analyse the attractive case 
between the dipoles. This consideration is valid for a mean field approximation describing 
the interaction process in a continuous medium.

The magnetostatic force Fm gives rise to a torsional moment Mm which promotes the 
alignment of two magnetic particles [33]

 

where Fm = R1/d
2

1
, R1 = p1·p2/4πμ0, p1 = p2 = p are the poles strength, μ0 is the permeability 

of vacuum and d1 is the separation between the poles of different charge.
By working with the sine theorem, we can write the cos(ξ) in (2), corresponding to  

Figure 2, as a function of angles θ, θ0, θa; in the form
 

Consequently, the torsional moment in (2) can be written as follows:
 

In the following paragraphs we describe all angles and distances given in Figure 2 as 
functions of the angles θ, θ0, θc. The distance d1 can be obtained using the cosine theorem.

 

(2)Mm = Fm ⋅ cos (�) ⋅ 2r

(3)cos (�) =
a

d
1

sin
(
�a + �

0
− �

)

(4)Mm = R
1

2ra

d3

1

sin
(
�a + �

0
− �

)

(5)d2

1
= a2 + r2 − 2ar cos

(
�a + �

0
− �

)
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Likewise, the distance a can be described using the triangles described by a, r and 
(2r + d0) as a function of the θa, as follows:

 

or using the same triangle but now considering a and θc, we can write
 

By rearranging, we obtain
 

and by defining � =
(

do

r

)
, we can write

 

Then, we can obtain θa as a function of θc by relating (6) and (7):
 

(6)a2 = r2 −
(
2r + d

0

)2
+ 2a

(
2r + d

0

)
cos

(
�a

)

(7)a2 = r2 +
(
2r + d

0

)2
− 2r

(
2r + d

0

)
cos

(
�c

)

(8)a2 = 4r2

[
5

4
+

1

4

(
d
0

r

)2

+
d
0
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(
1 +

1

2
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0
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)
cos

(
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)]

(9)a = 2r
[
1

4
�2 + � +

5

4
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(
1 +

1

2
�

)
cos

(
�c

)] 1

2

(10)�a = cos
−1

⎧
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��
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Figure 2.  Geometric representation of the magnetic moments for the basic unit in the mean field 
approximation used in the present work.
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Inserting (8) and (10) into (5) the distance d1 as a function of the angular variables equals.
 

Finally, as θa is a function of θc, we can obtain a general expression for the torsional 
moment (4) as a function of θ0, θc and θ, in the form

In the following paragraphs, (12) is evaluated for different values of θc and it will be 
shown that Mm does not significantly change. Indeed, the curve shapes of plots Mm against 
θ are not identical for different values of θc, but the characteristics of the plot is similar 
shaped, as it can be seen in Figure 3. Thus, and additionally for the reasons of a more simple 
mathematical treatment, we will concentrate on particles which are lying in the same plane 
(θc = 0). This simplification does not diminish the applicability of the model, since in the 
real matrix the particles are randomly spread having different dependences of Mm versus 
θ but all of them with similar characteristics as it is shown in Figure 3. In a continuous 
media containing randomly spread magnetic particles, interaction processes occur at dif-
ferent values of θc. Consequently, considering a mean field approximation the assumption 
of θc = 0 can be reasonable.

Therefore, we introduce here the so-called equivalent dipole, which is composed of two 
particles having their centres on the same plane (θc = 0, Figure 4). One of them is fixed in 
a given direction, and the other one is free to rotate for aligning. Considering θc = 0 and 
R2 = R1/(2r)1/2, (12) can be rearranged to

(11)d
1
=

⎧
⎪⎨⎪⎩

4r2
�
1

4
�2 + � +

5

4
−
�
1 +

1

2
�

�
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�
�c

��
+ r2−

4r2
�
1

4
�2 + � +

5

4
−
�
1 +

1

2
�

�
cos

�
�c

�� 1

2

cos
�
�a + �

0
− �

�
⎫
⎪⎬⎪⎭

1

2

(12)

Mm = R
1

4r2
√

1

4
�2 + � +

5

4
−
(
1 +

1

2
�

)
cos

(
�c

)
sin

(
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0
− �

)

{
4r2

[
1

4
�2 + � +

5

4
−
(
1 +

1

2
�

)
cos

(
�c

)]
+ r2 − 4r2

[
1

4
�2 + � +

5

4
−
(
1 +

1

2
�

)
cos

(
�c

)] 1

2

cos
(
�a + �

0
− �

)} 3

2

Figure 3. Response of (12), assuming arbitrary values such that: ρ = 0.2, r = 1, θ0 = 90° and R1 = 1.
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The behaviour of Mm, (13), as a function of θ for different values of � =
(
d
0
∕r
)
 and for 

θ0 = 90° is shown in Figure 5. In addition, the behaviour of Mm as a function of θ for different 
values of θ0 (30°, 60° and 90°) and for an arbitrary constant value of ρ is plotted in Figure 6.

In summary, with (13) we have obtained a mathematical expression describing the mag-
netic interaction between two neighbouring particles embedded in an ideal elastic medium 
without elastic constants. In fact, as it can be seen from Figures 5 and 6, the torsional 
moment increases nearly until the alignment is reached, both for different θ0 and ρ.

3.2.1.2.  Elastic moment contribution.  If the matrix in which the particles are embedded 
has given elastic moduli an interaction counteracting the particle alignment will arise which 
tries to turn back the particles into the original position.

(13)
Mm =

R
2√

� + 1

sin
�
�
0
− �

�
�

�
2

2
+�+1

�+1
− cos

�
�
0
− �

�� 3

2

Figure 4. Equivalent dipole arrangement, aligned between them (θc = 0).

Figure 5. Behaviour of Mm, (13) as a function of θ for different values of ρ = d0/r and for θ0 = 90°.
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In order to analyse the deformation of the elastic matrix promoted by the rotation of the 
particle, the following assumptions are made:

(1) � �  The magnetic particle is assumed to be a sphere.
(2) � �  The thickness of the elastically deformed zone of the matrix (interphase) around 

the dipole equals the mean distance between two neighbouring particles (d0). 
This is schematically shown in Figure 7(a) and (c).

Figure 7. Schematic illustration of an interface (dashed zone) between two spherical dipoles, which is 
elastically deformed by the rotation of the dipole.

Figure 6. Behaviour of Mm, (13) as a function of θ for θ0: 30°, 60° and 90°. ρ = d0/r = 0.2.
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(3) � �  The outer layer of the interphase shown in Figure 7(a) is considered to be fixed 
to the matrix and not deformed.

(4) � �  The surface of the magnetic particle and the surrounding matrix are firmly linked 
together in such a way, that a rotation of the particle leads to a deformation of the 
matrix which is schematically shown by the interphase (dashed zone) in Figure 
7(b) and (d).

A complex deformation mode can be separated into two single deformation modes, 
such as tensile and shear deformations.[34] Thus, these both deformation modes will be 
considered in the following paragraphs to describe the deformation process of the interface, 
which is an approximated solution to the real deformation state shown in Figure 7.

For analysing the tensile deformation mode, we consider a distance of initial length d0 in 
the interphase, which is stretched up to d2 as a consequence of the rotation of the particle 
by an angle θ (Figure 8).

From geometric and angular relationships
 

can be deduced and d2 equals
 

With the usual definition of strain ε = Δd/d0 = d2/d0 − 1 and by replacing of d2/d0 by the 
expression for d2 given by (15), we have

 

Using the elastic moment generated by the tensile strain on the elastic matrix, M = 2rF, 
and Hooke’s law, we obtain

 

(14)

d2

2
=
(
d
0
+ r

)2
+ r2 − 2

(
d
0
+ r

)
r cos (�) and d2

2
= r2(� + 1)

[
�2 + 2� + 2

(� + 1)
− 2 cos (�)

]

(15)d
2
= r

√
�2 + (2� + 2)(1 − cos (�))

(16)� =

√
1 +

(
2

�2
+

2

�

)
(1 − cos (�)) − 1

(17)M = 2rAE�

Figure 8. Representation of geometric data by an elastic tensile deformation of the interface.
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wherein A is the area of a half sphere, E is the Young’s modulus, r is the average radius of 
particles and ε is the tensile strain.

By replacing the value of ε given by (16) in (17), we can obtain the elastic moment pro-
moted by a tensile state as a function of the torsion angle θ to be

 

After analysing the tensile deformation mode with (18), we will now examine the shear 
deformation mode. The deformation of interphase (Figure 7) is caused by a pure shear 
strain (Figure 9).

Using Hooke’s equation for the case of shear deformation and considering a half sphere 
with area 2πr2 just as in the case of tensile deformation (Figure 9), the elastic moment is

 

Finally, by adding the contributions of tensile and shear deformation, we obtain the 
whole elastic moment related to the deformation of the interface promoted by the rotation 
of the dipole:

 

3.2.1.3.  Whole intrinsic contribution.  The total intrinsic interaction is the sum of the 
magnetic interaction and the elastic contribution, i.e., the algebraic sum of (13) plus (20). 
We are speaking of algebraic sum because the counteracting forces lead to opposite signs of 
magnetic and elastic interaction. We use the positive sign for the magnetic moment when 
the rotation is clockwise. The whole intrinsic magnetomechanical moment has the form

(18)MkE = 4�r3E

⎛
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2

�

�
(1 − cos (�)) − 1

⎞
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⎛⎜⎜⎝
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2
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�
�

Figure 9. Representation of geometric data by an elastic shear deformation of the interface.
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The elastic, magnetic and total moments as a function of the orientation angle θ are 
plotted in Figure 10. It can be seen that the total moment equals zero at a critical angle θcrit 
(labelled with A in Figure 10). For rotation angles higher than θcrit, the system is unstable, 
and the particle rotates until the angle of the stable position (labelled with B in Figure 10) 
is reached.

3.2.1.4.  Energy study.  To simplify the analytical integration of expression (21), the elastic 
term which is related to the Young modulus has been re-written (approach to the first term 
as it is shown in the Appendix 1), that is

 

Using the general equation (E = ∫ Mdθ) for the relation between energy and the magnetic 
moment with respect to the rotation angle θ, the energy takes the form.[35]

 

(21)

MT = −4�r3E

⎛
⎜⎜⎝

�
1 +

�
2

�2
+

2

�

�
(1 − cos (�)) − 1

⎞
⎟⎟⎠
− G

4�r3

�
�

+
R
2√

� + 1

sin
�
�
0
− �

�
�

�
2

2
+�+1

�+1
− cos

�
�
0
− �

�� 3

2

(22)
MT = −11.6�r3E� − G

4�r3

�
� +

R
2√

� + 1

sin
�
�
0
− �

�
�

�
2

2
+�+1

�+1
− cos

�
�
0
− �

�� 3

2

(23)
ET =

1

2

�
11.6�r3E + G

4�r3

�

�
�2 −

R
2√

� + 1

2

�
�
2

2
+�+1

�+1
− cos

�
�
0
− �

�� 1

2

Figure 10.  Plot of elastic M
G
′, magnetic Mm and total moments (MT  = Mm − M

G
′) as a function of the 

orientation angle θ. The curve of elastic moment M
G
′ has been plotted multiplied by (−1) in order to 

show clearer the angle (θcrit) where the total moment equals zero or where in our plot the intersection 
(labelled with A) between the magnetic and elastic moment occurs.
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Figure 11 shows the energy ET as a function of the angle θ. At the critical angle θcrit, an 
unstable state of energy occurs, as it could be expected. In the top of Figure 11 particle 
orientations are schematically shown. At torsion angles higher than θcrit, the particles rotate 
as a consequence of the magnetic interaction into a parallel state (indicated by point B in 
figure). This stage is represented by an energy minimum at which the particles have reached 
a new equilibrium position.

3.2.2.  External field
The third interaction process is related to the interaction between the particles and an 
external magnetic field. We consider two particles embedded in a non-magnetic matrix as 
it is shown in Figure 12. The magnetic force is defined in the usual form, FH = pH, where 

Figure 11. Dependence of the magnetic and mechanical moments (M
G
′, Mm, MT = Mm − M

G
′) and the energy 

(ET) on the rotation angle θ. Again the curve of elastic moment M
G
′ has been plotted multiplied by (−1; 

Figure 10). In the top of the Figure 11 dipole orientations at various angles θ are schematically shown.

Figure 12. Schematic behaviour of two magnetic dipoles embedded a non-magnetic matrix in an external 
magnetic field H.
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p is the magnetic mass (magnetic strength) of the dipolar moment of the particle and H 
is the external magnetic field.[33] As it can be shown, the magnetic moment promoted by 
the external field is given by

 

wherein the angle θH is the difference between the angular position θ0 at the original state 
and the angular position θc which is reached after the alignment of the particles. Then, the 
total magnetomechanical moment in an external magnetic field and with consideration of 
the intrinsic moments takes the form

 

Using the linear approximation from Appendix for the elastic contribution, a more 
friendly equation for mathematical calculations can be obtained, that is:
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Figure 13. The elastic moment M
G
′ (dashed line), the magnetic moment Mm (dash-dot line), the total 

intrinsic magnetomechanical moment MT = Mm − M
G
′ (dotted line), the magnetic moment MH promoted 

by the external field (long dashed line) and the total magnetomechanical moment MTot, (full line), as a 
function of the rotation angle θ; are shown. Again the curve of elastic moment M

G
′ has been plotted 

multiplied by (−1) (Figure 10).
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The behaviour of MTot as a function of the rotation angle θ is shown in Figure 13. The 
external magnetic moment is the driving force which moves the particles from the original 
position towards the aligned position reached at position B. Indeed, the moment is now 
positive over the θ angles up to the B value, where the MTot changes its sign. Therefore, the 
mobile particle will be in an unstable position until the θ value corresponding to position 
B is reached, see particles and double headed arrow on top of the Figure 13.

4.  Results and discussion

Some of the results reported for magnetite-charged PP under alternating magnetic field 
were already reported in Ref. [8], but they are included here in order to improve the dis-
cussion and understanding of the present work. In fact, in the present work these already 
reported results are shown together with new ones, completing the experimental study; 
mainly regarding the experiments under alternating field at higher temperatures.

Figure 14 shows the tan(ϕ) behaviour as a function of the HAC amplitude during the first 
magnetic cycle for samples with different volume fractions of magnetite. A magnetic cycle 
involves the increase of HAC from zero to a maximum value and the subsequent decrease 
to zero. As it can be seen from the figure, during the first increase of alternating magnetic 
field HAC, tan(ϕ) increases for all samples (full symbols). During the subsequent decreasing 
of the magnetic field HAC, tan(ϕ) decreases, too (empty symbols). For all magnetic fields 
HAC, the tan(ϕ) values during the decreasing part of the magnetic cycle are smaller than 
for the previously increasing part, i.e., a hysteresis in the damping response has appeared.

In the other hand, during the first increase of the magnetic field amplitudes HAC, the 
elastic shear modulus, G′, decreases for all tested samples. In addition, during the subsequent 

Figure 14. Damping as a function of magnetic field amplitude, alternating with 50 Hz during the first 
magnetic cycle, measured at 318 K, for polypropylenes with different volume fractions of magnetite. Full 
symbols increasing part of magnetic cycle. Empty symbols decreasing part of magnetic cycle. Triangles: 
30%, circles: 50%, inverted triangles: 60%. Lines on the curves represent an average behaviour.
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decrease in the magnetic field, G′ increases again and a hysteresis behaviour could not be 
observed for all the checked samples.

Table 1 summarizes the percentage changes of damping and modulus corresponding to 
the whole variation in HAC.

The physical mechanism controlling the behaviour of damping and modulus as a 
function of the HAC strength during the magnetic cycles, was reported in a previous 
work.[8] Indeed, the behaviour of damping as a function of the magnetic field during 
the magnetic cycles was explained considering both an effect of modification of the 
mechanical properties and local damage of the polymer matrix around the particles 
of magnetite. Indeed, a small rotation of the magnetite particles relative to the matrix 
polymer promoted by the oscillating magnetic field causes an additional frictional con-
tribution to the mechanical damping of the whole PP matrix, leading to the increase in 
the tan(ϕ) values, as the intensity of the alternating magnetic field increases. This can 
be related to the modification of the surrounding matrix part of the oscillating particles 
due to the magnetic force, giving rise to a more viscous zone around the inclusions. In 
addition, the heating of the particles due to the alternating magnetic field can contribute 
to the mechanism above-mentioned.[8] Besides, the modulus does not exhibit a hysteretic 
behaviour due to the degree of damage of the inclusion’s surrounding matrix does not 
affect irreversibly and substantially the measured elastic modulus, since the particles are 
still bonded to the polymer matrix.[8]

It can be also seen from Figure 14 that both the damping curves decrease as the volume 
fraction of magnetite increases and the increase of the damping with rising magnetic field 
is smaller as the volume fraction is smaller. In addition, the area involved in the cycles 
decreases as the volume fraction of inclusions decreases.

The behaviour exhibited by the tan(ϕ) in Figure 14 is in agreement with the above 
assumption about a magnetically controlled local modification of the rheological state of the 
polymer matrix in the surrounding zone around the magnetite inclusions. In fact, a larger 
concentration of magnetite gives rise to a larger quantity of more viscous modified zones 
which increase the damping as the alternating magnetic field is increased.[8] It leads to an 
increase in the mean slope Δ tan(ϕ)/ΔH of damping curve as a function of the alternating 
magnetic field. The mean slope values of the damping curves are also listed in Table 1.

Table 1. Changes in ΔG′ and Δtan(ϕ) during the magnetic cycles at 318 K.

Notes: Changes in the dynamic elastic shear modulus ΔG′, and in the damping, Δtan(ϕ), during part of the magnetic cycles, 
at 318 K. (*) this variation cannot be assured completely and it must be considered with care.

Sample PP + X% 
vol. Fe3O4/unsieved

Alternate H, HAC

Δtan(ϕ) (%) at 
HAC = 0 after the 
first magnetic 

cycle

Direct H, HDC

Values between zero and the 
maximum magnetic field in 

the first increasing run of the 
magnetic field

Values between zero and the 
maximum magnetic field in 

the first increasing run of the 
magnetic field

ΔG′ (%) Δtan(ϕ) (%) ΔG′ (%) Δtan(ϕ) (%)
30 −7.1 2 −1 ~0.1 (*) −1
50 −7.5 3 −3 ~0.1 (*) −2
60 −10 8 −5 0.3 −3
Sample PP + 50% vol. 

Fe3O4/Mesh
40–63 −7.4/−7.5 3 −3 ~0.1 (*) −2
63–80 −7.5 3 −3 ~0.2 (*) −2
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The decreasing tan(ϕ) with increasing magnetite volume fraction can be explained easily 
from the point of view of a composite material. In fact, as the volume fraction of magnet-
ite, which has higher modulus and smaller damping capacity, increases; the damping of 
composite material will decrease.

The larger areas in the hysteretic curves of tan(ϕ) for larger volume fraction of magnetite 
is also in agreement with the mechanism above-proposed. Indeed, the larger concentration 
of magnetite leads to a larger amount of surrounding zones around the magnetite particles 
suffering a local modification of their rheological state.

tan(ϕ) and G′ measurements performed on samples with 50% vol. of magnetite but with 
different particles sizes, mesh 40–63 μm and mesh 63–80 μm, did not show clear differences 
in comparison to the polypropylene samples filled with unsieved magnetite particles, see 
Table 1.

It should be highlighted that, an increase in temperature for measuring the magnetic 
cycles (HAC) leads to a decrease in the area of the hysteresis in tan(ϕ) for all the studied 
samples. For each kind of sample the decrease in its hysteresis area is around 0.8, and 
0.3% at 353 and 403 K, respectively. The decrease in the area of hysteresis in tan(ϕ) as the 
temperature increases can be explained considering that an increase in temperature leads 
to an increase in the chain polymer mobility (decrease in the elastic modulus). Then, the 
matrix can room easier the stresses promoted by the rotation of the magnetite particles 
under the HAC solicitation giving rise to a less modified interface between the polymer and 
the particle, involving also less amount of debonding at the interface.

On the other hand, the response of the studied samples to the application of a directional 
magnetic field was completely different to the previous showed case, concerning to the 
alternating magnetic field. In fact, the response can be explained qualitatively on the basis 
of the theoretical work developed in Section ‘Theoretical Background’.

Measurements performed at 317 K, leads to the damping decreases and the modulus 
increases, as the applied HDC field increases, for all the studied samples. In Table 1, the 
changes of damping and modulus for this case, are also shown. A hysteretic behaviour of 
tan(ϕ) and shear modulus G′ could not be detected. Therefore, we can propose that a mod-
ification of the rheological state of the polymer matrix or a damage, in the surrounding of 
the magnetite inclusions do not appear when the sample is subjected to a directional (DC) 
magnetic field, within the studied range of intensity, at 317 K. Nevertheless, the behaviour 
of both damping and modulus during the magnetic cycle, under HDC, change markedly 
with a temperature increase.

Figures 15 and 16 show the damping and the elastic modulus measured at 353 and 403 K, 
for a sample with 50% vol. magnetite, unsieved, respectively. Full and empty symbols show 
the values measured during the increase in HDC and its subsequent decrease, respectively. 
As it can be seen from the figures, the modulus increases, while, the damping decreases; as 
HDC increases. Plotted values in Figures 15 and 16 are the average of two measured points 
at each field strength.

The exhibited behaviour of damping and modulus during the increasing of the HDC 
external magnetic field can be easily explained, considering that the field induces stresses 
on the magnetite particles embedded into the matrix reducing the mobility of the pol-
ymer chains. In fact, the applied HDC field attempts to rotate the particles leading to an 
increase in the internal stresses into the polymer matrix which decreases the mobility of 
polymer chains; giving rise to both the increase in modulus and the decrease in damping. 
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This situation can be easily understood on the basis of dislocations theory. Indeed, when 
internal stresses increase the energy valley to overcome by the dislocation line is higher 
and then the dislocation mobility is decreased.[36] In addition, the relation of the polymer 
chains to dislocation lines arises after the study of the viscoelastic behaviour of polymers 
in earlier times.[37,38]

Figure 16. Damping and dynamic shear modulus measured at 403 K for a magnetite (50% vol.) filled 
PP sample. tan(ϕ): Circles and G′: Triangles. Full symbols: Values measured during increasing HDC. Empty 
symbols: Values measured during decreasing HDC. Arrows indicate the increase and decrease runs in HDC. 
Lines represent a guide for the eyes.

Figure 15. Damping and dynamic shear modulus measured at 353 K for a magnetite (50% vol.) filled 
PP sample. tan(ϕ): Circles and G′: Triangles. Full symbols: Values measured during increasing HDC. Empty 
symbols: Values measured during decreasing HDC. Arrows indicate the increase and decrease runs in HDC. 
Lines represent a guide for the eyes.
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Nevertheless, during the decrease in HDC both modulus and damping remain exhibiting 
the last value reached at the highest field strength, the so-called memory effect (see Figures 
15 and 16). In fact, the higher values of modulus and the smaller values of damping remained 
during the decrease in the field strength are indicating that the sample is thermodynamically 
in an energy valley which is higher than the corresponding to the initial zero strength field. 
So, the polymer chains are stressed, leading to a decrease in their mobility, giving rise to 
both smaller and higher values of damping and elastic modulus, respectively. It should be 
stressed that, these results are in qualitative agreement with the theoretical prediction of 
our model regarding the appearance of another possible energy valley with higher energy, 
see Figures 11 and 12. In fact, as it was shown in Figure 11, when the particle rotates up to 
θcrit, it gives rise to nil moment MT (see A point in the figure) and then it leads to a saddle 
point in the energy behaviour. Consequently, the particles in such position are able to 
move involving rotation until that a new equilibrium position is achieved (see B point in 
the figure). Therefore, B position is another (meta)-stable place with higher energy than 
the original state, and then particles are now retained in this new position.

It is convenient to be mentioned here, that the real rotation angle involved in the magnet-
ite particles embedded in the polypropylene matrix is much smaller than the cases shown 
in Section ‘Theoretical Background’. Indeed, we are referring to rotation angles which come 
from small misorientations regarding the direction of the direct field. In fact, the experi-
ments conducted under alternating magnetic field confirm a rotation of the particles with 
an enough angle to damage the neighbourhood zone of the particles.

The difference of the behaviour between measurements under HDC at room temperatures 
and at higher temperatures is controlled by the decrease of elastic modulus as the temper-
ature increases. The elastic modulus decrease as the temperature increases, enhancing the 
capability of particle rotation due to a smaller restoration capability of the matrix. In fact, at 
around 270 K a marked decrease in the modulus starts in magnetite charged polypropylene 
due to the development of the α and α′ relaxations.[3,5]

Moreover, when a direct magnetic field is applied (see Figure 13) the magnetic field 
enhances the rotation of particles up to the B point; due to the MT curve is shifted upwards. 
Consequently, it leads to the sample to a higher energy state, even after the decrease of 
HDC. The polymer chains are retained with a less mobility arrangement, giving rise to the 
memory effect of damping and modulus as the HDC field decreases, see Figures 15 and 16.

5.  Conclusions

The behaviour of the damping and the dynamic shear modulus in polypropylene–magnetite 
composites filled with different volume fractions of magnetite particles, at 318, 353 and 
403 K, was studied as a function of the applied magnetic field.

An increase and subsequent decrease of the alternating magnetic field leads to hysteretic 
behaviour of the damping promoted by fatigue damage around the particle interface due 
to oscillation of magnetite particles.

In contrast, the application of a direct magnetic field, at 318 K, increases the shear mod-
ulus, while the damping is reduced, which is the result of stresses generated by magnetite 
particles reducing the mobility of polymer chains. Moreover, a decrease in the elastic mod-
ulus, due to an increase in temperature, allowed observing the interaction process between 
the particles of magnetite in the polymer matrix, giving rise to the so-called memory effect. 
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Indeed, after the decrease in the direct magnetic field, from the maximum reached value, 
for magnetic cycles performed at temperature of 353 and 403 K, damping and modulus 
remain smaller and higher, respectively. Therefore, the magnetite-charged polypropylene 
can be considered as a polymer matrix composite exhibiting controllable both damping 
and stiffness by the applied direct magnetic field.

A mesoscopic description of magnetite filled polymer composite materials has been 
performed in the continuous media by considering the interaction between magnetic and 
mechanical forces. Magneto-mechanical interaction is caused by both the magnetic forces 
between two adjacent particles trying to align them and an elastic deformation of the matrix 
which is counteracting. Theoretical predictions successfully explain in a qualitative mode 
the memory effect in magnetite-filled polypropylene composite under the application of a 
direct magnetic field.
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Appendix 1

In Section ‘Elastic Moment Contribution’, the elastic moments promoted by the matrix both for 
tensile and for shear states were deduced.

The expression deduced for the tensile case (18) is
 

Equation (A.1) as it was already explained in Section ‘Elastic Moment Contribution’ is the com-
bination of the following equations:
 

where
 

The equation deduced for the shear elastic moment (19) is:
 

The addition of (A.1) and (A.4) gives rise to the elastic moment used in the present model (20), 
that is:
 

Re-written (A.5) in the form:
 

Taking the derivative of (A.6) with respect to θ, we have:
 

Equation (A.7) results proportional to the Young (E) and shear (G) elastic moduli.
On the other hand, by taking the derivative of the strain given in (A.3) with respect to θ, it results:
 

Evaluating (A.8) for a typical ρ = 0.2923 resulting for a sample with 50% vol. magnetite (see 
Section ‘Theoretical Background’) and averaging, we can obtain d�(�)∕d� ≅ 2.9. By replacing this 
value in (A.3), we obtain:
 

Then, the sum of the moments in (A.6) using the first-order term can be written as follows:
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By plotting the tensile and shear moments as a function of the torsion angle, it can be deduced that 
the tensile moment exhibits a linear behaviour from around 0.3 radians onwards. Therefore, in 
order to make easier the mathematical handling of equations a linear approximation is proposed for 
the sum of the two moments. Figure 17 shows the behaviour of the approximated, (A.10), and the 
non-simplified, (A.5), curves plotted by means of full and dashed lines, respectively.

Figure 18 shows, the behaviour of both the total intrinsic moment calculated from the linear 
approximation, (26), and the non-simplified expression, (25), by means of full and dashed lines, 
respectively. Taking into account that the present model is at mesoscopic scale, where the behaviour 
of the particles is averaged by a mean field approximation, a reasonably good agreement between 
both curves can be observed.

Figure 17. Behaviour of the approximated, (A.10), and the non-simplified, (A.5), Elastic Moments plotted 
by means of full and dashed lines, respectively.

Figure 18. Behaviour of both the total intrinsic moment calculated from the linear approximation, (26), 
and the non-simplified expression, (25), by means of full and dashed lines, respectively.
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