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Bilayer graphene under pressure: Electron-hole symmetry breaking,
valley Hall effect, and Landau levels
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3Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energı́a Atómica, 8400 Bariloche, Argentina
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The electronic structure of bilayer graphene under pressure develops very interesting features with an
enhancement of the trigonal warping and a splitting of the parabolic touching bands at the K point of the
reciprocal space into four Dirac cones, one at K and three along the T symmetry lines. As pressure is increased,
these cones separate in reciprocal space and in energy, breaking the electron-hole symmetry. Due to their energy
separation, their opposite Berry curvature can be observed in valley Hall effect experiments and in the structure
of the Landau levels. Based on the electronic structure obtained by density functional theory, we develop a low
energy Hamiltonian that describes the effects of pressure on measurable quantities such as the Hall conductivity
and the Landau levels of the system.
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I. INTRODUCTION

Although the electronic structure of graphene has been
known for more than half a century, it was the pioneer
work of Novoselov and Geim in 2004 that triggered an
impressive scientific and technological activity in this two-
dimensional system [1]. Indeed the exceptional characteristics
of graphene were fully revealed only after its systematic
isolation, characterization, and the first studies of its unusual
mechanical, optical, and transport properties [2–10]. The band
structure [11,12] includes two points at the corners K and K′ of
the Brillouin zone (BZ) that engender the peculiar low energy
properties of the material. In fact, the low energy excitations
around these points—the Dirac points—are described by chiral
quasiparticles behaving as massless Dirac fermions leading to
a number of remarkable phenomena [3,10,13,14].

Bilayer graphene (BLG) in the Bernal stacking consists of
two graphene layers where only one of the two carbon atoms
of the unit cell of the top layer lies on top of an atom of
the bottom layer. The bilayer unit cell has four carbon atoms
leading to four π bands. Two of them touch each other at
the Dirac points, having a parabolic dispersion relation with
opposite curvature around it, which results in a zero band
gap semiconductor. This simple-looking band structure wraps
surprising properties that make BLG an exciting material from
the point of view of exploring new physics and because of its
potentials for technological applications.

The unique features emerging from the BLG electronic
structure are due to different properties of the material. On the
one hand, an electric field perpendicular to the layers generates
a tunable band gap [15–18], a required effect to engineer
carbon-based semiconducting devices. On the other hand,
from the topological point of view [19,20], the Bloch wave
functions of BLG present a rich behavior. Indeed by combining
these two properties, the detection of the predicted generation
of pure valley currents [21], or valley-Hall effect [22], has
been recently reported [23]. The topological properties are
determined by the Berry phase resulting from the winding

of the phase of the Bloch wave function along a close path
around the Dirac point [19,24–26]. The consequences of a
nontrivial Berry phase are diverse; in particular, the mentioned
valley-Hall effect results from the Berry curvature. In the
presence of an external magnetic field, the structure of the
Landau levels (LLs) with a twofold orbital degeneracy of
the topologically protected zero energy (n = 0) levels of each
valley is also due to the structure of the Berry phase.

Trigonal warping effects on BLG have also been extensively
studied [3,27–29]. They change the spectrum at low energies
qualitatively generating four Dirac cones with zero energy
around the K and K′ points of the BZ. This is however a very
small correction changing the spectrum in an energy range of
a few meV around the Dirac points. It has been shown that
distortions of the structure of BLG can be used to control
and enhance the splitting of the parabolic band-contact point
into the four cones that move away from the Dirac points
[30–32]. The way this splitting occurs is associated to
topological invariants that define the LLs spectrum in the
presence of an external magnetic field [33] unveiling the
richness of the electronic properties of BLG.

Here we present results for BLG under high pressure. We
show that pressures in the range of 10 to 100 GPa modify
in a substantial way the band structure around the Dirac
points with the corresponding change of the wave functions
and its topology. This is so because pressure changes the
interlayer distance increasing the coupling between layers. In
the resulting band structure, the two parabolic bands evolve to
generate four Dirac cones. One of them, with a marked trigonal
warping is centered at the K (K′) point and three elliptic cones
move away towards the � point. The new ingredient, which has
been overlooked in the past, is the breaking of the electron-hole
symmetry. The energy of the trigonal cone apex at K is smaller
than the energy of the apex of the three elliptical ones. This
difference can be of the order of 0.1 eV and the Fermi surface
of neutral BLG under pressure consists of small electron and
hole pockets. In such a case, a large enough electric field

2469-9950/2016/93(23)/235443(10) 235443-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.235443


MUNOZ, COLLADO, USAJ, SOFO, AND BALSEIRO PHYSICAL REVIEW B 93, 235443 (2016)

opens an indirect gap. In other words, pressure induces a
Lifshitz transition changing the nature of the Fermi surface
that, depending on doping, may include electron and hole
pockets, each one having a characteristic topological invariant
(winding number). Although the pressure needed to observe
these effects is rather high, this is still in the experimentally
accessible range as, for small samples, diamond anvil cells
can reach pressures [34] much higher than the ones used in the
present work.

We present the band structure and its evolution with
pressure as obtained with density functional theory (DFT).
In particular, we analyze in detail the effect of pressure around
the K and K′ points of the BZ and present a tight-binding model
that properly describes this effect. The microscopic parameters
are obtained by fitting the DFT bands. We show that while
the resulting electronic structure is topologically trivial, in the
presence of an electric field the bands acquire a Berry curvature
that leads to a nontrivial pressure dependent valley Hall effect.
We also present results for the LLs of BLG under pressure in
the presence of an external magnetic field. These effects can be
measured, adding to the rich behavior shown in BLG without
pressure [35]. It is worth mentioning that the interplay between
the effect of pressure and the many-body reconstruction of the
band [36] is an interesting subject (for the case of low pressure)
that is beyond the scope of this work.

II. DFT CALCULATIONS

We will assume the Bernal stacking for which the unit cell
has four carbon atoms, two in each plane. One of them is
directly on top of an atom in the other plane (labeled A1 and
B2 in Fig. 1), while the other two are on top of the hexagonal
hole of the other plane (labeled A2 and B1 in the figure). We
use DFT to determine the change of the atomic positions and
the corresponding band structure with pressure, assuming that
the effect of pressure is to reduce the distance between planes.
To test the validity of this approximation, we used a more
refined protocol considering that the isotropic pressure exerts
equal force on each atom. This procedure is implemented by
fixing the distance between atoms A1 and B2 and changing
symmetrically the position perpendicular to the layers of atoms
A2 and B1 (those opposed to the hexagon center on the other
layer) until the force on them becomes equal to the force on the
first pair. This procedure provides the structure corresponding
to a uniform stress. We found that the difference between the
results of this more refined procedure and those obtained using
the rigid plane configuration was less than 0.025Å at the largest
pressure considered, leading to a negligible effect on the band
structure. In what follows we present results from both proce-
dures indistinguishably. The conversion from plane separation
to pressure was determined from the forces on the atoms.

The DFT calculations were done using a plane wave basis
set as implemented in the VASP code [37–40] with an energy
cutoff of 450 eV. The core electrons were treated with a
frozen projector augmented waves (PAW) scheme [41,42].
The exchange and correlation functional was approximated
with a simplified generalized gradient approximation (GGA)
as parametrized by Perdew, Burke, and Ernzerhof (PBE)
[43,44]. Spin polarized calculations showed that in the range
of experimentally accessible pressures the system is nonmag-

FIG. 1. Top: atomic structure of bilayer graphene in the Bernal
stacking. Carbon atoms that are on top of each other are depicted
in blue, while those aligned with the hexagonal hole in the other
plane are depicted in green. Also shown in the figure are the hopping
parameters used in our tight binding model. Bottom: band structure
along the � → K → M path for two different pressures (12 and
96 GPa, thick light blue and thin red curves, respectively). There are
four bands around the Fermi level (horizontal dashed line); two bands
whose separation at K increases with increasing pressure and two
that overlap (see Fig. 2). The inset shows the high symmetry points
in Brillouin zone. The point T is the location of the Dirac points lying
along the �-K line, and therefore it varies with the pressure.

netic. Spin-orbit coupling was not included in these first runs.
Given that the distance between the planes was a controlled
parameter, not derived from total energy minimization, the
functional did not include van der Waals corrections.

Additional calculations were carried out to determine if
the Bernal stacking is still the most stable BLG arrangement
under pressure. We found that the Bernal stacking always
corresponds to the minimum energy configuration—we will
limit ourselves to this case from here on. However, it is worth
mentioning that a configuration with a lateral displacement
with two top atoms symmetrically placed on top of a hexagon
is very close in energy (�E = 15 meV/atom at 71 GPa).

The important changes in the electronic structure of the
bilayer under pressure occur in a very small region around the
K point, which imposes a challenge to the numerical sampling
of the Brillouin zone. A sampling of 300 × 300, that in many
cases would be enough to guarantee convergence in terms
of BZ integration, is not enough to produced a reasonable
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determination of the Fermi level in the bilayer under pressure.
To overcome this issue we used a nonuniform sampling with
the equivalent of a 3000 × 3000 sampling in the neighborhood
of the K point and a 300 × 300 grid in the rest of the BZ.

While it is ambiguous to determine the charge of a given
atom in a system, we can estimate it by calculating the differ-
ences in the charge inside a sphere centered in each atom. The
radius employed here was 0.86Å, in all cases smaller than the
interplane distance. Without any external pressure there is no
charge transfer between nonequivalent C atoms, but at 96 GPa
the A2 (B1) atom is 0.04e more charged than a B2 (A1) atom.

FIG. 2. Low energy band structure near the K point. Top: detail of
the four Dirac cones for a pressure of 96 GPa. Note that the energy of
the Dirac point K (the central cone) is different from the other three.
Bottom: band structure along the � → K path for different pressures
(indicated in the figure in GPa). The effect of the trigonal warping and
the electron-hole asymmetry increase as pressure is increased. The
dashed lines show the fitting with the tight binding model described
in Sec. III.

The band structure of BLG in the Bernal stacking is shown
in the bottom panel of Fig. 1 for the lowest and highest
pressures considered in this work. Around the K and K′ points
of the BZ, there are four low energy bands. At zero pressure,
two bands touch with a parabolic dispersion relation at the
Fermi level and two are separated by an energy proportional
to the interplane hopping matrix element (t⊥). As pressure is
increased, the latter two bands separate more and more from
the Fermi level, while the other two undergo a trigonal warping.

To display this trigonal warping in more detail, we plot
the band structure for increasing pressure in the bottom panel
of Fig. 2. With increasing pressure the parabolic dispersion
relation of the low energy bands becomes a set of four Dirac
cones [45], one that remains at K and three that shift in
reciprocal space along the T path of the BZ. The energy of
the Dirac points along the T lines increases with increasing
pressure with respect to the point at K, reaching a value
close to 100 meV at the highest pressure considered. A
three-dimensional view of the bands at this pressure is shown
in the top panel of Fig. 2.

The trigonal warping was mentioned before in tight binding
models of the BLG [3,46,47]. However, in all these models the
Dirac cones along T remain at the same energy as the cone at
K. As it is evident from the DFT results, with pressure there
are extra ingredients that are missing in these tight binding
representations. These important parameters are discussed in
the next section where we present our tight binding model.
The notable effect to be included is the electron hole symmetry
breaking that enables the possibility to observe the Dirac cone
splitting. Among its consequences are the charge transfer
between sublattices A and B as well as the unveiling of
interesting and measurable topological effects.

III. TIGHT BINDING MODEL

A tight-binding approximation for the four bands close
to the Fermi level of BLG has been discussed previously
in the literature [46,47]. While this simple model captures
all the physics near of K and T , a complete description of
the Brillouin zone is beyond the scope of this study. Since
we are only interested in the low-energy phenomena we will
use it now to describe the effect of pressure. As the latter
increases, we will see that the hopping integral t4 between
atoms A2 and A1 (see Fig. 1) plays an increasingly important
role: it is responsible for the electron-hole symmetry breaking
and consequent energy separation of the Dirac cones at T
with respect to the cone at K. This important effect has been
overlooked in the literature so far, mainly because the effect is
negligible at low pressure.

The four bands around the Fermi level, which derive
from the pz orbitals, are described by the Hamiltonian H =
H1 + H2 + H12 where the first terms describe the electronic
structure of the two graphene layers and the last one includes
the interplane coupling

Hi = −
∑
k,σ

(−1)i[(ε + V ) a
†
ikσ aikσ + (−ε + V ) b

†
ikσ bikσ ]

−
∑
k,σ

t[φ(k) a
†
ikσ bikσ + φ(k)∗ b

†
ikσ aikσ ], (1)
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with i = 1,2. Here, aikσ and bikσ destroy electrons with wave
vector k and spin σ in sublattices A and B of the ith plane,
respectively, ε is the energy due to the charge transfer between
the two sublattices on each plane, and we have included an
electric field perpendicular to the BLG plane described by V .
The matrix element t corresponds to the intraplane hopping
and

φ(k) = eiaky

[
1 + 2e−i 3a

2 ky cos

(
a
√

3

2
kx

)]
, (2)

with the carbon-carbon distance a = 1.42Å. The interplane
coupling is described by

H12 =
∑
k,σ

t⊥(a†
1kσ b2kσ + b

†
2kσ a1kσ )

+
∑
k,σ

t3(φ(k) b
†
1kσ a2kσ + φ(k)∗ a

†
2kσ b1kσ )

+
∑
k,σ

t4(φ(k)∗ a
†
1kσ a2kσ + φ(k) a

†
2,k,σ a1,k,σ )

+
∑
k,σ

t4(φ(k)∗ b
†
1kσ b2kσ + φ(k) b

†
2kσ b1kσ ). (3)

Hence, for each value of the wave number k, we have a 4 × 4
Hamiltonian Hk given by

Hk =

⎛
⎜⎝

ε + V tφ(k) t4φ
∗(k) t⊥

tφ∗(k) −ε + V t3φ(k) t4φ
∗(k)

t4φ(k) t3φ
∗(k) −ε − V tφ(k)

t⊥ t4φ(k) tφ∗(k) ε − V

⎞
⎟⎠, (4)

with eigenvectors [un
A1(k),un

B1(k),un
A2(k),un

B2(k)]T and eigen-
values En(k) with n = 1,2,3,4. This Hamiltonian, including
t4, has been written before [48] to study spin-orbit effects of
BLG at zero pressure.

The low energy excitations with crystal momentum around
the K and K′ points of the BZ can be described by an effective
two band Hamiltonian. The latter is obtained by eliminating the
bands that are shifted from the Fermi energy by t⊥. As pressure
increases t⊥ also increases improving the range of validity of
the approximation. Since we are interested in describing the
bands near the K point, we can measure k from K = 4π

3
√

3a
(1,0)

so that φ(k) � − 3a
2 (kx − iky) for k = |k| � |K |. In the base

of the A2 and B1 orbitals, the effective Hamiltonian takes the
form

H eff
k = e(k)I + h(k) · σ , (5)

where I is the unit matrix, σ = (σx,σy,σz) with σi are the Pauli
matrices,

e(k) =−ε + αk2, (6)

and h = (hx,hy,hz) with

hx(k) = −η kx + β
(
k2
x − k2

y

)
,

hy(k) = η ky + 2β kxky,

hz(k) = V. (7)

Here η = 3t3a/2 and α and β are functions of microscopic
parameters t, t⊥, t3, and t4. In the lowest order in V and ε we

TABLE I. Tight binding parameters for the effective two-band
model of Eq. (5) obtained by fitting the bands of the DFT calculations.
We include experimental values at normal pressure for comparison.

P (GPa) d (Å) α (eV Å
2
) β (eV Å

2
) η (eV Å)

∼0.1 16.81a 133.97a 0.00a

∼0.1 10.21b 102.33b 0.64b

∼0.1 10.53c 127.40c 0.21c

0.0 3.4 11.400 81.995 −0.510
11.6 3.0 10.895 49.815 −0.995
16.0 2.9 10.397 41.633 −1.114
21.9 2.8 9.950 36.236 −1.293
29.8 2.7 9.464 31.258 −1.470
40.1 2.6 8.917 26.922 −1.655
53.8 2.5 8.369 23.394 −1.866
71.9 2.4 7.796 20.375 −2.092
96.4 2.3 7.054 17.487 −2.324

aExperimental values from Ref. [49].
bExperimental values from Ref. [50].
cExperimental values from Ref. [51].

obtain

α = 9a2

2

t t4

t⊥
(8)

and

β = 9a2

4

t2 + t2
4

t⊥
. (9)

We have obtained the parameters of this effective two-band
Hamiltonian by fitting the bands of the DFT calculations in
the region around the K point. The results provided in Table I
are plotted in Fig. 3, to provide a direct way to grasp the
overall behavior of the effective Hamiltonian parameters with
pressure. The resulting tight-binding bands are compared with
the DFT-obtained bands in Fig. 2. Also in the table, we quote
the results of measurements of the band structure of the BLG at

FIG. 3. Tight-binding parameters as function of pressure. (Plus
signs) Values obtained by fitting the DFT-calculated bands along the
T line of the Brillouin zone close to the point K . (©) Experimental
values from Ref. [49]. (�) Experimental values from Ref. [50]. (♦)
Experimental values from Ref. [51].
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TABLE II. Tight binding parameters for the 4 × 4 Hamiltonian
of Eq. (4).

P (GPa) ε (eV) t (eV) t⊥ (eV) t3 (eV) t4 (eV)

0.0 0.004 2.77 0.32 −0.23 0.12
11.6 0.015 4.22 0.63 −0.46 0.27
16.0 0.020 4.50 0.74 −0.52 0.33
21.9 0.027 4.99 0.88 −0.60 0.40
29.8 0.037 5.45 1.04 −0.68 0.47
40.1 0.049 5.95 1.23 −0.77 0.55
53.8 0.066 6.55 1.46 −0.87 0.64
71.9 0.089 7.20 1.73 −0.97 0.72
96.4 0.121 7.92 2.07 −1.08 0.79

normal pressure; those values are similar to the ones obtained
from DFT (in this case, to get a reliable interlayer distance,
we calculate it by using a correlation functional that includes
van der Waals corrections [52]). We provide the tight-binding
parameters in Table II.

Given this effective Hamiltonian, we can obtain the location
of the four Dirac cones by finding the points in the BZ where
hx = hy = 0 (assuming V is the smallest energy scale). One
of the Dirac cones is always at k = (0,0) and the other three
are at k = T i with i = 1,2,3 and

T 1 =
(

η

β
,0

)
,

T 2 = η

β

(
−1

2
,

√
3

2

)
, (10)

T 3 = η

β

(
−1

2
,−

√
3

2

)
.

By linearizing the effective Hamiltonian H eff
k for a small

separation q from these points we reveal the band structure
at these Dirac cones and obtain expressions that facilitate the
evaluation of its topological properties and their consequences.
Around k = (0,0) (K point) we then have

hx(q) � −ηqx, hy(q) � ηqy, e(q) � −ε, (11)

which gives the following eigenenergies:

E±
K (q) = −ε ±

√
V 2 + η2

(
q2

x + q2
y

)
. (12)

Similarly, around T 1 we find that

hx(T 1 + q) � ηqx,

hy(T 1 + q) � 3ηqy, (13)

e(T 1 + q) � −ε + α
η2

β2
+ 2α

η

β
qx,

and the corresponding eigenenergies

E±
T 1

(q) = −ε + α
η2

β2
+ 2α

η

β
qx ±

√
V 2 + η2

(
q2

x + 9q2
y

)
.

(14)

Expressions for T 2 and T 3 are similar and can be obtained by
symmetry considerations or by direct calculation.

FIG. 4. (E,P) plane with the four lines defining regions with
different topology of the Fermi lines; in each region the form of
constant energy curves are shown, blue and red lines indicating
the portions corresponding the valence and conduction bands,
respectively.

It is clear from Fig. 2 that there are four characteristic
energies that define the low energy band structure (taking
V = 0): E±

K (0) = −ε, corresponding to the apex of the Dirac
cone centered at K, the energy E±

T 1
(0) of the apex of the cones

shifted from K, and the energies Esv and Esc of the saddle
points (relative minimum and maximum) of the valence and
conduction bands, respectively. These four energies divide the
energy-pressure plane in five different regions (see Fig. 4). In
each of them the surface of constant energy consists of different
pieces with different topological properties. For neutral BLG,
the Fermi energy is larger than E±

K (0) and smaller than E±
T 1

(0)
and the 2D Fermi surface consists of an electron pocket
centered at K and three hole pockets centered at T 1 and its
symmetrically equivalent points. The same occurs around the
K′ point of the BZ.

Comparing the band energies at K and at T 1 we obtain

E±
T 1

(0) − E±
K (0) = α

η2

β2
∝ t4, (15)

which is proportional to t4. This lead us to an important point:
without including this term in the tight-binding model, the
trigonal warping does not separate the cones in energy and
leads to the wrong conclusion that their individual properties
would not manifest in transport or spectroscopic experiments.
This is not the case as we show in the following sections.

IV. BERRY CURVATURE AND VALLEY HALL EFFECT

Upon the application of pressure the low energy band
structure of BLG undergoes an interesting transformation. Two
parabolic bands touching at the K point of the Brillouin zone
with phase winding 2π transform into a set of four Dirac
cones, one with a winding number of π that remains at K and
three that separate along the T lines with a winding number of
−π ; this feature offers a unique possibility to study valley
polarization and the valley Hall effect [22]. In contrast to
the graphene case, this system only requires one to apply
a small electric field perpendicular to the bilayer to reveal
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this phenomena. In this section we will use our previously
developed tight-binding model to evaluate the Berry curvature
of the bands and the transverse conductivity as a function of
pressure. We will conclude this section showing characteristic
signatures of this effect accessible by experiments.

With the four band Hamiltonian of Eq. (4), the Berry
curvature of the nth band is given by

�n
z = 2 Im

∑
n′ �=n

〈n| ∂Hk
∂kx

|n′〉〈n′| ∂Hk
∂ky

|n〉
(En(k) − En′(k))2 . (16)

This expression, however, requires a simple but nonetheless
unnecessary numerical work. Since the Berry curvature is
concentrated around the location of the Dirac cones, we can
use the two band approximation of Eqs. (5), (6), and (7)
to calculate the Berry curvature of these bands [53]. In this
case [19]

�±
z = ∓ 1

2h3
h · ∂kx

h × ∂ky
h, (17)

where h3 = (h2
x + h2

y + h2
z)

3/2
. This finally gives

�±
z = ∓V [4β2k2 − η2]

2
[
β2k4 + ηk2 + 2ηβkx

(
2k2

y − k2
x

) + V 2
]3/2 , (18)

where k2 = k2
x + k2

y . The intrinsic contribution to the anoma-
lous Hall effect is given by [24]

σxy = e2

�

∫
dk

(2π )2

∑
s=±

f (Es(k))�s
z(k), (19)

given that the curvature is a very localized function in the
vicinity of the K and T points and decays very fast away from
them. It is very accurate to replace the integral over the entire
Brillouin zone by the contribution around each Dirac cone.
The conductivity can be calculated as

σxy = σK +
3∑

i=1

σT i
= σK + 3σT 1 , (20)

where we have used the symmetry of the three T i points and
have defined

σK = e2

�

∫
dq

(2π )2

∑
s=±

f
(
Es

K (q)
)
�s

z(q) (21)

and

σT 1 = e2

�

∫
dq

(2π )2

∑
s=±

f
(
Es

T 1
(q)

)
�s

z(T 1 + q). (22)

The integration around the K point can be done analytically
at zero temperature using the approximation [obtained from
Eq. (18)]

�±
z (q) � ± V η2

2(V 2 + η2q2)3/2
, (23)

so that its contribution to the conductivity results

σK =

⎧⎪⎪⎨
⎪⎪⎩

e2

2h
V

μ+ε
, μ < −ε − V,

− e2

2h
, −ε − V < μ < −ε + V,

− e2

2h
V

μ+ε
, μ > −ε + V,

(24)

where μ is the chemical potential. Around T 1 we can use that

�z±(T 1 + q) � ∓ 3V η2

2
(
V 2 + η2q2

x + 9η2q2
y

)3/2 . (25)

In this case, however, the presence of qx outside the square root
in the energy, Eq. (14), makes the integration rather difficult.
Nevertheless, the contribution to the conductivity from this
region of the BZ can be approximated as

σT 1 =

⎧⎪⎪⎨
⎪⎪⎩

− e2

2h
V

μ−E0
, μ < E0 − V,

e2

2h
, E0 − V < μ < E0 + V,

+ e2

2h
V

μ−E0
, μ > E0 + V,

(26)

where E0 = −ε + α
η2

β2 is the center of the band gap opened
by the perpendicular electric field.

We can now calculate the expected variation with applied
pressure of the total intrinsic contribution to the anomalous

FIG. 5. (Upper panel) Energy bands of the bilayer at different
pressures under the effect of an electric field perpendicular to
the bilayer equivalent to V = 0.005 eV. (Bottom panel) Intrinsic
contribution to the anomalous Hall conductivity as function of the
chemical potential for different applied pressures and the same
applied field.
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Hall conductivity as a function of the chemical potential as
shown in Fig. 5. In this figure we see that with increasing
pressure the contribution from the cones at the T i points
moves to higher energies and produces an anomalous Hall
conductivity that is three times larger, and of opposite sign,
than the contribution (observed at lower μ) produced by
the cone at K . Close to zero pressure, our approximations
are bound to be worst because the Dirac cones at T 1 are
closer to K . However, in this figure it is clear that the
anomalous conductivity as the pressure becomes smaller tends
the values for BLG at zero pressure [35]. This dramatic change
with pressure, made possible by the electron-hole symmetry
breaking, can have interesting applications as a very sensitive
pressure gauge. Apart from the already interesting phenomena
of the direct observation of a valley hole effect in BLG, it is
important to highlight that the signature of this effect will be
the ratio of 3 to 1 as the chemical potential swipes through the
gaps at K and T 1.

V. LANDAU LEVELS

The LLs in BLG have received much attention during the
past decade [54,55]. The simplest description in the absence
of electric fields predicts a spectrum with twofold zero energy
states (per spin) for each one of the Dirac cones at the K
and the K′ points of the BZ. The trigonal warping, given by
the parameter β (that preserves the electron-hole symmetry),
strongly modifies the spectrum at low fields. In fact, as we
showed in the previous sections, this perturbation modifies
the parabolic bands around the Dirac points leading to four
degenerate cones in each corner of the BZ. As a consequence,
for low magnetic fields the zero energy states at K (K′) have
a fourfold degeneracy (per spin). Pressure breaks electron-
hole symmetry shifting the energy of the cones and removes
some of the degeneracies of the low energy LLs. Moreover, as
we show below, all states have a field dependent energy. The
robustness of the zero energy LL characteristic of monolayer
and multilayer graphene is lost in the high pressure regime.

To calculate the Landau levels of BLG under pressure
we proceed as in Refs. [31,56]. In the continuous limit
and in the presence of an external magnetic field B the
canonical momentum p must be replaced by � = p + eA(r)
where A(r) is the vector potential describing a magnetic
field perpendicular to the graphene layers. We use units
such that � ≡ 1 ≡ c. The components of the gauge-invariant
momentum obey the commutation relation [
x,
y] = −i/ l2

B ,
where lB � 26nm/

√
B[T] is the magnetic length. This allows

us to introduce the harmonic oscillator operators â = λ−1
−
and â† = λ−1
+ with [â,â†] = 1, λ = (lB/

√
2)

−1
and where


± = 
x ± i
y. In what follows we use the Landau gauge
A(r) = (0,Bx). Then, the effective two band Hamiltonian
takes the form

H =
( −ε + αλ2â†â −ηλâ + βλ2â†2

−ηλâ† + βλ2â2 −ε + αλ2ââ†

)
. (27)

As usual, in the base of Landau functions ψ(x,y) = eikyϕn(x)
the harmonic oscillator operator satisfies

â†ϕn = √
n + 1 ϕn+1,

âϕn = √
n ϕn−1. (28)

FIG. 6. Left and right panels correspond to the LLs spectrum
and the zero field band structure, respectively, for different values of
pressure: (a) 16 GPa; (b) 40 GPa; (c) 96 GPa.

The simplest model used in the literature to describe BLG
at room pressure [35] is recovered with α = η = 0 and the
charge transfer energy ε = 0. In this case the LLs spectrum
(not shown here) contains a zero energy doublet and states with
energies En

± = ±√
n(n − 1)�ωc with n � 2 and �ωc = βλ2.

The corresponding wave functions are

χ0 =
[
ϕ0

0

]
, χ1 =

[
ϕ1

0

]
, χn

± =
[

ϕn

±ϕn−2

]
. (29)

For small pressure the LLs energies are shifted by a first
order correction due to the α terms in Hamiltonian (27).
These corrections break the electron-hole symmetry and lift
the degeneracy of the zero energy modes. The first-order
corrected spectrum has E0 = 0, E1 = αλ2, and, for n �
2, En = ±√

n(n − 1)�ωc + (2n − 1)αλ2. This effect can be
observed in Fig. 6(a). Further second order corrections due to
the η and α terms were also evaluated. However, as the pressure
increases, perturbation theory is not enough to account for
the evolution of the LLs spectrum. The numerically obtained
spectrum for different pressures is shown in the left panels of
Fig. 6.

For high pressures and low energies (Esv < E < Esc)
we can get some insight into the structure of the LLs
spectrum by assuming the presence of four independent Dirac
cones, centered at the K and T i points. The corresponding
spectrum is given by EK ,n = EK ,0 ± C1

√
Bn and ET 1,n =

ET 1,0 ± C2

√
Bn, where C1 and C2 are constants. While the

structure of the so obtained LLs spectrum is similar to the
numerically obtained results, there are important differences
(see Fig. 7). First, in the numerical results, it is evident that
the energies of the n = 0 LL states of the four cones are no
longer field independent—quantum corrections for the low n

states are important even for small fields. In addition, there are
anticrossings that cannot be captured in a picture that treats
the cones independently. We also notice that as the energy of
the upper cone LLs approach the saddle point energy Esv, the
threefold degeneracy is lifted. These last effects are due to the
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FIG. 7. LLs spectrum obtained numerically for 96 GPa (continu-
ous black lines) and LLs spectrum corresponding to two independent
Dirac cones centered at K and T 1 (dashed red lines).

magnetic breakdown, i.e., Landau-Zener tunneling mixing the
states of the different cones.

A similar and more qualitative analysis can be done by
resorting to the Onsager’s semiclassical quantization rule [57].
This rule states that the area enclosed by orbits in k space are
quantized according to the following condition [33]:

A(Em) = 2πeB(m + γ ). (30)

Here Em is the energy of the orbit and γ is a constant
(0 � γ < 1) independent of the quantum number m. On-
sager’s semiclassical approach is well justified for large m

only. However, for the sake of comparison, we shall use it
without restriction, including the m = 0 states. Concerning
the quantization condition of Eq. (30) it was recently shown
that, in two band materials like the one under consideration,
the constant γ is given by the pseudospin winding number wC ,
which is 1/π times the Berry phase obtained along the close
orbit [33],

γ = 1

2
− |wC |

2
. (31)

After evaluating the areas as a function of the energy and
calculating the winding numbers corresponding to the different
constant energy close orbits, we invert Eq. (30) to obtain the
semiclassical spectrum. The comparison of the semiclassical
and the numerical results shown in Fig. 8 is quite good for not
too small values of n. The LLs corresponding to small n do not
follow Onsager’s rule. Moreover, the numerical results show
that all LLs have a field dependent energy showing that in the

FIG. 8. Comparison between LLs spectrum obtained numerically
(continuous black lines) and using Onsager’s quantization (dashed red
lines), see Eq. (30), under 72 GPa.

FIG. 9. Same as Fig. 6 but in the presence of a perpendicular
electric field V = 50 meV.

presence of the electron-hole symmetry breaking parameter α

the stability of the zero-modes LL is lost.
Finally, the LLs spectrum in the presence of a perpendicular

electric field V = 50 meV is shown in Fig. 9 for different
pressures. With the minimum interlayer coupling (t3 = t4 =
0), any electric field opens a gap and the LLs spectrum displays
such a gap with a set of LLs associated to the conduction
band, whose energies increase with increasing magnetic field,
separated from those corresponding to the valence band with
opposite slope. As the pressure increases the gap decreases
and for a given (electric field dependent) critical pressure the
gap closes as a consequence of the band crossing as discussed
in the previous section.

VI. SUMMARY AND CONCLUSIONS

We have shown that upon the application of pressure the
low energy band structure of BLG undergoes an interesting
transformation. Two parabolic bands touching at the K point
of the Brillouin zone with phase winding 2π transform into a
set of four Dirac cones, one with a winding number of π that
remains at K and three that separate along the T lines with a
winding number of −π . The most interesting discovery is that
the cones at T separate in energy from the cone at K generating
a Lifshitz transition visible by experiment. The study of the
electronic structure using DFT and the interpretation of the
results in terms of a tight-binding model show that the main
effects of pressure are the following. (i) An increase of the
direct A1B2 hopping integrals t⊥. As a result, two bands are
shifted away from the Dirac point improving the description
of the system in terms of an effective two band model. (ii) An
increase of the t3 and t4 hopping integrals. These parameters
modify the low energy band structure generating four Dirac
cones at the two corners of the BZ. An important effect is the
breaking of the electron-hole symmetry. (iii) A small charge
transfer between the two nonequivalent sites of each plane,
an effect that is not relevant when describing the low energy
bands in terms of a simple two band model.
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The resulting band structure is summarized in Fig. 4
where the energy-pressure plane is divided in five regions
with different constant energy surfaces. Our estimates of the
pressure dependence of the microscopic parameters are in good
agreement with the zero pressure extrapolation as obtained in
recent experimental works.

The evolution of the band structure with pressure can
be measured by means of different experimental techniques.
Although the small buckling of the graphene planes with
pressure does not produce a significant increase of the spin-
orbit coupling, valley Hall effect and the structure of the
Landau levels show important changes unveiling the pressure
induced Lifshitz transition.

We presented results of the Hall conductivity and show that
this quantity is very sensitive to the pressure and to the carrier
density. Variations in the Fermi level change the sign and the
magnitude of the valley Hall response that is increased by a
factor three as the carriers vary their origin from the single
Dirac cone at K to the triple degenerate Dirac cones at T . The
high sensitivity of this effect with pressure makes this structure
a potential source for the design of a device for the detection

of small pressure variations on two dimensional surfaces such
as screen devices and joints.

The LLs evolve from a simple structure at low pressures
to a rich spectrum at high pressures. The most notable effect
is the breaking of the electron-hole symmetry and the lack of
stability of the zero-LL modes, whereas all modes have a field
dependent energy.
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