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Abstract: During its lifetime, the integrity of structures may be affected by 
exposure to dynamic loads such as earthquakes. In these cases, structures might 
become damaged, and an early overall evaluation of their integrity is necessary. 
A particular pattern of damage is that produced by the existence of breathing 
cracks. These cracks are characterised by their opening and closure during the 
oscillation of the cracked structural element. In this paper, it is proposed a 
method for detection of breathing cracks in multi-degree-of-freedom frame 
structures. The method is based on bilinear stiffness direct estimation, 
individually for each story of the structure, by using a least-squares approach. 
The proposed method is demonstrated through a numerical example using the 
FEM to model a planar structure which presents several breathing cracks. The 
results suggest that this approach is more sensitive and precise than approaches 
based on linear stiffness models in detecting and localising damage due to 
breathing cracks. 
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1 Introduction 

The problem of structural safety has always been crucial in the field of civil engineering 
(Giuliani, 2012). During its lifetime, the integrity of structures may be affected by natural 
degradation, aggressive environments and ambient factors, and the exposure to dynamic 
loads such as earthquakes, causing for instance cracks. In these cases, structures might 
become damaged, and an early overall evaluation of their integrity is necessary in order 
to take pertinent and quick decisions to avoid failures or, eventually, collapse. For 
example, after an earthquake, it is important to determine the current serviceability of the 
affected structure to ensure safe operation in the current condition, and remaining service 
life (Curadelli and Ambrosini, 2011). 

Damage or fault detection by monitoring changes in the dynamic properties or 
response of the structure has received considerable attention in recent literature. The 
basic idea springs from the notion that spectral properties, described in terms of the  
so-called modal parameters (natural frequencies, mode shapes, and modal damping), are 
functions of the physical properties of the structure (mass, energy dissipation mechanisms 
and stiffness). In this context, Curadelli et al. (2008) presented a novel scheme to detect 
structural damage by means of instantaneous frequency and damping coefficient 
identification using the wavelet transform. They found that, in general, natural frequency 
decreases slightly whereas damping increases significantly on the presence of damage. 

Since in actual structures damping mechanisms are strongly non-linear (e.g., yielding, 
internal friction, crack growth), damping coefficient results a function of the oscillation 
amplitude. For this reason, in order to assess the damage through damping change, 
Curadelli et al. (2008) compared instantaneous damping functions (instead of damping 
coefficients). On the other hand, elastic restoring mechanisms are more linear in nature. 
Then, instantaneous natural frequency functions are less dependent on the oscillation 
amplitude, as shown by Curadelli et al. (2008); so natural frequencies could be compared 
directly in order to assess damage. Unfortunately, as previously stated, natural 
frequencies are only slightly influenced by damage presence. 

In practical applications an important and common type of structural damage is due to 
breathing cracks. These cracks are characterised by their opening and closure during 
oscillation of the cracked structural member. They can occur in metallic structural 
members, e.g., due to fatigue (Yan et al., 2013); but also in reinforced concrete structures, 
e.g., due to excessive loading (Law and Zhu, 2004). 

A number of researchers have investigated breathing of cracks from different points 
of view. For example, Kisa and Brandon (2000) integrated the finite element method 
(FEM), the component mode synthesis method and the linear elastic fracture mechanics 
theory to model cracked structures. For their part, Rezaee and Hassannejad (2010) made 
a free vibration analysis of a simply supported beam with a breathing crack by using 
perturbation method. Dimarogonas (1996) gave a comprehensive survey on crack 
modelling approaches. 
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Aside all the intricate non-linear mechanisms that breathing cracks may involve, the 
essential non-linearity which can describe the overall dynamic behaviour of simple 
structural members (e.g., beams) including breathing cracks is a bilinear stiffness model. 
In this context, Friswell and Penny (1992) proposed and assessed a simple model of a 
cracked beam based on different equivalent stiffness values depending on whether the 
crack is open or closed. Following this simple but useful concept, Yan et al. (2013) 
recently proposed a method that transfers non-linear system identification into linear 
system identification by dividing free-vibration responses into different parts 
corresponding to each stiffness region according to the stiffness interface. In this way, the 
natural frequency of each region can be identified by using any modal identification 
approach applicable to linear systems. 

In the present paper, it is proposed a method for breathing cracks detection in  
multi-degrees-of freedom (MDOF) frame structures. The method is based on bilinear 
stiffness direct estimation, individually for each story of the structure, assuming a  
shear-type reduced model. The estimation is performed by using a variation of the  
least-squares (LS) approach proposed by Mohammad et al. (1992).Other variations of it 
were reviewed by Kerschen et al. (2006). 

In this work, unlike the methods described in Kerschen et al. (2006), ad-hoc basis 
functions are proposed to be used in order to easily identify the two parameters which 
characterise bilinear stiffness. Another important advantage of the proposed variation of 
the identification method is that, instead of using one-point force excitation, it works for 
free-vibrations, environmental vibrations or seismically excited structures. The proposed 
method is demonstrated through a numerical example using the FEM to model a planar 
structure which presents several breathing cracks. Records of structural response obtained 
from FEM non-linear dynamic analysis are used as input of the proposed method (which 
assumes a bilinear stiffness behaviour on a shear-type reduced model). The results 
suggest that this approach is more sensitive and precise than linear approaches in 
detecting and localising this kind of damage. 

2 Damage identification based on bilinear reduced model 

2.1 Bilinear-stiffness element 

Unlike the bilinear-stiffness oscillator considered by Friswell and Penny (1992) and Yan 
et al. (2013), in this approach a gap and hook macro-element with a bilinear-stiffness 
behaviour linking two consecutive stories of a shear-type MDOF frame structure is 
considered (Figure 1). Thus, the model assumes n degree-of-freedom (DOF) 
corresponding to the horizontal displacements of each story. 
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Figure 1 Sketch of frame structure, and equivalent bilinear stiffness link element between two 
consecutive stories 

 

The overall shear restoring force of this macro-element is given by: 

( ) ( )pos negr r rF K x K x+ −= +  (1) 
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 (2) 

K+ and K– represent the stiffness in both directions, when the crack is opened or closed, 
respectively, and xr is the relative displacement between consecutive linked DOFs. 
Furthermore, the energy dissipative mechanisms are represented by a single viscous 
damper, with damping coefficient C, linking the same two DOFs. 

2.2 Reduced model for LS parameter estimation method 

In the parameter estimation process, a shear-type reduced model with n-DOF subjected to 
a seismic ground acceleration, ,gx  was used (Figure 2). 
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Figure 2 Reduced model for the parameter estimation 

 

On the assumption that the structural response is measured in term of absolute 
accelerations ( )i gx x+  and relative displacement between consecutive stories (xi – xi–1), 
the equations of motion for the reduced model can be stated as: 
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 (3) 

in which Mi and Ci are the lumped mass and damping coefficient of the ith DOF, iK +  and 

iK −  are the stiffness parameters in one direction and in the opposite one, respectively, 
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between consecutives DOF; ,ix  ,ix  xi are the acceleration, velocity and displacement of 
ith DOF relative to base and gx  is the acceleration of base. 

It is important to note that, the stiffness parameters between consecutives DOF of the 
reduced model take into account the beam-column jointly stiffness between consecutives 
stories of the actual structure. 

After defining the following normalised parameters: 

1, ,

i i n
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i n
k K M

k K M

+ +

− −

= ⎫
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 (4) 

being Mn the mass of nth DOF, the equations of motion (3) can be rearranged as: 
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 (5) 

which allows the following parametric non-linear estimation procedure (LS fitting). 

2.3 LS parameter estimation method 

The present formulation [equation (5)] takes into account that the excitation is ground 
acceleration (e.g., natural minor earthquakes), with slight modifications any external 
force (e.g., artificial shakers) can be considered. 

From records of relative displacement (xi – xi–1), relative velocity 1( )i ix x+ −  derived 
from relative displacement or measured, and absolute acceleration ( )i gx x+  available for 
n measure points, at m time samples the procedure may be carried out in two steps: 

2.3.1 Estimation of cn, nk +  and nk −  

From equations (5), the following over-determined system of linear equations can be 
stated: 

,n n nA χ b=  (6) 

in which: 
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where superscript (j) means measurement at the jth time sample. 
The over-determined system of equations (6) can be solved for χn in a LS sense by 

using Moore-Penrose (left) pseudo-inverse or singular value decomposition of An 
(Mohammad et al., 1992). 

Note that pos(●) and neg(●) are basis functions of the function space of the restoring 
force function defined in equation (1). This ensures that the columns of An are linearly 
independent and therefore there exists the left pseudo-inverse of An. 

2.3.2 Estimation of ci, ,ik +  ik −  and mi (from i = n – 1 to i = 1) 

From equations (5), the following over-determined system of linear equations can be 
written: 

                           1, 1,i i iA χ b i n= ∀ = −  (10) 

in which: 
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where superscript (j) means measurement at the jth time sample. 
Similarly, to the estimation of χn, the over-determined system of linear equations (10) 

can be solved for χi in a LS sense. 
Note that the calculation of bi requires a previous estimate of 1,ik +

+  1ik −
+  and ci+1, 

therefore, ci, ,ik +  ik −  and mi must be estimated from i = n – 1 to i =1. 

Once having obtained ik +  and ik −  for i = 1, n, the following pair of damage indexes 
(ID+ and ID–) are proposed for each ith story: 
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in which superscript d means damaged state and superscript ud means undamaged state 
and n is the number of DOF. Because of the undamaged structure has linear behaviour, it 
is verified that .ud ud

i ik k+ −=  
These damage indexes have the following properties: ID+(i) and ID–(i) are usually 

different from each other, dimensionless and can take values only in the interval [–1, 0]; 
being: ID+(i) = ID–(i) = 0 for the undamaged state. 

3 Baseline method 

In order to assess the sensitivity of the proposed method, a baseline method based on one 
linear stiffness d

ik  for each story is considered for comparison. In this case, d
ik  is 

estimated by a procedure similar to the one described above, except that the restoring 
force is given by: 

.d
r i rF K x=  (15) 

The following damage index is defined on the baseline method: 

( )                                1, .
d ud
i i

DBL d ud
i i

k k
I i i n

k k
−

= ∀ =
+

 (16) 

in which superscript d means damaged state and superscript ud means undamaged state 
respectively. 

It is important to clarify that to verify the accuracy of both methods, the indexes 
which correspond to ‘actual damage’ were determined from stiffness parameters ( ,ud

ik ±  

,d
ik ±  ud

ik  and d
ik ) obtained by FE non-linear static analyses, while the indexes which 

correspond to ‘estimated damage’ were determined from stiffness parameters estimated 
by the proposed methods. 

4 Numerical example 

In order to demonstrate an application of the proposed method, a FEM model of a frame 
structure which is thoroughly detailed in SAP2000 (1997) was developed. 

4.1 Definition of the example 

Figure 3 shows a schema of the steel plane frame consisting of two-bay and seven-story 
with seven measurement points. 

Typical story height is 3.96 m and each bay width is 9.14 m. Beams have moments of 
inertia of: 2.13·10–3 m4, for stories 1 and 2; 1.67·10–3 m4, for stories 3 and 4; and  
1.38·10–3 m4, for stories 5, 6 and 7. External columns have moments of inertia of: 
1.34·10–3 m4, for stories 1, 2 and 3; 1.11·10–3 m4, for stories 4 and 5; and 8.94·10–4 m4, 
for stories 6 and 7. Central columns have moments of inertia of: 1.62·10–3 m4, for stories 
1, 2  
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and 3; 1.34·10–3 m4, for stories 4 and 5; and 1.11·10–3 m4, for stories 6 and 7. Typical 
story masses, of 85,812 kg, are distributed at the top of columns. For low amplitude 
vibration, the fundamental period resulted equal to 1.28 s. 

Figure 3 Plane frame structure 

 

4.2 FEM model of cracked structure 

Figure 4 shows the 2-D FEM model which uses three different element types: frame 
elements (2-nodes, 3 DOF per node), shell elements (4-nodes, 3 DOF per node), and gap 
links (2-nodes, 2 DOF per node) without tensile stiffness. 

The columns which allow incorporating damage are modelled by using a set of shell 
elements in which a crack can be modelled by replacing some shell elements with gap 
links having only stiffness in compression, equivalent to that of the replaced shell 
elements. This model of breathing crack is a simplified variant of that proposed by Kisa 
and Brandon (2000). Note that the non-linearities considered in this FEM model are only 
concentrated in the damaged elements. 

 



   

 

   

   
 

   

   

 

   

   390 H. Garrido and O. Curadelli    
 

    
 
 

   

   
 

   

   

 

   

       
 

It is supposed that breathing of cracks is sufficiently small so no significant damping 
is added. Damping matrix was set proportional to mass and stiffness matrices assuming 
5% of critical damping for first two modes (Clough and Penzien, 1995). 

Figure 4 FEM model of a portion of cracked structure 

 

4.3 Damage scenarios 

Since many damage scenarios are possible on a structure, to demonstrate an application 
of the proposed methodology, seven scenarios with asymmetric- and symmetric-damage 
were considered. These cases were generated from the assumption that only the bottom 
section of the six columns shown in Figure 3 are susceptible to be cracked in one of the 
following three defined patterns: 

a DP+: crack on the left side of column [Figure 5(a)] 

b DP–: crack on the right side of column [Figure 5(b)] 

c DP-DP+: crack on both sides of the column [Figure 5(c)]. 

Crack causes a behaviour which reduces the overall shear stiffness of the story when the 
crack opens, maintaining approximately the same stiffness when the crack closes. For 
illustrative purposes, the crack size was set to 3/8 of the section area and located at 0.17 
m from the base of the column. Damage scenarios are detailed in Table 1. 
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Table 1 Definition of damage scenarios (only the first three stories are shown) 
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Figure 5 Schematic representation of damage patterns, (a) DP+ opening and closure of crack  
(b) DP– closure and opening of crack (c) DP-DP+ opening and closure of cracks on 
both sides 

 
(a) (b) (c) 

Note: Undamaged columns are in grey for reference. 

4.4 Application of the proposed method 

Non-linear dynamic analyses on the FEM model with all damage scenarios were 
performed using as excitation the 1/10-scaled N-S component of the 1940 El Centro 
earthquake, i.e., a minor earthquake. 

Records of relative displacements, relative velocities and absolute accelerations were 
taken at the measurement points from those analyses (Figure 3), for 1,000 time samples 
through 20 s. Since the earthquake record decays to zero after 12 s, the response includes 
forced and free vibration components. 

In order to consider the effect of noise on the estimation process, all records were 
contaminated by adding a random zero-mean white noise with a RMS (root mean square) 
amplitude equal to 0.5% of their RMS values. 

5 Results and discussion 

The damaged indexes obtained from the LS parameter estimation and baseline method 
are plotted in Figures 6 and 7, respectively. 

Figure 6 shows that the proposed method is quite sensitive and accurate to detect 
‘sign’ (DP+, DP– or DP-DP+) and location of symmetric- and asymmetric-damage. Due 
to spurious indications resulting from added noise, the proposed procedure is sensitive to 
damage sizes with indexes over 2% of their maximum values (recall that a total damage 
corresponds to index ID = –1). In these cases [Figure 6(b), Figure 6(e), Figure 6(f),  
Figure 6(h)], the error in the magnitude estimation respect to the actual damage case is 
below 20%. 

From Figure 7, it is observed that, as in the previous case, the sensitivity begins when 
the index value is greater than 2% of his maximum value. However, the error in the 
magnitude estimation respect to the actual damage case is in the order of 50%  
[Figure 7(e), Figure 7(f)]. Moreover, a linear identification is evidently unable to detect 
the ‘sign’ of damage pattern (DP+ or DP–). 
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Figure 6 Damage indexes estimated by means of the proposed (bilinear) method, (a) CASE0 
(undamaged) (b) CASE1 (c) CASE2 (d) CASE3 (e) CASE12 (f) CASE13 (g) CASE23 
(h) CASE123 
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Figure 6 Damage indexes estimated by means of the proposed (bilinear) method, (a) CASE0 
(undamaged) (b) CASE1 (c) CASE2 (d) CASE3 (e) CASE12 (f) CASE13 (g) CASE23 
(h) CASE123 (continued) 

  
(g) (h) 

Figure 7 Damage indexes estimated by means of the baseline (linear) method, (a) CASE0 
(undamaged) (b) CASE1 (c) CASE2 (d) CASE3 (e) CASE12 (f) CASE13 (g) CASE23 
(h) CASE123 
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Figure 7 Damage indexes estimated by means of the baseline (linear) method, (a) CASE0 
(undamaged) (b) CASE1 (c) CASE2 (d) CASE3 (e) CASE12 (f) CASE13 (g) CASE23 
(h) CASE123 (continued) 

  

(e) (f) 

  

(g) (h) 

From Figure 7(b), Figure 7(c) and Figure 7(e) it can be seen that, when the damage 
changes the stiffness in only one direction (asymmetric breathing cracks), the linear 
baseline method always underestimates the stiffness reduction (that has been confirmed 
by Yan et al. (2013) in cantilever cracked beams), suggesting that for this pattern of 
damage a bilinear stiffness model leads to better assessment of stiffness reduction than 
the linear stiffness model. A general overview of Figures 6 and 7 shows that the Signal-
to-Noise Ratio, which measures the capability of the method to distinguish between 
‘healthy’ and ‘damaged’ states, is greater than 2 for the proposed (bilinear) method and 
less than 2 for the baseline (linear) method. In the cases of symmetric or almost 
symmetric damage patterns, both methods give roughly similar estimates [Figure 6(f) and 
Figure 7(f)]. 
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6 Conclusions 

This work is intended to develop a method for detection of breathing cracks in MDOF 
frame structures based on a LS approach using a bilinear stiffness model. A damage 
index was defined on the basis of two stiffness parameters (a stiffness value for each 
direction) for each story of the frame. The following conclusions can be drawn from the 
results: 

1 while the sensitivity depends on the noise level, for the assumed types of damage the 
proposed method is significantly more sensitive than a similar method based on a 
linear stiffness model 

2 the proposed method allows identifying: the location, ‘sign’ (DP+ or DP–) and 
magnitude of damage from both stiffness parameters 

3 the proposed method is a non-destructive dynamic method using the structural 
response from excitations such as natural minor earthquakes or artificial shakers. 

Without loss of generality, the method proposed in this work can be applied to other 
damage patterns causing bilinear stiffness, as for instance clearance in joints or missing 
bolts in frame or truss structures. 
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