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Abstract: Tensor voting is a computational framework that addresses the problem of perceptual organisation. It was designed to
convey human perception principles into a unified framework that can be adapted to extract visually salient elements from
possibly noisy or corrupted images. The original formulation featured some concerns that made it difficult or impractical to
be applied directly. Therefore, several partial or total theoretical reformulations or augmentations have been proposed. These
almost parallel publication were presented in different directions, with different priorities and even in a different notation.
Thus, the authors observed the need for a coherent description and comparison of the different proposals. This work, after
describing the original approach of tensor voting, reviews and explains a number of high impact theoretical modifications in a
self-contained manner and including possible future directions of work. The authors have selected and organised a number of
formulations and unified the way the problem is addressed across the different proposals. The aim of this study is to
contribute with a modern comprehensive source of information on the theoretical aspects of tensor voting.
1 Introduction

Perceptual grouping is the human vision ability to extract
significant features from a scene without prior knowledge
of the domain. If no such knowledge is required, a set of
laws must then rule the perceptual system. These laws have
been the object of study of Gestalt psychology [1].
Many computer vision problems, however, heterogeneous,

can be posed in terms of perceptual grouping. Tensor voting
is inspired on human vision and provides a framework
to extract perceptually salient features from clouds of
points. Although generalised to an n-dimensional space with
successful application results, it was originally used to obtain
continuous smooth curves and meshes in two-dimensional
(2D) and three-dimensional (3D) spaces, respectively. It is
aimed at obtaining visually salient elements despite the
existence of gaps in the features or noise. Tensor voting
might constitute a good choice when there is a need for
inferring data based on good continuation and proximity
constraints. For instance, in [2], the authors have recently
pointed out the difficulty in processing electron tomography
images because of noise, low contrast and distortion, and
dealt with these issues by using the tensor voting framework
in 3D in order to detect membranes in the images.
Tensor voting is different to other methods of feature

inference because it is not required to explicitly define an
objective function and optimise it. Input tokens, which are
encoded as ‘tensors’, communicate locally with their
neighbours by casting ‘votes’. The design of the voting
fields, which are accumulated at every location, is where
Gestalt principles are introduced. The goal is that tokens
that are mutually compatible reinforce each other, while the
value of irrelevant tokens is disregarded.
Even though the technique was initially presented as a way

of fitting surfaces to clouds of points, it has been widely
applied to extract information from images.
Most literature on the original formulation of tensor voting

was published in its pioneering papers [3, 4] later followed by
a book on the subject that constitutes a comprehensive source
of information on the technique and its potential applications
[5]. A synthetic presentation of the method including some
advances was later published as a chapter in a book that
describes emerging topics in computer vision [6].
The original formulation offered promising results.

However, it featured some key concerns. For example, the
execution time was prohibitive because of the need for
numerical integration. Another limitation was that it could
not handle discontinuities in the detected features, so there
was no way to treat the endpoints of an extracted element.
A few points were addressed soon after the original

formulation. However, other concerns were dealt with over
a decade after the publication of the original literature on
tensor voting, in a sort of revival of the theoretical research
on the matter.
The aim of this paper is to review the different recent

theoretical approaches to the tensor voting technique,
including those that constitute a relevant modification or
augmentation to the original formulation.
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Fig. 2 Tokens feature the preferred orientations according to the
other tokens

a Sparse unoriented input tokens
b Result after sparse voting
c Feature inference after dense voting
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The focus of this paper is to present highly relevant

theoretical advances, which we study in a self-contained
manner. This work is then aimed at constituting a
comprehensive source of information on past, present and
future theoretical directions of the tensor voting framework.
This paper is organised as follows: firstly, in Section 2, a

broad explanation of the technique is included, with special
care to provide the reader with perceptual interpretations of
the mathematical background. In Section 3, the difficulties
reported throughout the literature concerning the original
formulation are reviewed to later describe reformulations of
the technique in Section 4. In this section, observations are
done separately for each of the different proposals and
future directions of research are suggested. In addition, a
theoretical comparison among the different techniques is
included in this section, in order to synthetically show the
virtues of every formulation and the trade-off points. In
Section 5, relevant augmentations to the framework that
extend its scope and capabilities are described. The way
different computer vision problems have been adapted to be
solved in a tensor voting context are later reviewed in
Section 6. Finally, conclusions are presented in Section 7.
2 Original tensor voting

In this section, the original tensor voting (OTV) formulation
[3–5] is reviewed. The general outline of the technique is
initially presented without mathematical rigour to show the
procedure from a high-level perspective. We later describe
the framework in detail with a special emphasis on
the intuitive interpretation of the procedure. In this second
part, we include the motivation to use tensors and the way
they are handled to represent data, followed by a
description of the design of the fields that are needed during
the voting steps. The ways to extract features after the
voting are then described, followed by an explanation of
the generalisation of the framework to an n-dimensional
space.
2.1 Outline of the technique

The general outline of the tensor voting technique is depicted
in Fig. 1.
Firstly, the input is encoded as a set of tensor tokens. Given

that tensor voting is a framework, the meaning of the input
tokens is not specified and might vary depending on the
problem. As a general rule, unoriented tensors should
represent the locations at which a feature is supposed to
exist, and oriented tensors should be used to indicate the
direction of the feature at that location if it is known (in
general the direction of the normal line, plane or hyperplane
is used).
Therefore, prior to using the technique, a decision on how

to encode the data in tensors has to be made. For example, if
the technique will be used to detect edges in images, tensors
representing normals can be used [7].
Fig. 1 Outline of the tensor voting technique
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The general rule is that the input tokens should be ‘perfect
tensors’ [8]. This means that the tokens should encode a
certain ‘pure’ feature and not a combination of those. For
example, a normal should be encoded as a stick-shaped
tensor and a point as a ball-shaped tensor. Formally, perfect
tensors are those whose non-zero eigenvalues are all equal.
After encoding the input in perfect tensors, different voting

procedures take place. These involve the propagation of the
information they encode to their neighbourhood.
The first voting process is the so-called ‘sparse’ voting in

which tensors communicate only with each other. Every
tensor collects at its location the votes cast by the others.
These votes are the continuations that every tensor proposes
for the feature they encode. For example, an oriented tensor
will cast the most prominent votes at locations along the
tangent of the curve it encodes, because this is the most
likely continuation of a smooth curve. When the sparse
voting is complete, every token contains a refined tensor. In
the case unoriented tokens were present, after the sparse
voting the normals are estimated and now the tokens feature
the preferred orientations according to the other tokens.
This is illustrated in Fig. 2 where Fig. 2a shows a set of
unoriented input tokens in 2D and Fig. 2b shows the new
refined tensors after the sparse voting. The normals to an
underlying circumference have been successfully inferred
without the need of indicating which feature is being sought.
The following step, after refining the original input, is to

obtain a new set of perfect tensors. This is done by
discarding components other than the most salient one [6].
For example, if there are non-stick tensors after the voting,
only the stick part of it is forwarded to the next step. In
other words, the uncertainty is ignored. The result is a
corrected version of the input.
A second voting is then carried out. This time votes are

collected at every location in space, even where no input
tokens were present. This stage is known as the ‘dense’
voting. The result is a tensor field which can be
decomposed and evaluated to obtain the underlying features
that were revealed. Fig. 2c shows the result of a feature
extraction process after a dense voting with the tokens of
Fig. 2a which were refined as in Fig. 2b. A whole
continuous circumference has been inferred.
IET Comput. Vis., pp. 1–19
doi: 10.1049/iet-cvi.2014.0103



Fig. 4 Tensors encode the preferred orientations according to
others and facilitate feature inference
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2.2 Encoding data into tensors

Second-order symmetric tensors are selected to encode the data
of the underlying structures in the input image. In 2D, these
tensors can be visualised as ellipses. The greater axis of the
ellipse represents the orientation of the tensor, usually used to
encode the normal direction to a curve. Tangent directions
could be equally encoded. However, in [6], the authors
suggest that in 3D and higher dimensions the use of normals
and not tangents, although still equivalent, is more convenient
so that intersections can be obtained simply by computing the
union of normal spaces of each of the intersecting structures
by using a Gram–Schmidt procedure [9].
The second axis of the ellipse, orthogonal to the greater

one, encodes the uncertainty about the main orientation: the
thinner the ellipse, the higher the confidence of the
direction. The thinnest possible tensor, the so-called ‘stick’
tensor, is an ellipse with zero width. The tensor whose axes
are equal in length is the ‘ball’ tensor, representing the total
uncertainty of the direction since their components are
totally contradictory.
At this point, it is important to remark that the main

motivation is to use second-order symmetric tensors and not
simply first-order vectors. By using a vector, the certainty
of the represented direction can be encoded in its length.
However, the uncertainty of its direction cannot be measured.
In the tensorial representation, even if the direction is

totally unknown and the tensor is a ball, the size of the ball
can be used as a measure of the degree of uncertainty. This
way, a high radius ball represents the junction or
intersection of various features so that the direction at that
point cannot be determined. That is, it can be stated with
high confidence that the direction is undetermined. A low
radius ball represents noise or the lack of information, since
there is no direction, nor evidence of ambiguity in the
direction. In other words, it is not the same to state that no
information of direction is present as to state that the
direction is likely to be undetermined. This concept is well
captured in the tensorial representation and a key part of the
tensor voting framework, allowing preservation of junctions
and intersections among the features detected.
In 2D, the tensors might take two distinct extremal shapes, a

‘ball’ and a ‘stick’, as well as a combination of both. This is
shown in Fig. 3. In Fig. 4, the addition operation between
tensors is illustrated. The case in which orthogonal tensors
are added (which is done when votes are collected) results in
a high radius ball, representing that the direction is uncertain.
A second-order symmetric tensor T in 2D can be

represented as a non-negative definite 2 × 2 symmetric
matrix, which can be generated by the following equation

T = l1ê1ê
T
1 + l2ê2ê

T
2 (1)
Fig. 3 2D elliptic representation of second-rank symmetric
tensors: a ball tensor, a stick tensor and a tensor with both
components
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where ê1 and ê2 are the eigenvectors of T and l1 and l2 their
corresponding eigenvalues (being l1 ≥ l2). The outer
product operation êiê

T
i is frequently used throughout the

literature to generate a stick tensor in the direction of êi.
In practice, these tensors can be represented with the upper

triangle of the matrix (since it is symmetric) or in a
decomposed form, with the coordinates or the angle of the
main eigenvector and the two eigenvalues.
Equation (1) can be conveniently rewritten as in the

following equation

T = (l1 − l2)ê1ê
T
1 + l2(ê1ê

T
1 + ê2ê

T
2 ) (2)

l1 − l2 is the so-called ‘saliency’ of the tensor, a measure of
the confidence of its encoded direction. This is intuitive since
it computes the difference between its contradictory
eigenvalues. l2 is the so-called ‘junctionness’ of the tensor,
a measure of the level of contradiction in the direction of
the feature encoded. This is also natural observing that
in the ellipse representation l2 is related to the size of
the minor axis, which contradicts the main direction of the
ellipse.
In 3D, an ellipsoid can be used to visualise the tensor. A

stick tensor in 3D represents with high confidence the
existence of a surface. A ball tensor represents the total
uncertainty of the direction, whose radius is again used as a
measure of confidence of the uncertainty. An additional
extreme tensor exists in 3D, the so-called ‘plate tensor’,
which can be naturally visualised as a plate in space. This
tensor encodes an underlying curve. These concepts are
illustrated in Fig. 5.
3D tensors can be expressed as in the following equation

T = l1ê1ê
T
1 + l2ê2ê

T
2 + l3ê3ê

T
3 (3)

with three eigenvectors ê1, ê2 and ê3, and their corresponding
eigenvalues l1, l2 and l3 (with l1≥ l2 ≥ l3). As in 2D, a
decomposed form is convenient to reveal the properties of
the element encoded by the tensor

T = (l1 − l2)ê1ê
T
1 (l2 − l3)ê1ê

T
1 + ê2ê

T
2

+ l3(ê1ê
T
1 + ê2ê

T
2 + ê3ê

T
3 ) (4)

In this case, l1− l2 is the ‘surfaceness’ of the tensor: the
higher the difference between l1 and l2, the more the
tensor resembles a stick (with the direction of e1). l2− l3
represents the ‘curveness’: the higher the difference between
those, the more the tensor resembles a plate tensor (with the
3
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Fig. 5 In 3D

a Plate is used to encode the normal plane to a curve
b Stick: the normal direction to a surface
c Ball: the existence of an intersection
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direction of ê2 ). Finally, l3, usually called the ‘pointness’ in
the literature, measures the uncertainty of the direction,
analogously to the lower eigenvalue in the 2D case.
In Fig. 6, the components of a 3D tensor are illustrated.
2.3 Fundamental stick voting field

During the voting, tensors cast votes in different positions
along the space. These votes are also tensors and encode
information in the same way and with the same meaning.
The votes at every location constitute the voting field of a
tensor. The stick voting field, that is, the field produced by
a stick tensor, is fundamental in the sense that every other
field can be computed after it.
The design of the stick voting field is crucial in the

framework, since it is at this point that human perception
principles are introduced. The votes cast by a stick tensor
should be more significant in the areas that belong to the
most likely continuation of the feature that is encoded.
Fig. 6 In 3D, a symmetric tensor can be decomposed into stick,
plate and ball components, with l1− l2 its stickness, l2 − l3 its
plateness and l3 its pointness
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In all formulations of tensor voting, the direction of the
tensor that is cast as a vote at a certain site has a normal
lying in the radius of the osculating circle that connects the
voter with the vote location. This comes out of the
observation that the osculating circle [10] represents a
smooth continuation of an oriented feature. This is
illustrated in Fig. 7. The received vote is rotated an angle of
2θ with respect to the voter. The original formulation crops
the votes at locations outside −π/4≤ θ≤ π/4.
The ‘saliency’ of the vote is penalised with distance along

the osculating circle to reduce the correlation between
positions far apart. It is also penalised with curvature, so
that straight line continuations are preferred. The resulting
decay function is shown in the following equation

DF(v) = e−(s2+ck2/s2) (5)

where s is the arc length along the osculating circle and κ is
the curvature, which can be computed after v. σ is the scale
parameter, related to the neighbourhood size: a larger σ
should be used to infer curves with larger gaps. It has been
observed, however, that the framework is not very sensitive
to the scale, making it a fairly robust choice. Discussions
on the robustness to scale changes have been presented in
[6, 11]. c controls the decay of the field with curvature, and
it can be optimally adjusted as a function of the scale
parameter σ. The expression

c = −16ln(0.1)x(s− 1)

p2
(6)

is commonly used, which is derived from the intention of
assigning equal probabilities to right angle and round corner
continuations of two orthogonal line segments [12]. This
way, σ constitutes the only free parameter in the framework.
The vote SV cast by a stick tensor T at position v is then

expressed as follows

SV(T , v) = DF(v)R2uTR
T
2u, if −p/4 ≤ u ≤ p/4

0, otherwise

{
(7)

with Rα is a rotation matrix for an angle α. The voting tensor
is rotated and scaled following the decay function to produce
the vote at a particular position in space.
Fig. 7 Direction of a stick vote points to the centre of the
osculating circle

IET Comput. Vis., pp. 1–19
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Fig. 8 Level sets of the saliency of the stick voting field

Fig. 10 Ball field: the fundamental field is rotated and integrated
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In Fig. 8, level sets of the ‘saliency’ of the stick voting field
are illustrated to show the effect of the decay function.
It is important to observe that the voting field in the

previous equations is aligned with the voter, so that
the vote is expressed in a local coordinate system. The
mechanism of vote propagation of the rotated stick fields is
depicted in Fig. 9.
In 3D, the computation of the stick voting field is trivial,

being a rotation of the flat 2D field around the stick.
around two axes
2.4 Computing ball and plate votes

The ball voting field can be computed by integrating the
contribution of a rotating stick. Since ball tensors encode
the uncertainty of orientation in all directions, the stick is
rotated around a sphere in 3D. This is illustrated in Fig. 10
where a ‘slice’ of the 3D field (which spans in fact all
around the stick that casts the vote) is seen to rotate with
two degrees of freedom.
Let S(f, ω) be a unitary stick tensor oriented in the

direction (1, f, ω) in polar coordinates. Note that, we let
this tensor have two degrees of freedom in its orientation,
which we represent as f and ω. This is observed in Fig. 10,
where the field is shown to be rotated in two axes. The vote
cast by a ball B can then be expressed in the following way

BV(B, v) = 3l

4p

∫
G

SV(S(f, v), v)dG (8)

where Γ is the surface of a unitary sphere, l any of the
eigenvalues of B (which are equal) and SV as has been
defined in (7).
The plate field computation is analogue. Given that plate

tensors encode uncertainty in the orientation around one
axis, a stick is rotated around a circumference as shown in
Fig. 11, where a slice of the 3D stick field is seen to rotate
with one degree of freedom.
Fig. 9 Stick voting fields and vote propagation

Every input token casts votes (the arrows) throughout the space, which are collect

IET Comput. Vis., pp. 1–19
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If S(β) is now redefined as a unitary tensor rotated an angle β
(having one degree of freedom as shown in Fig. 11) a vote cast
by a plate tensor P can be constructively defined as follows

PV(P, v) = l

p

∫2p
0

SV(S(b), v)db (9)

l being one of its equal non-zero eigenvalues.
In the case of the ball voting field, the ballness component

is also propagated. From a perceptual point of view, this
might not be easily justifiable, as pointed out in [13]. This
comes out of the observation that an input ball is used to
encode a junction, and junctions are not close to each other.
However, this can be useful when tensor voting is used
iteratively [14–16] in order to induce uncertainty when
tokens are not initialised with accurate values.
2.5 Vote collection and dense feature extraction

Votes are collected by tensorial addition, which is equivalent to
adding their matrix representation. In practice, votes with a
high percentage of ‘saliency’ decrease because of distance –
usually 99% – are not included. This maximum distance can
be dynamically computed after the range parameter σ of (5).
This is a common practice to reduce the execution time.
ed and added to infer underlying structure

5
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Fig. 11 Plate field: the fundamental field is rotated and integrated
around one axis
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To extract the inferred structures after the dense voting,
extremal features in the resulting field are sought.
Junctions or intersections are simply found by extracting

the local maxima of the lowest eigenvalue field (the
so-called ‘pointness’ in 3D and ‘junctionness’ in 2D).
Surfaces are extracted by finding the locations at which the

surfaceness is locally maximal along the normal direction
encoded by the tensor; that is, any deviation from the
surface leads to a lower surfaceness. In 2D, analogously,
curves are located at sites where a deviation in the normal
direction leads to a decrease in the ‘saliency’ of the field.
This is equivalent to finding the zero-crossings of q, the
projection of the gradient of the surfaceness/saliency s
along the normal directions

q = ∇s · n̂ (10)

Curves in 3D are obtained in a similar manner, although they
are characterised by curveness extremality along the
directions of the plate. In this case, the gradient g of
the curveness (l2− l1) should be projected as a vector into
the plane generated by ê2 and ê3, which is normal to the
underlying curve. This vector can be obtained as follows

q = R(t̂ × g) (11)

where R is a rotation to align with the ê2 − ê3 plane and t̂ is
the curve’s tangent. The extremal feature is located at sites
where q = 0. This means that a point is extremal in
curveness when any displacement from the tangential
continuation produces a lowering in the curveness map.
The use of Marching Cubes [17, 18], an algorithm to find

zero-crossing surfaces in scalar fields, has been suggested to
extract the inferred features. They are able to compute the
voting field only as needed, because they advance through
the zero-crossing surface, analysing the field locally. This
way, the execution time is highly reduced. Adaptations of the
technique to be used in tensor voting have been described [4].

2.6 N-dimensional (N-D) tensor voting

Tensor voting in more than three dimensions has been applied
throughout the literature to solve computer vision problems.
For example, optical flow has been formulated as a four-
dimensional (4D) tensor voting problem, with two
6
& The Institution of Engineering and Technology 2014
dimensions for the velocity field [19], and texture synthesis
has been carried out encoding texture descriptors as
multi-dimensional tensors [20].
N-D tensor voting still conveys the principles of smooth

continuation of features, although in an N-D space. The
representation of features can be easily generalised to higher
dimensions observing (1) and (3). In these expressions, a
linear combination of eigenvalue/eigenvector pairs is present.
In N dimensions, such a tensor would be represented as an
N ×N symmetric non-negative definite matrix (a
hyperellipsoid), generated as in the following expression [21]

T =
∑N
d=1

ldede
T
d (12)

As in (1) and (3), this expression generates every elementary
tensor by means of the inner product of the eigenvectors,
weighted by the eigenvalue.
The expression can be again rewritten to reveal the

underlying features, as in (2) and (4)

T = (l1 − l2)ê1ê
T
1

+ (l2 − l3)(ê1ê
T
1 + ê2ê

T
2 )

+ · · · + lN (ê1ê
T
1 + · · · + êN ê

T
N )

=
∑N−1

d=1

(ld − ld+1)
∑d
k=1

êd ê
T
d

[ ]
+ lN

∑N
k=1

êd ê
T
d

(13)

In the previous equation, it can be observed that there is a
parameter lN affecting every component (from ê1ê

T
1 to

êN ê
T
N ). Intuitively, this parameter represents the uncertainty

in all directions, the so-called ballness or pointness.
The other terms in the previous equation are weighted by a

subtraction of successive eigenvalues, and affect the
summation of a number of eigenvectors, which are the
normals to the feature they encode. For example, in the 3D
case, the first component represents a surface, a feature that
has a single normal in the direction of ê1. This is the stick
component of the tensor. The following component represents
a curve, whose normal is now a plane generated by ê1 and ê2.
This is the so-called plate component. In an N-D space, a
tensor is a combination of elementary features, where each
feature is described by a number of normals ranging from 1 toN.
In other words, every elementary feature in the

decomposed form (13) has a normal hypersurface generated
by ê1, . . . , êj, with j≤N.
The generalised voting fields are computed in a similar

fashion. The stick voting field is equivalent, as expressed in
(7), and the others are obtained after it. A generalisation for
the derived fields can be easily obtained by observing the
way plate and ball votes are generated in 3D, as illustrated
in Figs. 10 and 11 and expressed in (8) and (9). In the case
of the plate, the fundamental field is rotated with one
degree of freedom and, in the case of the ball, it is rotated
with two degrees of freedom. In general, for an elementary
feature described by j normals, the stick is rotated around
the hypersphere centred at the origin and passing through
ê1, . . . , ê j−1. The contributions are integrated.

3 Difficulties

The original framework of tensor voting featured some
concerns that led researchers to investigate ways to improve
IET Comput. Vis., pp. 1–19
doi: 10.1049/iet-cvi.2014.0103



www.ietdl.org

the technique. Some of the limitations were merely practical,
especially regarding execution time or implementation
efforts. A number of reformulations have arisen because of
these concerns. Other limitations are theoretical, in the
sense that tensor voting lacks some capabilities that might
be required for certain applications, which motivated
augmentations to the framework.
The aim of this section is to review the difficulties reported

throughout the literature concerning the original formulation
of tensor voting. A number of reformulations addressing
some of these issues will be explained later.

3.1 Scale invariance

Scale invariance [22] is a property referring to the invariance
of a function regardless of the metric unit used in the space.
This can be interpreted as a graph that scales without
changing its shape. The lack of scale invariance property of
the original formulation of tensor voting has been pointed
out in [13] and implicitly addressed in [23].
Equation (5) involves an arc length parameter s and a

curvature parameter κ. Considering the geometric properties
of the stick votes, these can be obtained in the following way

s = uv

sin u
, k = 2 sin u

v
(14)

where v is the distance between the voter and the receiver.
It is observed that s directly depends on the length v so that
s(nv) = n·s(v). The curvature κ depends inversely on the
length v, so that k(nv) = 1

nk(v).
Scale invariance would be true for stick votes if DF(nv) =

DF(v) [from (5)] [22]. σ is scaled accordingly in this test
because it is supposed that a change in metric units should
impact in a proportional change in the scale factor [13].
Analysing the validity of this property

DF(nv) = e−((n2v2+(ck2)/(n2))/(n2s2))

= e−((v2+(ck2)/(n4))/(s2)) (15)

it is observed that scale invariance is only true if c is directly
related to the fourth power of the distance, which is in general
not a common practice in tensor voting and is too far related
to the actual nature of the parameters in this formulation.
Scale invariance is a desired property considering that a

decay function should be dimensionless [24] because it is a
factor that alters the strength and not the unit of the votes.
In the original formulation, if c is taken as a constant and a
unit in space equals a metre [m], the decay function is
measured in a [e−1/m4

] unit. If c directly depends on σ, as
in (6), the formulation is still not dimensionless with a unit

equal to [e−1/m3

].
Scale invariance would be useful in further mathematical

developments in the technique and to facilitate the
reusability of precomputed fields that can be scaled [13].
Precomputed voting fields and interpolation are a common
practice. However, in the original formulation different
fields have to be stored not only for every value of c
considered but also for different values of the scale σ, given
the lack of scale invariance in the original formulation.

3.2 Closed-form solution

In general, a combination of a finite number of elementary
operations constitutes a closed-form solution to a problem,
IET Comput. Vis., pp. 1–19
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although there is no consensus on the exact definition of
this property [25].
Tensor voting in its original formulation is clearly not

expressed in a closed-form, as has been pointed out in [21,
26]. This is because of the need for discrete sampling and
integration steps in the computation of votes (other than the
ones produced by a stick tensor), as explained in Section 2.4.
A closed-form expression is often desired to achieve an

efficient solution with less implementation efforts. In
addition, it allows the application of a number of
mathematical operations, including differential calculus,
which otherwise would not be possible [26].
In addition, the use of precomputed fields to reduce

execution time becomes impractical in higher dimensions,
as has been pointed out in [21]. In D dimensions with k
samples per axis, kD tensors of size D ×D are to be stored,
after a precomputation involving a discrete integration on D
variables. In addition, as dimensionality grows, not only the
storage required becomes impractical but also the likelihood
that a precomputed vote will be used decreases. A closed-
form solution has been suggested in a recent publication
though it has later been shown to be incorrect [27].

3.3 Complexity of dense voting

In some applications, it is desirable to compute the resulting
voting field densely, that is, for every point in a grid. This
way, tensor voting is applied as a filter whose output is the
resulting tensorial map. As explained in Section 2.5, the
alternative is to start from a highly salient seed and proceed
as a march, computing the field as needed. However, the
initial seed might not be available.
In addition, in the most general case the input might be

dense, that is, there is a token in every grid position [23].
The complexity for a k-dimensional image of side n
becomes O(nk) and, even in the case of stick voting (which
does not require numerical integration) this can be
prohibitive considering that rotations and inverse
trigonometric functions are required in every vote [13]. For
example, the authors of [23] report that the dense stick
voting for a 512 × 512 pixel image took 10,000 s to run on
a 2.3 GHz machine.

3.4 Curvature information

Tensor voting enforces the smooth continuation of features.
However, curvature information is not propagated. For
example, if a considerable portion of a circle is missing, the
continuation will not favour the completion of the figure as
a circle. This example has been pointed out in [28] and the
issue has been also addressed in [16]. Such a curvature
propagation might be desirable depending on the context.

3.5 Handling of feature discontinuities

The original tensor voting framework was aimed at robustly
detecting curves and surfaces out of possibly noisy or
corrupted data, although no handling of the endings or
boundaries of these features was provided. This way, if
using a marching algorithm to extract the meshes, no
information other than junction thresholds could be used to
decide the ending of the march. The original formulation is
able to encode and measure the sharpness of the features,
captured in the junction or pointness maps, but does not
provide a way to encode the likeliness of a point to belong
to the boundary of an object.
7
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This is, of course, not a concern in closed surfaces or

curves. However, in some contexts it might be necessary.
This has been pointed out in [6, 29]. In [30], the need for
endpoint detection in tensor voting is highlighted in the
context of fibre characterisation, which shows up as
disconnected curve segments in the images.

4 Tensor voting reformulations

In this section, different reformulations of the technique are
reviewed. The criteria used here is to include works that
involve a relevant modification in theoretical aspects of
the original framework. After explaining the different
alternatives presented here, a comparison among them is
performed.
Throughout this section, the mathematical formulae have

been restructured as compared to the original publications,
in order to display them in a coherent way and to facilitate
their comparison.
Four high-impact reformulations are reviewed, in

decreasing order of complexity. A discussion section to
summarise the contribution of every method is included
independently after each of them.

4.1 Efficient tensor voting (ETV)

ETV is a reformulation presented in [13] that aims at
providing equivalent results to those obtained using OTV,
but suppresses the need for discrete sampling and
integration. ETV provides substantial changes to the way
voting fields are calculated, although the effect is highly
similar to the original formulation.
The method redefines stick votes to be scale-invariant and

later takes advantage of this property to provide new
formulations for plate and ball fields.

4.1.1 Stick votes: The authors propose replacing the decay
function (5) with the following expression

DFETV(v) = e−(s2/s2)−c �k2 (16)

with �k as the normalised curvature [equal to sin(θ)]. This
dimensionless curvature indicator has already been used in
other contexts [31] and turns stick voting into a
scale-invariant function. The authors suggest that there are
many other dimensionless measurements of curvature,
although this one is closely related to the definition of
curvature and less computationally expensive.
The previous equation redefines the stick voting field,

although it preserves the spirit of OTV in the sense that stick
votes are penalised with distance and curvature. Now c is
used to control the preference for flat surfaces over curved ones.

4.1.2 Plate votes: In OTV, it is stated that plate votes
depend indirectly on the distance v from the plate, and the
angle γ between v and ê3, the tangent to the underlying
curve. The dependence on the distance v is not direct
because the arc length s is used. Considering that stick
votes are now scale invariant, (9) can be decomposed into
two independent functions

PV(P, v) = lf (v, g, s)H(g, c) (17)

where f is a scalar decay function and H is a tensorial function
that defines the shape of the resulting tensor independently of
the spatial distance.
8
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The scalar function f defines a decay with distance, affected
by the scale parameter σ, as follows

f (v, g, s) = e−(t2v2/s2) (18)

In this expression, t is a function of γ used to correct the use of
distance v instead of the arc length s. t cannot be derived
analytically, although its influence in the votes is slight.
The following approximation for t is suggested after an
experimental evaluation

t(g) = (1+ g . sin (g))/2, if − p/4 ≤ g ≤ p/4
1.033, otherwise

{
(19)

Now, it remains to define H, the function that describes the
shape of the resulting vote, independently of the spatial
distance. First of all, it is observed that plate votes do not
feature a ball component, hence, H can be decomposed as
in the following expression

H(g, c) = SH + PH (20)

with SH as the stick component and PH as the plate component
of the resulting vote. Taking into account (4), the previous
equation can be rewritten as

H(g, c) = ssû1û
T
1 + sp(û1û

T
1 + û2û

T
2 ) (21)

where ûi are the eigenvectors of H and ss and sp are the scalar
functions that reflect how stick and plate components are
affected depending on γ and c.
The eigenvectors ûi can be easily computed observing the

geometrical relations between the voter and the receiver, by
means of rotations an outer product. We refer the reader to
[13] for further details on this.
The remaining question is: How do the stick and plate

components relate to γ and c? The answer to this question
would define the functions ss and sp needed to complete the
formulation of plate votes. This can be answered by
extracting the eigenvalues of H in the following expression,
derived from (17)

H(g, c) = PV(P, v)

lf (v, g, s)
(22)

where PV is computed from the OTV formulation (9) in an
accurate way, this is, with a small integration step, in order
to keep ETV closely related to the original formulation.
ss and sp are the functions that capture all the non-linearities

of the technique that have been ignored until this point and
they cannot be analytically simplified. As was expected, the
curves ss and sp behave very differently for values of γ
inside and outside [−π/4, π/4]. This is because all the sticks
contained in the plate cast votes inside the cone that spans
an angle −π/4≤ γ≤ π/4, but outside this cone the number
of sticks that cast votes decreases progressively until
reaching minima at γ = ± π/2. Because of this, inside the
aforementioned cone the votes are more similar to a plate
(and a perfect plate at γ = 0) and they resemble a stick
outside the cone. In addition, the non-linear effect of the arc
length s is present throughout all the curves.
This is illustrated in Fig. 12 where the values of ss and sp

are plotted as a function of γ, and c is set to zero. This can
IET Comput. Vis., pp. 1–19
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be interpreted as the level of similarity of a vote to a plate or a
ball depending on the angle, when the curvature is not
penalised (given that c = 0). It can be observed that votes
are very similar to a plate (sp close to 1), with a non-linear
decrease of this status until γ = π/4, where the non-linear
descent becomes more aggressive. A higher c can be used
to accelerate the transformation of the votes into stick-like
tensor. In [13], this graph is reproduced for various values
of c.
The authors of ETV proposed to perform an experimental

fitting of univariate functions on ss and sp to obtain
expressions that lead to curves that highly resemble the
shape of ss and sp. Results are available in [32]. The
functions obtained are good enough to mimic the behaviour
of OTV in votes cast by plate tensors.

4.1.3 Ball votes: The votes cast by a ball depend on a
single parameter, the distance v, for a certain combination
of σ and σ and c. This is because of the isotropy of the ball
voting field. As v increases, the resulting tensors are
flattened in one direction, resembling an oblate spheroid.
The direction in which this flattening occurs (i.e. the lowest
eigenvector of the resulting tensor) is parallel to v.
This way, the vote cast by a ball B at v as expressed in (8)

can be reformulated in the following way

BV(B, v) = l sm I − vvT

v2

( )
+ sbI

[ ]
(23)

where l is again any of the equal eigenvalues of B and I is the
identity matrix. In the previous expression, I− (vvT)/(v2)
generates a plate tensor normal to v (an effect achieved by
the subtraction of a unit stick tensor from I). This way, a
perfect plate tensor is generated, a totally flat component.
This tensor is multiplied by a factor that we call sm because
it alters the ‘magnitude’ of the resulting vote. In addition, a
second term incorporates a component that is parallel to v.
This term includes a factor that we call sb because it
controls the ‘ballness’ of the tensor: if it is zero, the
resulting tensor looks like a perfect plate because it lacks a
component orthogonal to it, whereas if it is equal to sm, the
result is a perfect ball, given that all the eigenvectors would
be equal.
Thanks to scale invariance, sm and sb can be decomposed

into Gaussian decay functions on v and factors s’m and s’b
that depend on c that capture all the non-linearities of OTV
that have not yet been considered

sm = s′m e−(v2/s2), sb = s′b e
−(v2/s2) (24)
IET Comput. Vis., pp. 1–19
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As in the case of plate votes, s’m and s’b cannot be
analytically simplified, although they can be approximated
by a fitting on the curve that results after extracting the
eigenvalues of the following expression, derived from (23)
and (24)

H(c) = BV (B, v)

le−(v2/s2)
(25)

In the previous expression, BV is computed through (8), its
original formulation, with a small integration step.
Good approximations for s’m and s’b are available in [32]

and are in fact calculated in a simpler way than those of
plate votes given that in this case they depend on a single
parameter c.

4.1.4 Discussion: The formulation of ETV transfers the
non-linearities of the original formulation to a different
place. It is still a numerical approximation, although the
need for discrete integration is now avoided. The authors
proposed curves that successfully approximate a set of
target functions. The result is a novel formulation that
closely imitates the behaviour of OTV in an efficient
manner. It does not constitute, however, a closed-form
solution, nor is it defined for higher dimensions.

4.2 Simplified tensor voting (STV)

The authors of [13] presented a new formulation of tensor
voting called simplified tensor voting (STV) which, instead
of aimed at providing an accurate numerical approximation
of OTV, it intends to redefine the technique based on the
perceptual principles that gear the design of the voting fields.

4.2.1 Stick votes: Stick votes are firstly redefined by
replacing (5) by the following decay function

DF(v) = e−(v2/s2)−c sin2 (u) (26)

This decay function is used in (7) as usual, cropping votes
outside −π/4≤ θ≤ π/4. It uses normalised curvature
sin (u) = �k, hence achieving a scale-invariant formulation,
and it replaces the arc length s of OTV by Euclidean
distance v. This comes out of the observation that in OTV c
controls curvature and σ controls both distance and
curvature, because it affects a term that includes a curvature
sensitive parameter, the arc length. In (26), now σ can be
used to control only the scale and c the curvature. This
constitutes a simplification of OTV.
In addition, the time-consuming inverse trigonometric

function required to compute the arc length, as expressed in
(14), is no longer required.
This is of course a deviation from the original formulation,

although the authors suggest that, given that in −π/4≤ θ≤ π/4
the maximum difference between s and v is only of 5.5%, c
can be better used to control the effect of curvature and the
meaning of the votes is not substantially changed.

4.2.2 Plate votes: Plate votes depend on the angle γ
between the tangent of the curve and the point in which the
vote is cast, this is, between v and ê3. The authors of STV
firstly observe the behaviour of votes inside the cone −π/
4≤ γ≤ π/4. They state that from a Gestalt point of view,
these votes act like stick votes: they are penalised under the
same principles although they propagate curvature instead
of surfaceness. In other words, the vote cast by a plate is
9
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another plate whose magnitude is reduced with arc length and
curvature of the osculating circle connecting both plates, the
voter and the receiver. This is analogue to the stick voting
field decay. As stated before, however, arc length will be
replaced by Euclidean distance in the context of STV.
Outside the aforementioned cone, plate votes become more

similar to sticks. This is why the authors redefined plate votes
including both a plate and a stick component, with a
parameter αP to control how stick votes influence the plate
component. The following expression defines the vote cast
by a plate tensor P

PV(P, v) = spP2g + aPssl(û1û
T
1 ) (27)

where P2γ is the original tensor P rotated 2γ, analogously to
the orientation of the stick vote as shown in Section 2.3, l
is one of the equal eigenvalues of P and û1 is the
orientation of the main eigenvector of the resulting stick,
which can be obtained by simple trigonometry.
sp is a function that conveys the decay of the plate

component, and ss plays a similar role with the stick part.
After observing that they have a mirroring evolution,
because the stick component becomes more relevant as the
angle γ increases, contrary to the case of the plate, these
decay functions are defined as follows

ss(P, v) = e−(v2/s2)−c sin2 g, if −p/4 ≤ g ≤ p/4
0, otherwise

{
(28)

sp(P, v) = e−(v2/s2)−c cos2 g, if g . p/4 or g , −p/4
0, otherwise

{
(29)

The mirroring effect is achieved by the use of the cosine
instead of the sine in the second expression. The definition
of these functions has been derived from the novel stick
field definition of STV, as in (26).
Parameter αP∈ [0, 1] should be set depending on the type

of problem, data density and level of noise. The stick
component of plate votes might lead to errors in curved
surfaces, hence in those cases the setting of αP = 0 might be
appropriate so that the responsibility of the resulting votes
lies entirely on the first term of (27). In flat surfaces, the
setting of αP = 1 can be beneficial to the estimation of
normals. When both configurations exist, flat and curved
surfaces, αP = 0 is suggested by the authors.
4.2.3 Ball votes: Votes cast by a ball tensor can be more
easily described, since they constitute an isotropic field. The
magnitude of the votes decays with distance v. A ball
represents total uncertainty about the normal direction at
that point. However, the uncertainty is reduced in the
direction of v as the distance increases, given that the
receiver location might be at the continuation of a feature
from the voter. This way, votes become oblate spheroids as
v increases its value.
This is expressed in a similar formulation to that of ETV in

(23), that conveys the constructive nature of ball votes with
two factors: sm to control the way ‘magnitude’ decreases
with respect to distance, and sb to control the ballness of
the resulting votes with respect to distance. In ETV, these
functions capture the non-linearities of OTV. In STV,
however, these factors are redefined to capture in a simpler
10
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way the characteristics of the ball field as previously detailed

sm(B, v) = e−(v2/s2), sb(B, v) = aBe
−(v2/s2) (30)

Both expressions are simply Gaussian decay functions with
respect to distance v, and αB≥ 0 is a parameter that controls
the influence of the ball component in the resulting field.

4.2.4 Discussion: STV conveys, in simpler expressions,
the intentions that geared the design of the fields in OTV. It
is not, however, an equivalent formulation. The efficiency is
mainly increased due to the fact that there is no need for
the discrete computation of integrals. Additional
improvements have been introduced to further simplify the
formulation.
Even though STV fields are not equivalent to those of

OTV, the formulation proved to be effective in the tests
described in [13].
The implementation efforts of the technique are

considerably lowered since there are no numerical
approximations of any kind in the computation of the votes.
STV introduces two additional parameters, αP and αB, that

have to be carefully tuned depending on the application.
These parameters allow, however, control of the relevance
of different components that constitute the votes in the
resulting voting fields.
No adaptation of this scheme to an N-dimensional space

was proposed by the authors.

4.3 N-D tensor voting (NDTV)

This formulation [21], which we call N-D tensor voting,
simplifies the computation of votes with the goal of
providing an efficient extension of the OTV framework to
an n-dimensional space. This is done taking into account
geometric properties of the votes. The formulation here
described is different to that of Section 2.6 that simply
generalises OTV to N-D.
The authors observed the unlikeliness of using the

traditional numerical scheme in higher dimensions, because
either execution time is prohibitive, or look-up tables of
cached votes become too large.
In the next paragraphs, the way votes are computed in

NDTV is explained, starting with the stick voting field and
then showing how the other fields are derived after it.

4.3.1 Stick votes: The votes cast by a stick in an
N-dimensional space remain equal to OTV, as expressed in
(7). The idea can be directly generalised to higher
dimensions, in which votes will still be penalised by arc
length and curvature of the osculating circle or hypercircle.
This is equal to stick voting in N-D as proposed by the
authors of OTV.

4.3.2 Votes by stick tensors: The authors of NDTV
redefined the remaining votes based on the addition of a
number of elementary stick votes that are extracted out of
the voter.
The authors firstly carried out an analysis of the voting. It

includes features with a number of equal eigenvalues, this is,
perfect tensors. These represent the d-dimensional normal
space to the feature encoded, which is denoted as Ns. The
authors observe that v can be decomposed into vn and vt, a
normal and tangential component to the normal space Ns, as
illustrated in Fig. 13. It is then proposed to define an
orthogonal basis b̂1 , . . . , b̂d that generates Ns. This basis
IET Comput. Vis., pp. 1–19
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must include a component parallel to vn, which is set to be b̂1
for simplicity. The computation of this basis might be done by
recurring to a Gram–Schmidt procedure [9].
In the illustrative example of Fig. 13, there is a plate tensor

whose normal space is Ns, whose vote at v we wish to
compute. Firstly, we must decompose Ns into an orthogonal
base. There are infinite possible bases that generate the
plate, which are pairs of orthogonal vectors in all possible
directions on the plate. However, b̂1 is fixed in the direction
of the plane that includes vn and vt and the Gram–Schmidt
procedure is started with that vector. The
orthonormalisation will output b̂1 (or − b̂1).
The received vote can then be constructed taking into

account the votes cast by stick tensors coming out of
b̂1 , . . . , b̂d . However, it is remarked that components
b̂′2 , . . . , b̂

′
d of the received vote are equal to b̂2 , . . . , b̂d

except for the fact that they are attenuated only with
distance vt. This is because stick votes are independent of
curvature when θ = 0. The vote cast by the stick tensor
corresponding to b̂1 does depend on curvature and its
contribution has to be then fully computed, following the
definition of stick votes.
The whole idea can be expressed in the following equation

that defines the vote cast by tensor T at v

V (T , v) = SV( b̂1 b̂
T
1 , v)+

∑d
i=2

SV( b̂i b̂
T
i , v) (31)

where SV is defined in (7) and d is the dimensionality of the
normal space Ns of T. The previous expression can be
rewritten as follows

V (T , v) = SV( b̂1 b̂
T
1 , v)+

∑d
i=2

e−(v2/s2) b̂i b̂
T
i (32)

considering that all but the first component become plain
decay functions on the distance ignoring the curvature.
Resuming the example of Fig. 13, the component b̂2 would

cast a vote which is only attenuated with distance, whereas b̂1
will attenuate its contribution both with distance and with
curvature.
4.3.3 Ball votes: Even though ball votes are covered in
(32), the authors proposed a simplified equivalent scheme
IET Comput. Vis., pp. 1–19
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that reduces the number of computations. In fact, (32) also
applies for stick votes.
Ball votes include those where d = n, that is, all eigenvalues

are equal, which constitutes the definition of a ball in an
n-dimensional space.
The idea proposed is fairly simple. A ball encodes

uncertainty in all directions. The vote cast at a certain
location v keeps all the uncertainty of the voter except for
the one in the direction of v. This is because a straight line
connecting both points is considered to be the most likely
continuation given that the ball is unoriented, hence normal
uncertainty in that direction is entirely suppressed. The way
to do this is to build an identity tensor, this is, represented
by an identity matrix (which has equal eigenvalues in all
directions) and subtract from it a unit stick tensor in
the direction of v, hence nullifying the uncertainty in that
direction

BV(B, v) = e−(v2/s2) I − vvT

v2

( )
(33)

where the first factor controls the decay of the field and the
second one constructs the appropriate tensor.
4.3.4 Discussion: The authors proposed a simplified
scheme to compute votes whose formulation in N-D is
straightforward. In addition, it constitutes an efficient
alternative to OTV for two and three dimensions, since it
does not require integration.
The formulation is far from OTV, in the sense that it highly

simplifies the resulting fields. In OTV, for instance, the plate
field does not only include pure plate votes as in NDTV, but
an orthogonal component is also present. In the case of balls
fields, they contain a ball component in OTV too, which is
ignored in this formulation. This does not mean that this
is not a sensible choice, for example, as was discussed in
Section 2.4, the inclusion of a ball component in ball votes
is not easily justifiable from a perceptual point of view,
although it might be useful in some contexts. This way,
NDTV constitutes a simplified scheme that conveys the
majority of perceptual principles of OTV in an efficient
manner and with a straightforward extension to N-D,
although it is not equivalent to the original formulation.
This formulation is defined for perfect tensors, so (32)

cannot be applied to an arbitrary tensor without a prior
decomposition (although this might not be necessary at all).
A numerical comparison of this method with OTV is

available in [13].

4.4 Steerable tensor voting

This reformulation [23], which we refer to as SteerTV, is not
an integral modification to the framework because it only
addresses the generation of stick votes. However, the
authors managed to reduce the execution time and
implementation efforts in a significant way, allowing them
to efficiently compute votes densely in a whole image.
Considering that in a number of situations only stick votes
are the input in tensor voting, this has been a high impact
improvement to the framework.
Given that the stick voting fields have to be oriented with

the voter, tensor voting cannot be expressed as a traditional
convolution operation. However, the authors of this work
redefined the stick voting fields in 2D to later express that
field as a combination of steerable filters [33, 34].
11
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The redefined decay function that the authors used is as

follows

DF(v) = e−(v2/2s2) cos2n (u) (34)

In the previous expression, n is used to control the
penalisation with curvature and σ is the scale factor used
throughout the bibliography. It features three key
differences compared with OTV:

† Euclidean distance is used instead of arc length.
† A power of cosine is used instead of curvature, turning it
invariant to scale (cosine instead of sine is used because the
authors express this formulation with tokens that represent
tangents instead of normals).
† The votes are not cropped outside −π/4≤ θ≤ π/4, leading
to a continuous stick voting field.

After expanding the previous expression, the following
complex-valued basis filters are defined (the reader is
referred to the original publication for further details on the
derivation)

wm(x) = e−(x2+y2/2s2) x+ iy��������
x2 + y2

√
( )m

, for x = (0, 0) (35)

The value when x = (0, 0) is not specified in the original
publication. Setting it to zero excludes the centre in the
convolution kernel, that is, votes are only computed out of
neighbouring contributions. Setting it to 1 includes the
centre of the kernel too.
From the input data, a set of complex-valued images are

defined at every location x with the following expression

cm(x) = s(x)e−imbx (36)

where s(x) returns the ‘saliency’ at x and β(x) returns the
orientation of the tensor at x. Ballness is not considered,
given that this formulation is only defined for stick tensors.
Three elements, U−2, U0 and U2 are then computed in the

following way (n was fixed to 2 for simplicity)

U−2 = (w0∗�c2)+ 4(w2∗c0)
+ 6(w4∗c2)+ 4(w6∗c4)+ (w8∗c6)

U0 = Re(6(w0∗c0)+ 8(w2∗c2)+ 2(w4∗c4))
U2 = U−2

(37)

In the previous expression, * is a convolution operation, the
bar operator returns the complex conjugate, Re(·) the real
part, and wm and cm have been defined in (35) and (36),
respectively.
From the complex-valued fields U−2, U0 and U2, the

properties of the resulting tensors (‘saliency’, ballness and
orientation β) can be derived as follows

l1 = |U2|, l1 − l2 =
1

2
(U0 − |U2|),

b = 1

2
arg(U−2)

(38)

Considering the convolution theorem [35], it can be stated
that a*b = IFFT(FFT(a)·FFT(b)), that is, the O(n2)
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convolution in the space domain can be replaced by a
point-wise product in the frequency domain (FFT stands for
fast Fourier transform and IFFT for its inverse). This way,
the FFTs of the different wm and cm can be computed, and
U−2, U0 can be rewritten as pointwise products with one
IFFT at the end in the case of U−2 (because operations are
all linear) and one IFFT in U0 prior to applying Re(·). This
way, the complexity becomes O(n*log(n)) because of the
computation of the FFT. In the end, the execution time is
significantly lowered, as shown in a comparison that is
available in [23].
A work generalising this concept to the 3D stick voting field

has been published [36]. In this work, the authors follow a
similar procedure, making use of tensorial harmonics to
expand tensor fields. The mathematical background under
these formulations is not as straightforward as the 2D
steerable formulation, since expertise in tensorial harmonics
is needed, and its implementation does not seem as trivial.
However, the authors reported good experimental results
considering the 3D setting. We refer the reader to the
original publication for a deep explanation on this subject.

4.4.1 Discussion: The authors of SteerTV presented a
reformulation that allows the fast computation of dense
fields. Even if the stick voting was not a concern if
compared to the computation of derived fields that require
numerical integration, the stick voting was still a
time-consuming task when votes are cast densely.
It is remarkable that the implementation efforts are highly

reduced now that no care on orientation or rotations is to be
taken and considering that the implementation of (35)–(38)
is straightforward. We provide a MATLAB/Octave
implementation as supplementary material to this paper
with the goal of providing a way to quickly evaluate the
behaviour of tensor voting in an oriented 2D input, one of
its most common applications [37].
This reformulation is so much faster that it suppresses the

need for computing the stick field as needed during the
feature extraction stage to improve execution time (as
explained in Section 2.5), allowing efficient use of tensor
voting as a filter: entire ‘saliency’, ballness and orientation
maps are computed for the whole image. In addition, the
execution time does not depend on the scale parameter σ,
which is a novel contribution of this work.
At this point, we wish to describe an advantage of

producing a continuous voting field that has not yet been
addressed in the literature. In the original and other derived
formulations of tensor voting, votes are cropped outside −π/
4≤ θ≤ π/4, as expressed in (7), leading to a discontinuous
voting field. When votes are collected, the effect of
discontinuities can have a negative impact on the feature
extraction process (which was described in Section 2.5).
This is because some extra local maxima might exist
because of these discontinuities. This is shown in Fig. 14,
where OTV has been applied to a set of unoriented
input tokens in 2D. In Fig. 14a, the resulting saliency field
(l1 − l2) is shown, where higher gray levels represent
higher saliency. In Fig. 14b, a trivial feature extraction step
has been carried out: points are tagged in white if they are
locally maximal along the two neighbouring pixels that fall
along the normal lines. Many undesired cross-shaped
artefacts are revealed in this process, which coincide with
the voting field discontinuities of the input tokens. The
same elementary feature detection technique was tested with
SteerTV and the result, as shown in Fig. 14c, is more
robust. This reduces the implementation efforts to define
IET Comput. Vis., pp. 1–19
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Fig. 14 Application of OTV to a set of unoriented tokens in 2D

a Saliency field after voting on a set of unoriented tokens
b Local maxima with OTV
c Local maxima with SteerTV
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what constitutes a maximum and the neighbourhood size that
is taken into account.
4.5 Comparison

This section includes a comparison of ETV, STV and NDTV.
It is intended to provide a quick reference for the reader at the
time of selecting a tensor voting approach. A comparative
chart is shown in Table 1. The first three columns compare
the different alternatives with OTV by ‘ + ’ and ‘–’ signs,
indicating the degree of improvement with respect to the
original formulation. Multiple signs (e.g. ‘ ++ ’) are used to
establish an order in the degree in which every method
improves OTV. It does not mean, for instance, that we are
assessing that ‘ ++ ’ is twice as good as ‘ + ’.
In the first column, the equivalence to OTV is depicted. ETV

is the most equivalent formulation. STV is considered to be
more similar to OTV than NDTV because it allows to set the
way the stick component affects a plate vote, or a ball
component affects a ball vote. This is not allowed in NDTV,
where these components do not even exist in the resulting fields.
It must be pointed out, however, that an exact equivalence

to OTV might not be desired. In fact, an experimental study
[13] showed better behaviour of STV than OTV. Depending
on the application, it might be preferred to use a technique
Table 1 Comparison of alternative formulations to tensor voting

Method Equivalence to
OTV

Execution
time

Implementation efforts
reduced

ETV – + +

STV – – ++ ++
NDTV – – – + ++
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highly similar to OTV or a formulation that somehow
conveys the same perceptual principles.
Regarding execution time, all methods represent an

advance considering that none of them require numerical
integration. STV is a slightly faster choice, from a
theoretical point of view, because it avoids the computation
of an inverse trigonometric function.
The following column expresses how the reformulation

impacts on a lowering of the implementation efforts to use
the technique in contrast to OTV. In our comparison, every
technique is considered to provide a simpler implementation
given that numerical integration or the implementation of
vote caches is avoided. ETV is set to be the method that
least improves this aspect, given that formulae are quite
complex in order to capture the non-linearities of OTV.
STV and NDTV both constitute further improvements since
the formulations are simplified. No claim of which one
constitutes a greater improvement in this aspect is made,
given that STV requires more parameter tuning and NDTV
requires an algorithm to obtain an orthonormal basis.
The following columns include some other characteristics of

every method that might be useful at the time of deciding. First
of all, it is stated which method is defined for its use in an
n-dimensional space, followed by the number of parameters
that have to be tuned in every case. STV has two additional
parameters (other than σ). However, these allow of control
the influence of the different components on the votes.
Finally, the last column details the more time-consuming

operation involved in the computation of votes, somehow
expanding the data of the second column on efficiency.
Considering that millions of votes are sometimes calculated
to process a single image, this might be a useful measure of
efficiency depending on the application.
Concerning SteerTV, it is not included in the chart because it

addresses the computation of dense stick fields exclusively,
showing a different intention with respect to the other
reformulations and to the original framework itself. It can be,
in fact, complimentary to the other methods. However, if we
wish to address the same points of the chart, it could be said
that SteerTV presents changes with respect to the stick fields
of OTV in a similar degree as STV because arc length is
replaced by Euclidean distance and curvature is computed
with a power of sine. SteerTV improves on the asymptotic
complexity of the algorithm regarding stick voting,
enhancing execution time even further to the exclusive
aim of computing tensor voting for this kind of field. In
addition, SteerTV constitutes a distinguishable improvement
in implementation efforts since its computation can be
expressed as a set of filters and elementary operations.
Programming languages or libraries with support for easy
matrix operations, like MATLAB or OpenCV, allow
SteerTV to be implemented easily.
Concerning the actual execution times, ETV, STV and

SteerTV feature comparisons against OTV in their original
publications.
Support for
N-D

Number of
parameters

Highest complexity
operations

no 1 inverse trigonometric
function

no 3 exponential function
yes 1 inverse trigonometric

function
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To conclude, we wish to remark that no tensor voting

reformulation seems to be ‘universal’. A prior application-
dependent evaluation has to be done in order to select the
most appropriate alternative.

5 Augmentations to the framework

The reformulations presented in the previous section address to
some extent the difficulties reported in Section 3, except for the
last two, which involve the inclusion of curvature information
and the treatment of boundaries and endpoints. These points
require an augmentation rather to a reformulation, in order to
add new capabilities to the technique. In this section,
relevant theoretical advances in augmentations that deal with
these two concerns are presented. In addition, we present
other relevant works, which extend the capacities of tensor
voting to solve particular problems. Depending on the nature
of the application, it may or may not be relevant to consider
these augmentations.

5.1 Curvature augmentations

In [38], and later in [28], the authors proposed to include an
additional voting stage between token refinement and dense
voting (Fig. 1). In this stage, curvature information is
included in a vector μ that points to the interior of the
curves, and is easily collected through a stick voting
process in which a number of μi votes are accumulated.
The direction of the votes μi points to the inner side of the

osculating circles throughout the stick voting. This way the
accumulation μ constitutes an estimator of curvature. This is
an interesting property per se, providing an alternative to
other techniques to estimate curvature (see [39, 40] for
further details on the subject). In addition, the authors
proposed to classify every point into different degrees of
curvature and later modify the voting fields accordingly.
Depending on the classification, the stick voting might
remain equal, curvature can be further penalised (when a
locally planar structure is observed) or the field might be
entirely cropped to one of its sides (if such a preference is
observed in the curvature estimator). This way the later
dense voting stage is enhanced, allowing to consider
curvature information in the propagation of votes.
A different augmentation to include curvature information

was later published in [16]. The authors proposed to directly
incorporate the curvature magnitude κ that is computed in the
decay function (5) of OTV. This curvature value is
accumulated at the receiver in the form of an average,
weighted by its saliency. In the next round of voting, the
dense stage, the curvature term in the stick fields is affected
by this weighted average (it is subtracted from κ). This
way, the resulting field is ‘tilted’ to one of its sides,
favouring curved continuation in the direction of the
estimated curvature and weighted by its magnitude.

5.2 First-order augmentation

In [29, 41], the authors proposed an extension to the
technique that addresses the problem of the treatment of
boundaries and endpoints of the detected features. The
authors observe that the second-order representation of
OTV is not sufficient to encode whether a point is in the
interior of a surface or at its boundaries (considering that it
is not closed). In addition, it cannot convey whether a point
is inside a curve or an endpoint.
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It is then proposed to include the so-called ‘polarity
vectors’, which are initialised as zero-valued vectors. The
stick voting field is computed after similar principles,
although the votes lie in the direction tangential to the
osculating circle and point to the voter. The first-order vote
is interpreted as an indicator of where the vote is originated
in the smooth underlying feature. Decay functions are
similar to the second-order vote.
This way, the accumulated votes are cancelled if they come

from multiple directions, that is, when the receiver is in the
interior of a surface or curve. When the point is at the
boundary of a surface or at a curve endpoint, the significance
of the vote will be mainly because of the contribution from a
subset of directions, pointing to the interior of the feature.
The boundaries and curve endpoints can be extracted as

local maxima of the magnitude of the polarity vectors along
their directions.
This augmentation is relevant to the practical application of

tensor voting, since feature discontinuities are present in
many real problems.
In addition, the authors suggest using polarity information

to adjust the scale (σ) of the votes. It is proposed to adjust
the scale in a fine-to-coarse fashion, until reaching a
‘boundariness’ lower than a given threshold or reaching a
maximum acceptable scale. This is relevant when the
density of the data varies throughout the input and a
multi-scale voting is convenient for this reason.
5.3 Iterative tensor voting

Even though OTVwas originally intended to be a non-iterative
technique, in [16], the authors show that the iterative
application of tensor voting might be useful for certain cases,
including curve reconstruction with large gaps or parameter
misadjustment. The successive application of the method can
effectively refine the output of each previous iteration,
discarding irrelevant components and highlighting the actual
underlying structures in highly cluttered scenes.
The main contribution of [16] regarding the iterative

scheme is to show that iterations might be useful. The
iterative scheme in this work simply repeats the execution
of tensor voting a number of times with the same parameters.
Built upon that conclusion, the authors of [14] presented a

simple iterative scheme in which tensor voting is applied at
multiple scales (i.e. σ∈ σ1, σ2, …, σn) to effectively extract
perceptually prominent elements in cluttered backgrounds
and with gaps of different lengths. In the scheme proposed,
at each iteration elements below a given threshold at many
scales are excluded from the following iteration.
Experimental results are available in the publication.
In addition, the same authors presented a different proposal

in a later work [42], which iteratively decreases the aperture
of the stick voting fields instead of fixing it as a function of
the scale [as expressed in (6)]. This has the effect of
successively ‘funnelling’ the field to more precisely infer
and connect curves. The authors proved that their method is
effective at restoring highly ill-defined curves in the context
of synthetic and real medical images.
5.4 Higher-order tensor voting

In Section 2.2, it was stated that the advantage of using
second-order tensors has to do with the fact that even under
the addition of orthogonal tensors there is a capability for
representing ‘saliency’ information. This extends the
IET Comput. Vis., pp. 1–19
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limitation of first-order vectors whose magnitude is cancelled
upon addition of orthogonal elements.
However, when adding orthogonal second-order tensors,

the directional information of the individual components is
no longer preserved, increasing the ‘ballness’ or uncertainty
about the orientation. Just like the aim of preserving
‘saliency’ encouraged the use of second-order tensors, the
goal of preserving the directional components after adding
tensors leads to think about higher-order tensors. The topic
of higher-order tensors for structure estimation has been
addressed in [43]. Just like stick second-order tensors can
be obtained by computing the outer product of a vector, an
order-l stick tensor is obtained by successively computing
the outer product l times [43]. In Fig. 15, the notion of a
possible sixth-order tensor is depicted, which could be the
outcome of the addition of many sixth-order stick tensors.
The authors of [44] presented an extension of tensor voting

to infer missing information in higher-order tensor fields,
which are widely used to model fibre crossings in a medical
imaging modality described in their paper. The authors
selected tensor voting to robustly ‘inpaint’ [20] areas of the
images.
The order-l tensor voting proposed in [44] is only defined

for stick tensors as an input. The vote propagation principle is
very simple: the vote cast is constructed by multiplying a unit
tensor by a decay factor. The decay factor is equivalent to that
of OTV, as expressed in (5) and the tensor is obtained by
computing the outer product of a unit vector in the correct
direction l times. This direction follows the same osculating
circle approach as expressed in (7). The only difference is
the number of times the outer product is computed.
The major point in which higher-order tensor voting differs

from OTV is in the interpretation of votes. Now there is not an
equivalent decomposition in an orthogonal basis of
symmetric tensors, but the algorithm in [45] can be used to
decompose the higher-order tensor into a non-orthogonal
set of unit vectors êi with corresponding lengths li. Each
li êi can be interpreted as a stick element in one of the
given directions, which now are not cancelled out in the
addition of the votes. Now l1 and l2 can both represent
salient elements so that the concept of l1− l2 to measure
saliency is no longer valid (let us remember that in this
approach the tensor decomposition does not lead to
orthogonal vectors). The authors proposed to assign high
saliency to the directions in which the tensor presents a
high convex curvature with respect to the others. We refer
Fig. 15 Representation of a higher-order symmetrical tensor
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the readers to the original paper for further details on how
this is accomplished.

5.5 Probabilistic tensor voting

In [46], the authors presented the so-called probabilistic
tensor voting. Firstly, it is observed that the original
proposal per se is not robust to some types of noise. In
particular, OTV does not handle inlier noise in any way, so
that no treatment of the possibly incorrect location of a
token that does belong to a manifold is performed. This
results in the propagation of incorrect information
throughout the voting process, even among the members of
the actual features.
The solution proposed by the authors is an augmentation of

the framework under a simple principle: the location of the
voter is extended to be a probability distribution function
other than a mere deterministic Cartesian position. The
ultimate goal is to compute every vote as the expectation of
the different votes cast by a voter located at the different
positions according to this probability function.
In practice, the probability distribution functions are

considered to a 1D Gaussian curve. In the case of ball
votes, this line of possible locations is centred at the input
token and its direction is orthogonal to the vector
connecting voter and receiver. In the case of stick votes,
this distribution spans in the normal direction encoded by
the voter. When interpreted as probability distributions, it
can be well stated that the mean coincides with the token
position and there is a given associated standard deviation.
We here consider this as an augmentation rather than a

reformulation because the resulting formulas are simply the
same as OTV, although the votes are computed by using a
weighted-average of different voters. This leads to modified
voting fields, which perform better at inferring structure
than traditional OTV.
In addition, the paper builds upon the first-order

augmentation, which was presented in Section 5.2 and also
describes the formulae which compute first-order
components for a probabilistic location of the voter. The
authors not only included a polarity vector to detect
endpoints, just like in the first-order augmentation, but also
included an orthogonal polarity vector, which they call
‘error vector’, which will eventually point towards the
manifold in the presence of inlier noise.
The experimental results of this paper show enhancements

against the traditional tensor voting approach in the presence
of highly corrupted sparse input tokens.

6 Adaptation of problems to be solved with
tensor voting

Considering that tensor voting has been presented as a
framework, this section is aimed at showing different ways
in which problems have been adapted to be solved by
tensor voting. We do not discuss the applications
themselves, but we present how the technique has been
applied to solve a number of different problems in
computer vision.

6.1 Structure-aware tensors

Possibly the most straightforward way of applying tensor
voting is by means of structure-aware tensors to infer
structural properties of an image. These tensors represent
15
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normals to underlying tangible objects in the images. In [7], the
authors describe ways of adapting problems to this purpose. A
tensorised version of the gradient is frequently used.
Tensor voting as a structure inference engine has been

widely used in order to extract salient objects. Some
examples are [2, 30, 47, 48]. In the latter, a first-order
component was also included to detect endpoints.
Structure-aware tensors have also been used in the context

of image ‘inpainting’ (we refer the reader to [49] for further
details on this problem). In [20], the authors infer missing
boundaries of objects after an automatic segmentation by
means of looking for highly salient points after tensor
voting and connecting them with a spline.
In addition to treating natural images, in [50], the authors

use structure-aware tensors to extract features directly from
triangular meshes, which are the outcome, for example, of a
3D scanning process.

6.2 Tensors in colour space

The technique has also been applied in colour spaces. In this
case, some components of the eigensystem of the tensors
represent features in a colour space. If this space is
designed so that similar colours are close to each other,
problems of colour clustering and colour segmentation can
be formulated as the finding of saliency surfaces in a
tensorial field.
The problem of automatic colour clustering was addressed

in [51] by encoding input data into 2D tensors. The authors
suggest using coordinates a and b of a Lab colour space
[52] to build feature vectors t�i,j = [ai,j, bi,j]

T for every point
i, j. These vectors are used to construct 2D stick tensors
ti,jt

T
i,j and are the input tokens for a tensor voting procedure.

However, we must point out that this idea does not strictly
follow the perceptual laws captured in the design of the
fields of OTV. For example, a surface is propagated
smoothly in OTV formulation, but the lack of smoothness
is not a necessary property in a colour space where edges
are natural discontinuities.
In [53], the authors use a simpler feature vector combining

the three channels of RGB in the following way:
t�i,j = [Ri,j + Gi,j, Gi,j + Bi,j]

T . As in the previous case, 2D
stick tensors are built and tensor voting is used.
In [54], a 3D surface is defined as (x, y, H(x, y)), where

H(x, y) is the value of (x, y) in a chromaticity labelled
image (H = 1/3(|R −G| + |G − B| + |R− B|)). This way,
colour clusters appear as layers in the 3D space. 3D tensor
voting was then used to carry out colour segmentation.
In [55], the authors encoded colour, edginess and

uniformity in a 2D tensor for every colour channel
separately in order to robustly detect edges in noisy images.
Colour is represented as the angle of the tensor and
edginess and uniformity are captured in the eigensystem.
This idea was used to the aim of colour segmentation [56]
and image denoising [57]. In these works, however, the
traditional voting fields are modified to capture perceptual
properties particular of colour spaces, which are different to
the ones needed to extract surfaces. A detailed explanation
of the readaptation of the voting fields is available in [58].

6.3 Stereo matching

The problem of detecting correspondences in pairs of images
taken at different angles has been expressed as a 3D surface
extraction problem, in which each point is an [x, y, d ]T
16
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vector where d is a measure of disparity. After observing
that actual disparities form a coherent surface in this 3D
space, the authors of [59, 60] have encoded these vectors
into 3D tensors to extract the correspondencies with a
tensor voting procedure.
The same principle has been applied to correlate multiple

shots. The authors of [61] suggest generating [x, y, d ]T

tokens analysing images pair-wise, to later use 3D tensor
voting to extract correspondences. This contrasts with the
usual approaches that extract correspondences pair-wise and
then combine the results. In this case, more views imply
more tokens to the same 3D approach. Further work has
been done to improve the reconstruction of surfaces from
multiple views with a similar approach in [62].
In addition, the epipolar geometry estimation problem has

been reformulated as the finding of the normal of an 8D
hyperplane and solved using tensor voting [63].

6.4 Motion analysis

Problems including motion fields have also been adapted to
use tensor voting at some of their stages.
In [64], a motion vector field was encoded as 2D tensors

and tensor voting was used to remove outliers.
In [65], the authors proposed to encode motion information

paired with locations into 4D tensors to do motion analysis by
evaluating the resulting fields after a 4D voting process. This
way, pairs of shots at different times are compared. The input
information is encoded in (x, y, vx, vy) tokens, v being the
velocity at (x, y). This idea was applied to real images in
[66] and also used in [67, 68].
To the aim of better segmenting motion layers, the authors

of [19] proposed to later refine the boundaries of the moving
regions by a 2D structure tensor voting. The same method of
encoding tokens and 4D voting was later used in [69] where
the following step of 2D voting was replaced by a graph-cuts
technique, enhancing speed.
The previous approaches compare two frames. In [70, 71],

time was included as an additional dimension, being the
tokens of the form (x, y, t, vx, vy), allowing full
incorporation of temporal information. This constitutes a
spatiotemporal approach to dense motion layer
segmentation, which requires 5D tensor voting.
In [53], to the aim of foreground extraction in videos, a

robust background colour model is maintained through
tensor voting in colour space and a 4D (x, y, vx, vy)
approach is used to deal with noise and background motion.
Tensor voting has also been applied in the context of video

repairing [72]. The centroids (x, y) of moving features are
regularised in time t by 3D tensor voting on stick tensors
created from [x, y, t]T. This way, smooth trajectories in the
spatiotemporal domain are obtained.

6.5 Other adaptations

Problems in other contexts have also been formulated in a
tensor voting way, which involve requirements of good
continuation and proximity.
A method of texture synthesis has been presented [20].

Textural information is encoded into N-D tensors following
the intensities in a lexicographical order of patches around
every point. NDTV is then used to extrapolate textures.
The problem of dimensionality estimation has also been

addressed with a tensor voting approach [21]. This is the
problem of estimating the dimensionality d of a feature in
an Rn space, where d≤ n. For example, a set of points can
IET Comput. Vis., pp. 1–19
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be arranged in a plane in 3D. However, this might be hard to
detect in the presence of outliers. An N-D voting is done out
of a cloud of points and the different li− li+1 of the resulting
field are evaluated.
7 Conclusions and future work

Tensor voting is a computational framework to solve
computer vision problems that are related to perceptual
grouping. It has been used in very recent work with
successful results. For example, the authors of [2] recently
used tensor voting to infer structure from ultrasonic medical
images. However, the authors did not employ the original
formulation of tensor voting. After pointing out some
issues, they selected a more recent formulation which
reinvented the method while solving some of the issues
regarding the original proposal. The experience of these
authors is similar to what we faced when we first tried to
apply tensor voting: a number of issues arise which make
the original proposal not entirely applicable. However, the
robust results reported in other works are appealing enough
to try to incorporate the framework in our own work.
In this paper, we have attempted to provide a

comprehensive survey of theoretical research in the area. In
particular, we addressed the original formulation to later
review a number of reformulations or augmentations to the
framework. In addition, we provided the reader with a
guideline on how different authors have adapted traditional
computer vision problems to be solved with this technique.
Furthermore, as notation was not consistent among the
different works, we have unified it throughout this paper to
allow better comparison of the different proposals.
Throughout our research, we have also identified a number

of possible future directions of work on the matter. There is a
first family of possible directions, which has to do better
comparing the reformulations with the original framework.
Firstly, for SteerTV, we suggest adopting the methodology
of evaluation of STV and ETV [13] to assess angular errors
against the results of applying the original formulation on a
given dataset. This experiment has not yet been carried out
for this reformulation and it would be important in order to
evaluate the behaviour of the modified decay functions.
Some of the works (STV and SteerTV) build their

reformulation upon replacing arc length with Euclidean
distance. We suggest experimentally evaluating the impact
of the usage of this measure, both in execution time and
quality. If quality increases considerably when using the
original distance measure, but execution time is a concern,
we also suggest considering the use of approximations of
inverse trigonometric functions (see for instance [73]).
A second family of future directions of work has to do with

the development of new tensor voting formulations that
mutually combine the virtues of the different works on the
matter. For instance, in NDTV the authors used the original
stick field approach but simplified the rest of the fields. The
effect of incorporating a different formulation for the
original stick field (for instance, the one of STV) combined
with the NDTV proposal for the derived fields could be
explored.
Except for NDTV and the trivial extension of OTV, the

reformulations provide solutions for either 2D or 3D spaces.
We must point out that the contribution of NDTV is the
only efficient formulation of N-dimensional tensor voting
which we are aware of. However, there do not seem to be
theoretical bounds that prevent the other reformulations to
IET Comput. Vis., pp. 1–19
doi: 10.1049/iet-cvi.2014.0103
be extended to higher dimensional spaces. We suggest that
further work could be done in order to extend the principles
of the other reformulations to higher dimensional spaces.
The combination of NDTV with other approaches could be
considered as soon as the simplifications of the components
of NDTV votes are accepted.
Regarding SteerTV, not only the reformulation does not

apply for any dimensional space, but is also restricted to
stick votes. Depending on the application, this might not be
a concern. For example, if the input tokens are oriented, no
ball voting will possibly be needed. However, future research
can be done to extend the idea to other voting fields, like
plate votes, as well as to generalisations in higher dimensions.
Regarding the tensor voting augmentations, the inclusion

of a first-order component to effectively detect feature
endpoints has considerably enhanced the capabilities of the
framework. However, their computation is still done in the
traditional manner, that is, the first-order ball voting fields
are computed by means of a numerical integration on
the fundamental first-order stick field, analogously to the
second-order case. We suggest incorporating some of the
lessons learned to compute the derived first-order fields
more efficiently. One possible straightforward focus for
future research is the derivation of a steerable filter
formulation for the first-order stick fields.
Many computer vision problems can be posed in terms of

perceptual grouping and tensor voting has been a successful
choice in many cases. We expect that this document will
constitute a reference on the new approaches to the
technique for those who want to apply it, as well as a
motivation to do further research on the matter.
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